Geological Modeling of Uranium Reservoir: The Geological Foundation of Revealing the Metallogenic Mechanism and Solving "Remaining Uranium"
-
摘要: 野外露头和典型矿床的地质建模显示,铀储层存在着严重的沉积和成岩非均质性,即铀储层砂体存在物理结构和物质成分的差异,它们一方面通过制约铀成矿流体场和层间氧化作用达到对铀成矿的控制,另一方面也会影响地浸采铀的溶矿流体场以及对溶剂的选择.本文从铀成矿机理探讨和提高采收率的角度,遴选了地质模型表征的3大类、10余种关键要素,并总结了各参数的空间分布规律.研究表明,沉积作用和沉积环境是铀储层内部沉积界面和构成单元形成发育的主要控制因素,成岩作用会进一步增强铀储层结构和成分的复杂性.研究指出,与铀成矿密切相关的后生蚀变作用优先发育于物性条件好但还原介质丰度低的河道单元中,显示层间氧化带和铀矿的形成发育具有很强的选择性;地下地质建模受参数获取方法和精度约束而具有很大的预测性,但是在矿床尺度下系统总结关键参数的空间配置规律和相互制约关系,对服务找矿预测和地浸采铀才具有真正的实际应用价值.Abstract: By the geological modeling of outcrop and typical uranium deposit, it can be found that there are serious sedimentary heterogeneity and diagenetic heterogeneity in uranium reservoir, that is, the differences in the structure and material composition of the uranium reservoir sandstone. On the one hand, they can control uranium mineralization by restricting uranium metallogenic flow field and interlayer oxidation, on the other hand they may also affect the dissolution flow field and selecting solvent for in-situ leaching uranium. From the discussion of uranium metallogenic mechanism and the angle of improving the recovery rate, three categories and more than ten key elements of the geological model are selected, and the spatial distribution rules of each parameter are summarized. It is found that sedimentation and sedimentary environments are the main controlling factors for the formation and development of the depositional interfaces and components of the uranium reservoir, and the diagenesis would further enhance the complexity of the structure and composition of the uranium reservoir. It is pointed out that the epigenetic alteration, which is closely related to uranium mineralization, is preferentially developed in channel units with good physical properties but low reductant abundances, indicating that the formation and development of interlayer oxidation zones and uranium deposits are highly selective. By fully comparative analysis of the characteristics of the geological modeling between outcrop and underground uranium reservoir, the research ideas which can be used for reference are summarized and the common modeling parameters are selected, which provides the basis for guiding the underground modeling. It is believed that the underground geological modeling is very predictable by the constraints of getting parameters and the precision of parameters, but it has real practical value for ore prospecting and in-situ leaching uranium when the spatial distribution and mutual restriction of key parameters are systematically summed up on the deposit scale.
-
图 4 大规模钙质胶结作用与铀矿化体空间叠置规律典型实例
a和b分别为鄂尔多斯盆地大营铀矿床直罗组下段下亚段和上亚段铀储层砂体中钙质砂岩厚度与铀矿体叠置关系, 注意古层间氧化带由北东向西南方向推进, 据焦养泉等(2012a); c.美国怀俄明Shirley盆地陆相砂岩铀矿体与钙质胶结物空间配置关系, 据Dahlkamp(1993)
Fig. 4. Typical example of spatial distribution law between large-scale calcareous cementation and uranium mineralized body
图 5 纳岭沟铀矿床铀储层地质建模的地层结构与关键要素模式
C1~C5.沉积旋回及编号; C1M~C5M.泥质隔挡层及其编号; C1Ca~C5Ca.钙质隔挡层及其编号; PIO-1~PIO-3.古层间氧化带及其编号; BU、IU、TU、OU.相对于古层间氧化带的空间位置而言, 它们分别代表了底部铀矿化体、内部铀矿化体、顶部铀矿化体、外部铀矿化体
Fig. 5. The stratigraphic structure and key element model of uranium reservoir geological modeling in Nalinggou uranium deposit
图 9 纳岭沟铀矿床铀储层下部砾岩及其南侧灰色还原砂体与铀成矿关系
剖面位置见图 10
Fig. 9. Relationship between the lower conglomerate and the southern side grey reduced sandstone of uranium reservoirs and uranium mineralization, Nalinggou uranium deposit
表 1 直罗组铀储层露头地质模型表征的关键要素
Table 1. Key elements of outcrop geological models of uranium reservoirs in the Zhiluo Formation
参数类型 关键要素 研究重点与基本特征 表征功能 沉积型 沉积界面 识别和测量控制5个级别的沉积界面 识别和划分铀储层的各级内部构成单元 内部构成单元 依次识别和划分分流河道、河道单元、大底形(小型河道、前积砂坝、侧积砂坝)、中底形、微底形(交错层理) 沉积构造和物质成分变化, 古水动力条件变化 岩石岩性 各种粒度和构造的砂岩、泥岩 物质成分变化, 矿物组构研究, 古水动力条件变化 隔挡层 泥砾隔挡层、泥质隔挡层 限制流体垂向运移, 划分流体流动单元; 泥砾隔挡层通常和炭质碎屑共生, 评价还原介质发育规律 成岩型 蚀变作用
(岩石地球化学类型)紫红色蚀变砂岩、绿色蚀变砂岩、黄色蚀变砂岩 表征铀成矿作用过程中岩石矿物次生变化, 划分岩石地球化学类型, 识别层间氧化带 层间氧化带 界定层间氧化带的发育规模, 特别是刻画层间氧化带的边界 预测铀矿化体的发育和分布空间 铀矿化体 可以理解为是"铀胶结作用"的产物, 岩石、矿物、地球化学研究 矿石品质、矿物组构、铀赋存状态与成因 胶结作用
(钙质和硫化铁)分布规律、成岩-成矿序列、成因机理研究 碳酸盐胶结物含量预测, 服务地浸开发工艺评价; 黄铁矿研究服务于铀成矿机理解释 沉积-成岩混合型 还原介质 还原介质类型、空间配置关系、分布规律(丰度变化趋势)、成因机制 层间氧化带空间定位预测; 铀矿化体空间定位预测 物性条件
(孔隙度、渗透率)沉积-成岩过程中孔隙演化与结构特征, 定量测量 多孔介质各向异性, 成矿流体和采矿流体研究基础 表 2 铀储层露头地质建模与地下地质建模的比较分析
Table 2. Comparative analysis of outcrop geological modeling and underground geological modeling of uranium reservoir
类比内容 露头模型 地下模型 资料来源 露头剖面实测 钻孔编录与统计 关键参数 信息获取便捷, 而且资料丰富; 纵横向等比例无死角测量; 关键参数类型丰富. 依赖于钻孔, 资料有限; 垂向精细测量, 横向仅凭预测; 关键参数类型有限. 模型尺度 河道尺度(几十米~几百米) 矿床尺度(几千米~十几千米) 研究任务 铀储层复杂性的直观表征, 偏重沉积和成岩非均质性的精细解剖, 识别沉积界面、流体流动单元. 铀矿床非均质性表征与预测, 偏重区域铀储层沉积旋回划分和小层对比, 关键隔挡层的表征, 特别是成矿要素和规律的总结. 模型功能 (1)服务成矿机理研究; (2)指导地下地质建模. (1)服务找矿远景预测; (2)服务矿山地浸采铀的溶矿流场分析, 以及溶剂的选择. -
[1] Allen, J.R.L., 1978.Studies in Fluviatile Sedimentation:An Exploratory Quantitative Model for the Architecture of Avulsion-Controlled Alluvial Suites.Sedimentary Geology, 21(2):129-147. https://doi.org/10.1016/0037-0738(78)90002-7 [2] Chen, Z.Y., Chen, D.S., Gu, K.H., 2011.Evaluation of Uranium Deposit in China (The Third Volume: Sandstone-Type Uranium Deposits).China Nuclear Industry Geology Bureau and Beijing Institute of Geology, Nuclear Industry, Beijing (in Chinese). [3] Dahlkamp, F.J., 1993.Uranium Ore Deposits.Springer-Verlag, Berlin. [4] Dreyer, T., 1993.Geometry and Facies of Large-Scale Flow Units in Fluvial-Dominated Fan-Delta-Front Sequences.Geological Society, London, Special Publications, 69(1):135-174.https://doi.org/10.1144/gsl.sp.1993.069.01.07 doi: 10.1144/GSL.SP.1993.069.01.07 [5] Guo, H.K., Jiao, Y.Q., Miao, A.S., et al., 2015.Geologic Characteristics and Metallogenic Model of Nalinggou Uranium Deposit in Northeastern Ordos Basin.Uranium Geology, 31(Suppl.1):283-292(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ykdz2015z1019 [6] Harshman, E.N., Adams, S.S., 1981.Geology and Recognition Criteria for Roll-Type Uranium Deposits in Continental Sandstones.The U.S.Department of Energy, Boulder, 185. [7] James, N.P., Dalrymple, R.W., 2010.Facies Models 4.Geological Association of Canada, St.John's. [8] Jiao, Y.Q., Li, S.T., 1998.Geologic Modeling for Outcrop Reservoir of Continental Basin and the Conceptual Systems.Experimental Petroleum Geology, 20(4):346-353 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800565750 [9] Jiao, Y.Q., Li, S.T., Li, Z., 1998.Heterogeneity of Porosity and Permeability in Clastic Rock Reservoirs.Gas & Gas Geology, 19(2):89-92 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT802.000.htm [10] Jiao, Y.Q., Li, S.T., Yang, S.G., et al., 1993.An Outcrop Study on Internal Architecture and Heterogeneity of Lacustrine Delta-Front Sandbodies.Earth Science, 18(4):441-451 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX199304009.htm [11] Jiao, Y.Q., Li, Z., 1995.Genesis and Distribution Regularity of Isolate Barrier Beds in Channel Reservoir Sandbody.Petroleum Exploration and Development, 22(4):78-81 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-skyk504.018.htm [12] Jiao, Y.Q., Yan, J.X., Li, S.T., et al., 2005a.Architectural Units and Heterogeneity of Channel Reservoirs in the Karamay Formation, Outcrop Area of Karamay Oil Field, Junggar Basin, Northwest China.AAPG Bulletin, 89(4):529-545. https://doi.org/10.1306/10040400955 [13] Jiao, Y.Q., Wu, L.Q., Wang, M.F., et al., 2005b.Forecasting the Occurrence of Sandstone-Type Uranium Deposits by Spatial Analysis:An Example from the Northeastern Ordos Basin, China.In:Mao, J.W., Bierlein, F.P., eds., Mineral Deposit Research:Meeting the Global Challenge.Springer-Verlag, Berlin, 273-275.https://doi.org/10.1007/3-540-27946-6_71 [14] Jiao, Y.Q., Chen, A.P., Yang, Q., et al.2005a.Sand Body Heterogeneity:One of the Key Factors of Uranium Metallogenesis in Ordos Basin.Uranium Geology, 21(1):8-16 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YKDZ200501001.htm [15] Jiao, Y.Q., Chen, A.P., Wang, M.F., et al., 2005b.Genetic Analysis of the Bottom Sandstone of Zhiluo Formation, Northeastern Ordos Basin:Predictive Base of Spatial Orientation of Sandstone-Type Uranium Deposit.Acta Sedimentologica Sinica, 23(3):371-379 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/cjxb200503001 [16] Jiao, Y.Q., Wu, L.Q., Yang, S.K., et al., 2006.Sedimentology of Uranium Reservior:The Exploration and Development Base of Sandstone-Type Uranium Deposits.Geological Publishing House, Beijing (in Chinese). [17] Jiao, Y.Q., Peng, Y.B., Li, J.F., et al., 2012a.Study on the Metallogenic Regularity and Prediction of the Uranium Deposit in Hangjinqi, Inner Mongolia Autonomous Region.China University of Geosciences, Wuhan (in Chinese). [18] Jiao, Y.Q., Wu, L.Q., Rong, H., 2012b.Uranium Reservoir Architecture and Ore-Forming Flow Field Study:A Key of Revealing Dongsheng Sandstone-Type Uranium Deposit Mineralization Mechanism.Geological Science and Technology Information, 31(5):94-104 (in Chinese with English abstract). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=DZKQ201205014&dbname=CJFD&dbcode=CJFQ [19] Jiao, Y.Q., Wu, L.Q., Peng, Y.B., et al., 2015a.Sedimentary-Tectonic Setting of the Deposition-Type Uranium Deposits Forming in the Paleo-Asian Tectonic Domain, North China.Earth Science Frontiers, 22(1):189-205 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201501016 [20] Jiao, Y.Q., Wu, L.Q., Rong, H., 2015b.Sedimentology of Coal-Bearing Basins.China University of Geosciences Press, Wuhan (in Chinese). [21] Jiao, Y.Q., Wu, L.Q., Rong, H., et al., 2016.The Relationship between Jurassic Coal Measures and Sandstone-Type Uranium Deposits in the Northeastern Ordos Basin, China.Acta Geologica Sinica (English Edition), 90(6):2117-2132.https://doi.org/10.1111/1755-6724.13026 doi: 10.1111/acgs.2016.90.issue-6 [22] Jiao, Y.Q., Wu L.Q., Rong H., 2018a.Model of Inner and Outer Reductive Media within Uranium Reservoir Sandstone of Sandstone-Type Uranium Deposits and Its Ore-Controlling Mechanism:Case Studies in Daying and Qianjiadian Uranium Deposits.Earth Science, 43(2):459-474 (in Chinese with English abstract).https://doi.org/10.3799/dqkx.2017.512 http://d.old.wanfangdata.com.cn/Periodical/dqkx201802009 [23] Jiao, Y.Q., Wu, L.Q., Rong, H., et al., 2018b.Study on the Heterogeneity Modeling of Uranium Reservoir in Northern Ordosbasin.China University of Geosciences, Wuhan (in Chinese). [24] Lake, L.W., Carroll, H.B., 1986.Reservoir Characterization.Academic Press, Orlando. [25] Lake, L.W., Carroll, H.B., Wesson, T.C., 1991.Reservoir Characterization Ⅱ.Academic Press.Orlando. [26] Li, S.T., Cheng, S.T., Yang, S.G., et al., 1992.Sequence Stratigraphic Research and Sedimentary System Analysis in Northeastern Ordos Basin-The Formation, Distribution and Predicting Basis of Jurassic Coal Rich Units.Geological Publishing House, Beijing (in Chinese). [27] Li, S.T., Jiao, Y.Q., Fu, Q.P., 1993.Study on Internal Composition and Heterogeneity of Delta Sandbodies of Yanan Formation in Ordos Basin.In: Qiu, Y.N., Xue, S.H., Ying, F.X., eds., A Collection of Research Papers on Oil and Gas Reservoirs in China(Cont.1).Petroleum Industry Publishing House, Beijing (in Chinese). [28] Li, S.T., 1996.Depositional Systems in Energy-Resources Bearing Basins:Case Studies of the Continental and Paralic Depositional Systems in China.China University of Geosciences Press, Wuhan (in Chinese). [29] Li, S.T., Jiao, Y.Q., 2014.Outcrop Depositional System Research of the Carbonate Platform Margin Belts and Reservoir Modeling.Geological Publishing House, Beijing (in Chinese). [30] Miall, A.D., 1985.Architectural-Element Analysis:A New Method of Facies Analysis Applied to Fluvial Deposits.Earth-Science Reviews, 22(4):261-308. https://doi.org/10.1016/0012-8252(85)90001-7 [31] Miall, A.D., 1988.Reservoir Heterogeneities in Fluvial Sandstones:Lessons from Outcrop Studies.AAPG Bulletin, 72(6):682-697.https://doi.org/10.1306/703c8f01-1707-11d7-8645000102c1865d [32] Miall, A.D., 2006a.The Geology of Fluvial Deposits: Sedimentary Facies, Basin Analysis, and Petroleum Geology.Springer-Verlag Berlin Heidelberg GmbH, New York. [33] Miall, A.D., 2006b.Reconstructing the Architecture and Sequence Stratigraphy of the Preserved Fluvial Record as a Tool for Reservoir Development:A Reality Check.AAPG Bulletin, 90(7):989-1002. https://doi.org/10.1306/02220605065 [34] Miall, A.D., Tyler, N., 1991.The 3-D Facies Architecture of Terrigenous Clastic Sediments and Its Implications for Hydrocarbon Discovery and Recovery.Society for Sedimentary Geology, Tulsa. [35] Qiu, Y.N., 1987.The Sedimentary Base of the Clastic Rock Reservoir.Petroleum Industry Publishing House, Beijing (in Chinese). [36] Qiu, Y.N., 1990.A Proposed Flow-Diagram for Reservoir Sedimentological Study.Petroleum Exploration and Development, 17(1):85-90(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKYK199001011.htm [37] Rong, H., Jiao, Y.Q., Wu, L.Q., et al., 2016.Epigenetic Alteration and Its Constraints on Uranium Mineralization from the Qianjiadian Uranium Deposit, Southern Songliao Basin.Earth Science, 41(1):154-164(in Chinese with English abstract).https://doi.org/10.3799/dqkx.2016.012 http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201601013.htm [38] Wang, G., Wang, Q., Miao, A.S., et al., 2017.Characteristic of Uranium Minerals in Malinggou Uranium Deposit of Ordos Basin and Their Formation Mechanism.Acta Mineralogica Sinca, 37(4):461-468(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/kwxb201704013 [39] Wang, S.M., 1996.Coal Accumulation and Coal Resource Evaluation of Ordos Basin.China Coal Industry Publishing House, Beijing (in Chinese). [40] Xie, H.L., Wu, L.Q., Jiao, Y.Q., et al., 2016.The Quantitative Evaluation Index System for Uranium Reservoir Heterogeneity in Hantaimiao Region, Ordos Basin.Earth Science, 41(2):279-292 (in Chinese with English abstract).https://doi.org/10.3799/dqkx.2016.021 [41] Zhang, C.M., 1992.Hierarchy Analysis in Reservoir Researches.Oil & Gas Geology, 13(3):344-350(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SYYT199203013.htm [42] Zhang, H., Li, H.T., Xiong, C.W., 1998.Jurassic Coal-Bearing Strata and Coal Accumulation in Northwest China.Geological Publishing House, Beijing (in Chinese). [43] Zhang, J.D., Jian, X.F., Guo, Q.Y., et al., 2013.Exploration and Evaluation of Uranium Sources in Meso-Cenozoic Basins in North China (2000-2010).Geological Publishing House, Beijing (in Chinese). [44] 陈祖伊, 陈戴生, 古抗衡, 2011.中国铀矿床研究评价(第三卷: 砂岩型铀矿床).北京: 中国核工业地质局和核工业北京地质研究院. [45] 郭虎科, 焦养泉, 苗爱生, 等, 2015.鄂尔多斯盆地北东部纳岭沟铀矿床成矿作用特征及成矿模式.铀矿地质, 31(增刊1):283-292. http://d.old.wanfangdata.com.cn/Periodical/ykdz2015z1019 [46] 焦养泉, 李思田, 1998.陆相盆地露头储层地质建模研究与概念体系.石油实验地质, 20(4):346-353. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800565750 [47] 焦养泉, 李思田, 李祯, 等, 1998.碎屑岩储层物性非均质性的层次结构.石油与天然气地质, 19(2):89-92. doi: 10.3321/j.issn:0253-9985.1998.02.003 [48] 焦养泉, 李思田, 杨士恭, 等, 1993.湖泊三角洲前缘砂体内部构成及不均一性露头研究.地球科学, 18(4):441-451. http://earth-science.net/WebPage/Article.aspx?id=50 [49] 焦养泉, 李祯, 1995.河道储层砂体中隔挡层的成因与分布规律.石油勘探与开发, 22(4):78-81. doi: 10.3321/j.issn:1000-0747.1995.04.004 [50] 焦养泉, 陈安平, 杨琴, 等, 2005a.砂体非均质性是铀成矿的关键因素之一:鄂尔多斯盆地东北部铀成矿规律探讨.铀矿地质, 21(1):8-16. http://d.old.wanfangdata.com.cn/Periodical/ykdz200501002 [51] 焦养泉, 陈安平, 王敏芳, 等, 2005b.鄂尔多斯盆地东北部直罗组底部砂体成因分析——砂岩型铀矿床预测的空间定位基础.沉积学报, 23(3):371-379. http://d.old.wanfangdata.com.cn/Periodical/cjxb200503001 [52] 焦养泉, 吴立群, 杨生科, 等, 2006.铀储层沉积学:砂岩型铀矿勘查与开发的基础.北京:地质出版社. [53] 焦养泉, 彭云彪, 李建伏, 等, 2012a.内蒙古自治区杭锦旗大营铀矿成矿规律与预测研究.武汉:中国地质大学. [54] 焦养泉, 吴立群, 荣辉, 等, 2012b.铀储层结构与成矿流场研究:揭示东胜砂岩型铀矿床成矿机理的一把钥匙.地质科技情报, 31(5):94-104. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=DZKQ201205014&dbname=CJFD&dbcode=CJFQ [55] 焦养泉, 吴立群, 彭云彪, 等, 2015a.中国北方古亚洲构造域中沉积型铀矿形成发育的沉积-构造背景综合分析.地学前缘, 22(1):189-205. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=DXQY201501018&dbname=CJFD&dbcode=CJFQ [56] 焦养泉, 吴立群, 荣辉, 2015b.聚煤盆地沉积学.武汉:中国地质大学出版社. [57] 焦养泉, 吴立群, 荣辉, 2018a.砂岩型铀矿的双重还原介质模型及其联合控矿机理: 兼论大营和钱家店铀矿床.地球科学, 43(2): 459-474. https://doi.org/10.3799/dqkx.2017.512 [58] 焦养泉, 吴立群, 荣辉, 等, 2018b.鄂尔多斯盆地北部铀储层非均质性建模研究.武汉:中国地质大学(内部资料). [59] 李思田, 程守田, 杨士恭, 等, 1992.鄂尔多斯盆地东北部层序地层及沉积体系分析——侏罗系富煤单元的形成、分布及预测基础.北京:地质出版社. [60] 李思田, 焦养泉, 付清平, 1993.鄂尔多斯盆地延安组三角洲砂体内部构成及非均质性研究.见: 裘亦楠, 薛叔浩, 应凤祥编, 中国油气储层研究论文集(续一).北京: 石油工业出版社. [61] 李思田, 1996.含能源盆地沉积体系——中国内陆和近海主要沉积体系类型的典型分析.武汉:中国地质大学出版社. [62] 李思田, 焦养泉, 2014.碳酸盐台地边缘带沉积体系露头研究及储层建模.北京:地质出版社. [63] 裘亦楠, 1987.碎屑岩储层沉积基础.北京:石油工业出版社. [64] 裘亦楠, 1990.储层沉积学研究工作流程.石油勘探与开发, 17(1):85-90. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000004619727 [65] 荣辉, 焦养泉, 吴立群, 等, 2016.松辽盆地南部钱家店铀矿床后生蚀变作用及其对铀成矿的约束.地球科学, 41(1):154-164.https://doi.org/10.3799/dqkx.2016.012 http://earth-science.net/WebPage/Article.aspx?id=3228 [66] 王贵, 王强, 苗爱生, 等, 2017.鄂尔多斯盆地纳岭沟铀矿床铀矿物特征与形成机理.矿物学报, 37(4):461-468. http://d.old.wanfangdata.com.cn/Periodical/kwxb201704013 [67] 王双明, 1996.鄂尔多斯盆地聚煤规律及煤炭资源评价.北京:煤炭工业出版社. [68] 谢惠丽, 吴立群, 焦养泉, 等, 2016.鄂尔多斯盆地罕台庙地区铀储层非均质性定量评价指标体系研究.地球科学, 41(2):279-292.https://doi.org/10.3799/dqkx.2016.021 http://earth-science.net/WebPage/Article.aspx?id=3246 [69] 张昌民, 1992.储层研究中的层次分析法.石油与天然气地质, 13(3):344-350. doi: 10.3321/j.issn:0253-9985.1992.03.013 [70] 张泓, 李恒堂, 熊存卫, 1998.中国西北侏罗纪含煤地层与聚煤规律.北京:地质出版社. [71] 张金带, 简晓飞, 郭庆银, 等, 2013.中国北方中新生代沉积盆地铀矿资源调查评价(2000-2010).北京:地质出版社.