Age of Zhangjia Uranium Deposit in the Miaoershan Ore Field, Guangxi Autonomous Region, China: In Situ Micro-Determination on Pitchblende
-
摘要: 张家铀矿床是苗儿山铀矿田北部的代表性铀矿床之一,对其开展详细的成矿年代学研究不仅对认识区域铀成矿规律十分重要,也对探讨华南花岗岩型热液铀矿床的成矿大地构造背景及动力学机制具有重要意义.在详细的镜下观察基础上,采用电子探针U-Th-Pb化学法、LA-ICP-MS U-Pb同位素方法对脉状沥青铀矿进行了年代学研究.20个点的U-Th-Pb化学年龄为55.3~81.1 Ma,其中19个点的加权平均年龄为71.4±1.9 Ma.根据稀土元素特征的不同,将34个点的LA-ICP-MS U-Pb同位素年龄分为2组,第一组共15个点,其中13个点的206Pb/238U加权平均年龄为69.4±4.9 Ma;第二组共19个,其中16个点的206Pb/238U加权平均年龄为94.1±3.0 Ma.电子探针U-Th-Pb化学法加权平均年龄(71.4±1.9 Ma)与LA-ICP-MS U-Pb同位素法较年轻的一组206Pb/238U加权平均年龄(69.4±4.9 Ma)一致,代表张家铀矿床的成矿时代,LA-ICP-MS U-Pb同位素法较老的一组206Pb/238U加权平均年龄(94.1±3.0 Ma)可能是沥青铀矿受后期改造和/或样品剥蚀过程杂质矿物影响而地质意义不明确.晚中生代期间,古太平洋板块向欧亚大陆俯冲可能是控制华南大规模花岗岩型铀矿床形成的动力学机制,包括张家铀矿床在内的华南花岗岩型铀矿床大规模成矿作用可能受80~50 Ma古太平洋板块对亚洲东部的斜向俯冲动力体制的控制.
-
关键词:
- 华南 /
- 热液铀矿床 /
- EPMA U-Th-Pb化学年龄 /
- LA-ICP-MS U-Pb定年 /
- 动力学环境 /
- 地质年代学
Abstract: The Zhangjia uranium deposit is one of the representative uranium deposits in the northern Miaoershan uranium orefield. The detailed study of metallogenic ages of the Zhangjia uranium deposit is very important not only to understanding the regularity of uranium mineralization at regional scale of the Miaoershan uranium orefield but also to systematically investigating the tectonic setting and geodynamics of hydrothermal uranium deposits in granitoids in Southern China. Based on detailed microscopic observation,the vein pitchblende was studied by in-situ electron microprobe U-Th-Pb and LA-ICP-MS U-Pb isotopic and rare earth element analysis. Twenty spots electron probe micro-analysis (EPMA) show calculated U-Th-Pb chemical ages ranging from 55.3 Ma to 81.1 Ma. 19 of the 20 ages give a weighted average age at 71.4±1.9 Ma. Based on rare earth elements differences,34 spots LA-ICP-MS U-Pb isotopic ages can be classified into two groups. The 13 U-Pb isotopic data of the first group 15 data give a weighted 206Pb/238U average age at 69.4±4.9 Ma. The second group includes 19 data spots,16 of which give a weighted 206Pb/238U average age at 94.1±3.0 Ma. The weighted EPMA U-Th-Pb chemical age 71.4±1.9 Ma is identical to the weighted 206Pb/238U average age 69.4±4.9 Ma of first group 13 data spots calculated by LA-ICP-MS U-Pb isotopic method. Thus we believe that the Zhangjia uranium deposit was formed at some 70 Ma. The weighted 206Pb/238U average age 94.1±3.0 Ma of the second group of the LA-ICP-MS U-Pb isotopic data is believed to have no geological significance and was possibly affected by post-formation alteration and/or impurities minerals in the laser ablation process. In late Mesozoic era,the paleo-Pacific plate was subducted to the eastern Eurasia continent,which affected the tectonics,magmatism and metallogenisis of the South China block. The hydrothermal uranium deposits in grantoids of South China,including the Zhangjia uranium deposit,were mostly formed in 50 Ma to 80 Ma which corresponds to the oblique subduction of the paleo-Pacific Plate to the eastern Eurasia Continent. -
图 1 华南大地构造格架示意
图a据Gao et al.(2017)修改;图b据1:6 000万中国地图,审图号:GS(2019)1651号
Fig. 1. Schematic map of tectonic framework of the South China Block
图 6 张家铀矿床沥青铀矿ΣREE-(ΣLREE/ΣHREE)N图解
Fig. 6. ΣREE vs. (ΣLREE/ΣHREE)N diagram of pitchblende from the Zhangjia uranium deposit
图 7 张家铀矿床沥青铀矿稀土元素配分模式与不同类型铀矿床稀土配分模式对比
不同成因类型铀矿床沥青铀矿稀土配分模式据Mercadier et al.(2011);球粒陨石标准化数据参考Anders and Grevesse(1989)
Fig. 7. Comparison of pitchblende REE modes between the Zhangjia uranium deposit and global uranium deposits
图 9 华南花岗岩型铀矿床成矿年龄统计直方图
数据源自表 4
Fig. 9. Diagram showing the age distribution of uranum deposits in granitoids of South China Block
表 1 张家铀矿床沥青铀矿电子探针成分(%)及U-Th-Pb年龄(Ma)
Table 1. Electron probe micro-analytic compositions (%) coresponding U-Th-Pb ages (Ma) of pitchblende from the Zhangjia uranium deposit
No. Na2O SiO2 UO2 K2O Al2O3 MgO PbO CaO Y2O3 ThO2 P2O5 TiO2 Yb2O3 FeO MnO Total 年龄 1 0.23 1.45 87.84 0.03 0.10 - 0.84 4.89 - - 0.04 - 0.01 - 0.01 95.44 72.2±3.0 2 0.19 1.39 88.97 0.07 0.11 - 0.80 4.71 - - - - 0.11 0.15 0.02 96.52 67.9±3.4 3 0.14 1.23 89.37 0.06 0.11 0.05 0.87 5.15 - - - 0.02 - 0.07 - 97.07 73.5±3.7 4 0.15 1.43 88.95 0.1 0.13 0.01 0.77 4.66 - - - 0.07 0.21 0.06 0.10 96.64 65.4±3.3 5 0.36 1.36 87.63 0.06 0.10 - 0.81 5.09 - - - - - - 0.14 95.55 69.8±3.5 6 0.15 1.26 88.31 0.06 0.04 0.01 0.81 4.66 - - 0.01 - - - 0.05 95.36 69.3±3.5 7 0.11 1.34 88.91 0.06 0.07 - 0.86 5.05 - - - - 0.21 0.08 0.12 96.81 73.0±3.7 8 0.13 1.43 88.20 0.03 0.12 0.02 0.88 4.80 - - - - - 0.06 0.05 95.72 75.3±3.8 9 0.18 1.30 87.66 0.04 0.06 - 0.79 5.17 0.01 - 0.03 - - 0.10 0.11 95.45 68.0±3.4 10 0.13 1.58 87.77 0.09 0.15 0.05 0.79 4.92 - - - 0.06 - 0.05 0.06 95.65 68.0±3.4 11 0.18 1.35 88.64 0.08 0.08 0.01 0.89 4.67 - - - 0.15 0.23 0.08 0.10 96.46 75.8±3.8 12 0.14 1.37 89.52 0.07 0.14 0.02 0.81 4.52 - 0.01 0.04 - 0.03 0.11 0.10 96.88 68.3±3.4 13 0.09 1.20 88.42 0.09 0.12 - 0.95 5.00 - - 0.02 - - 0.01 0.04 95.94 81.1±4.1 14 0.13 1.18 88.85 0.05 0.09 - 0.80 5.11 - - 0.06 0.09 0.10 0.05 0.03 96.54 68.0±3.4 15 0.17 1.20 89.60 0.06 0.06 0.02 0.87 5.17 - - 0.06 - 0.27 - - 97.48 73.3±3.7 16 0.15 1.08 88.83 0.04 0.10 0.01 0.84 5.08 - - 0.10 - - - - 96.23 71.4±3.6 17 0.24 1.25 88.74 0.08 0.07 0.01 0.65 4.48 - - 0.05 0.01 - 0.02 0.05 95.65 55.3±2.8 18 0.24 1.02 89.06 0.07 0.02 - 0.87 5.04 - - 0.07 - - 0.10 0.04 96.53 73.8±3.7 19 0.16 1.19 87.36 0.11 0.10 - 0.92 5.32 - - 0.03 0.05 0.03 0.16 0.01 95.44 79.5±4.0 20 0.18 1.16 88.93 0.07 0.09 - 0.84 5.12 - - 0.04 - - - 0.09 96.52 71.3±3.6 注:“-”表示低于检测线;U-Th-Pb年龄计算方法依据Ranchin(1968),年龄误差估算方法依据Bowles(1990). 表 2 沥青铀矿LA-ICP-MS稀土元素组成(μg/g)
Table 2. Rare Earth Element compositons of pitchblende detected by LA-ICP-MS
点号 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu ΣREE (LREE/HREE)N 1 14.8 15.8 1.68 8.73 1.43 0.093 4.19 0.43 3.65 0.65 1.61 0.13 1.33 0.11 54.57 1.35 2 120 449 58.0 201 33.9 1.40 23.6 3.18 14.2 2.48 7.09 1.08 6.90 0.78 921.91 4.76 3 10.6 10.1 1.16 5.01 2.36 0.24 1.57 0.13 1.76 0.28 0.86 0.054 0.42 0.024 34.52 2.63 4 13.5 24.3 2.67 9.41 3.54 0.98 - 0.70 4.61 0.23 0.65 0.12 1.01 0.034 61.72 2.79 5 87.7 397 36.1 130 19.3 0.48 22.3 1.14 2.70 - 3.52 0.12 0.16 - 700.43 8.99 6 21.7 31.8 1.65 9.66 3.93 - 1.62 0.80 2.38 2.40 1.11 0.29 2.24 0.56 80.15 1.29 7 13.7 16.7 2.02 11.6 - - 3.99 0.29 - 0.86 - 0.15 0.72 - 49.96 2.14 8 25.6 15.6 2.40 2.06 2.01 0.64 16.6 0.80 3.14 0.26 2.20 - 4.58 0.25 76.10 0.94 9 35.0 63.9 7.03 31.3 7.62 0.47 8.11 1.08 8.11 2.14 4.50 0.38 3.27 0.50 173.34 1.75 10 86.2 401 52.9 152 36.0 1.33 26.5 0.88 15.1 0.94 3.06 0.66 4.50 0.82 781.89 5.61 11 18.1 47.3 4.34 14.5 6.74 - 4.05 1.40 4.09 0.51 1.96 0.42 2.20 0.59 106.13 1.59 12 18.7 24.6 2.04 13.0 5.86 0.81 4.25 1.16 - 0.031 - - 2.15 0.36 72.93 2.40 13 20.3 26.6 3.95 9.25 - 0.96 1.68 0.77 2.16 0.088 1.27 - 0.66 0.43 68.08 2.60 14 24.6 30.0 2.33 14.1 4.63 0.96 9.13 0.089 0.096 0.91 0.84 - - 0.14 87.86 3.00 15 694 2 910 402 1 498 253 11.6 116 18.5 98.4 19.4 46.7 7.19 44.8 5.52 6 125.32 5.14 16 209 819 105 375 70.9 3.36 34.6 5.53 26.3 5.07 13.0 1.77 11.4 1.29 1 681.37 5.16 17 59.2 191 22.7 82.5 18.2 1.22 13.8 2.33 11.8 1.99 5.70 0.87 4.70 0.42 416.71 2.96 18 352 1 558 211 760 136 4.94 65.7 9.62 56.0 8.78 25.0 3.45 28.4 2.97 3 222.88 4.99 19 18.3 27.3 4.48 18.1 5.48 0.23 5.37 0.78 5.54 0.99 2.68 0.26 1.80 0.17 91.57 1.64 20 73.8 275 40.5 144 29.1 1.87 17.3 2.98 18.4 2.76 8.50 1.38 7.04 1.06 623.11 3.11 21 384 1 633 216 772 131 5.97 66.3 10.7 61.1 11.3 27.8 4.61 27.7 3.00 3 354.58 4.69 22 725 3 587 461 1 636 280 13.8 114 18.0 89.4 16.0 42.1 6.48 43.5 4.91 7 035.77 6.33 23 817 3 870 489 1 773 294 11.2 127 19.5 109 17.4 46.1 5.44 51.5 4.90 7 634.29 6.25 24 536 2 475 321 1 163 184 8.39 87.0 12.3 64.4 11.8 30.5 5.20 33.3 3.16 4 934.80 6.04 25 160 736 88.6 321 54.8 3.33 29.7 4.64 22.7 4.34 12.2 1.37 8.18 1.50 1 447.77 5.03 26 303 1 262 153 553 82.2 3.43 44.3 6.28 29.5 5.09 15.5 2.38 14.6 1.83 2 476.71 6.18 27 1 187 5 537 725 2 661 413 14.8 217 28.8 148 27.1 68.2 10.2 59.6 7.60 11 104.04 6.01 28 97.9 463 55.7 206 36.1 1.00 20.3 3.11 12.8 2.53 4.16 1.33 6.52 0.86 911.31 4.93 29 24.0 28.1 2.97 15.3 4.86 0.34 9.05 0.76 3.13 1.11 1.40 0.75 1.92 0.25 93.93 1.37 30 43.9 42.2 4.10 12.6 1.94 0.40 2.74 0.42 3.32 1.15 1.34 0.68 0.99 - 115.79 2.92 31 19.4 30.7 3.18 9.57 3.33 1.11 5.14 0.34 3.39 0.49 1.53 0.15 1.60 0.17 80.02 2.22 32 22.1 31.3 4.52 17.0 4.46 - 4.53 0.56 3.15 1.53 2.36 0.009 0.58 0.067 92.18 2.29 33 606 2 751 325 1 280 207 9.12 80.9 15.6 85.6 11.7 26.5 6.43 27.8 3.98 5 437.39 6.06 34 65.4 245 27.9 90.5 21.2 0.81 12.1 2.48 8.25 1.87 5.21 0.81 7.90 0.55 490.30 3.49 注:“-”表示低于检测线. 表 3 张家铀矿床沥青铀矿LA-ICP-MS U-Pb同位素组成及年龄
Table 3. LA-ICP-MS U-Pb isotopic compositions and ages of pitchblende from the Zhangjia uranium deposit
样点 UO2 (%) Th (μg/g) Pb (μg/g) 同位素比值及误差 年龄及误差(Ma) 207Pb/ 206Pb 1σ 207Pb/ 235U 1σ 206Pb/ 238U 1σ 207Pb/ 206Pb 1σ 207Pb/ 235U 1σ 206Pb/ 238U 1σ 1 91.2 0.078 14 444 0.051 6 0.000 8 0.099 5 0.001 5 0.014 0 0.000 2 333.4 33.3 96.3 1.4 89.7 1.1 2 90.9 0.001 8 13 606 0.050 1 0.000 8 0.091 1 0.001 3 0.013 3 0.000 2 198.2 33.3 88.6 1.2 85.0 1.0 3 89.7 - 15 277 0.051 4 0.000 7 0.105 6 0.001 6 0.014 9 0.000 2 257.5 33.3 102.0 1.5 95.4 1.2 4 92.2 0.42 16 199 0.049 7 0.001 6 0.105 3 0.003 6 0.015 8 0.000 4 189.0 75.9 101.7 3.3 101.0 2.7 5 92.3 - 15 806 0.052 5 0.001 7 0.109 5 0.003 8 0.015 6 0.000 4 309.3 78.7 105.5 3.5 100.0 2.6 6 92.9 0.26 14 756 0.051 7 0.001 8 0.099 7 0.003 6 0.014 3 0.000 4 272.3 77.8 96.5 3.3 91.7 2.4 7 91.9 - 16 781 0.053 3 0.001 8 0.119 5 0.003 9 0.016 8 0.000 4 231.6 79.6 103.6 4.0 100.3 3.0 8 92.1 0.73 16 294 0.050 8 0.001 8 0.107 5 0.004 3 0.015 7 0.000 5 233.4 27.8 94.6 1.3 89.4 1.0 9 91.8 - 14 300 0.050 7 0.000 6 0.097 7 0.001 4 0.014 0 0.000 2 5.7 72.2 89.5 2.4 94.1 2.0 10 92.5 0.86 15 357 0.046 2 0.001 2 0.092 1 0.002 6 0.014 7 0.000 3 150.1 59.3 99.3 2.6 98.1 1.8 11 87.7 0.20 14 993 0.049 0 0.001 2 0.102 7 0.002 8 0.015 3 0.000 3 264.9 58.3 99.2 2.7 93.6 1.7 12 92.1 - 16 514 0.053 0 0.001 4 0.113 4 0.003 7 0.015 6 0.000 4 320.4 33.3 76.0 1.1 68.7 1.0 13 91.0 - 15 126 0.051 6 0.001 4 0.102 7 0.002 9 0.014 6 0.000 3 239.0 33.3 82.2 1.3 76.5 0.8 14 92.2 0.015 16 166 0.054 9 0.001 4 0.114 9 0.003 4 0.015 3 0.000 3 235.3 61.1 89.2 1.3 84.0 1.0 15 91.4 0.42 11 186 0.052 8 0.000 7 0.077 7 0.001 2 0.010 7 0.000 2 283.4 33.3 74.5 1.2 68.0 0.9 16 90.9 0.068 12 759 0.051 0 0.000 7 0.084 3 0.001 4 0.011 9 0.000 1 233.4 35.2 93.5 1.4 88.8 1.3 17 91.0 0.030 14 053 0.050 9 0.000 8 0.091 8 0.001 4 0.013 1 0.000 2 257.5 33.3 88.5 1.3 82.6 1.1 18 89.3 0.68 11 407 0.052 0 0.000 8 0.076 1 0.001 2 0.010 6 0.000 1 300.1 29.6 78.5 1.0 71.8 0.8 19 88.2 0.019 14 609 0.050 7 0.000 8 0.096 4 0.001 5 0.013 9 0.000 2 161.2 51.8 64.6 1.7 61.7 0.9 20 90.4 0.020 14 106 0.051 4 0.000 7 0.091 1 0.001 4 0.012 9 0.000 2 264.9 50.9 64.1 1.4 58.9 0.9 21 90.6 0.20 12 135 0.052 1 0.000 7 0.080 4 0.001 1 0.011 2 0.000 1 327.8 38.9 69.0 1.6 61.8 1.1 22 92.7 0.20 10 927 0.049 3 0.001 1 0.065 7 0.001 8 0.009 6 0.000 1 231.6 71.3 84.6 1.7 79.4 1.2 23 91.4 - 10 288 0.051 6 0.001 0 0.065 2 0.001 5 0.009 2 0.000 1 300.1 37.0 79.3 1.3 72.7 1.0 24 90.0 0.13 10 362 0.053 0 0.000 9 0.070 3 0.001 6 0.009 6 0.000 2 301.9 55.6 51.6 2.0 46.1 1.5 25 89.8 0.44 12 832 0.050 8 0.000 9 0.086 9 0.001 8 0.012 4 0.000 2 344.5 47.2 103.6 1.9 94.5 1.5 26 89.8 0.14 11 453 0.052 2 0.000 9 0.081 2 0.001 4 0.011 3 0.000 2 209.3 42.6 103.0 1.9 99.1 1.3 27 92.8 0.055 8 511 0.052 4 0.001 2 0.052 1 0.002 1 0.007 2 0.000 2 183.4 15.7 91.5 2.1 88.5 1.5 28 92.1 - 14 832 0.053 2 0.001 0 0.107 4 0.002 0 0.014 8 0.000 2 231.6 44.4 104.1 2.1 98.9 1.5 29 92.6 0.38 15 346 0.050 3 0.001 0 0.106 8 0.002 0 0.015 5 0.000 2 166.8 44.4 79.7 1.5 77.5 1.2 30 93.3 0.039 13 886 0.049 8 0.001 0 0.094 3 0.002 2 0.013 8 0.000 2 324.1 42.6 108.2 1.9 99.4 1.5 31 89.9 0.059 18 251 0.048 6 0.001 1 0.126 5 0.005 8 0.018 4 0.000 5 333.4 33.3 96.3 1.4 89.7 1.1 32 89.7 - 14 855 0.050 8 0.001 0 0.108 0 0.002 3 0.015 5 0.000 2 198.2 33.3 88.6 1.2 85.0 1.0 33 90.0 0.14 11 378 0.049 2 0.000 9 0.081 6 0.001 6 0.012 1 0.000 2 257.5 33.3 102.0 1.5 95.4 1.2 34 90.6 0.072 14 943 0.052 9 0.001 0 0.112 5 0.002 1 0.015 5 0.000 2 189.0 75.9 101.7 3.3 101.0 2.7 注:“-”表示低于检测线. 表 4 近年来华南花岗岩型铀矿床沥青铀矿微区原位测年结果
Table 4. A summary of recently avalible insitu pitchblende ages of uranium deposits in South China Block
矿田 矿床 年龄(Ma) 测试对象 测试方法 资料来源 苗儿山 张家 71.4±1.9 沥青铀矿 EPMA U-Th-Pb 本文 69.4±4.9 沥青铀矿 LA-ICP-MS U-Pb 本文 沙子江 97.5±4.0 沥青铀矿 EPMA U-Th-Pb Luo et al., 2015b 70.2±1.6 沥青铀矿 EPMA U-Th-Pb Luo et al., 2015b 72.4±4.4 沥青铀矿 LA-ICP-MS U-Pb 笔者未发表数据 75.0±1.9 沥青铀矿 LA-ICP-MS U-Pb 笔者未发表数据 孟公界 1.9±0.7 沥青铀矿 SIMS U-Pb Luo et al., 2017 2.3±0.1 沥青铀矿 EPMA U-Th-Pb Luo et al., 2017 诸广南 棉花坑 80±9 沥青铀矿 SIMS U-Pb Bonnetti et al., 2017 65±5 沥青铀矿 SIMS U-Pb Bonnetti et al., 2017 81±2 沥青铀矿 SIMS U-Pb Bonnetti et al., 2017 74±1 沥青铀矿 SIMS U-Pb Bonnetti et al., 2017 62±1 沥青铀矿 SIMS U-Pb Bonnetti et al., 2017 澜河 67.8±0.9 沥青铀矿 EPMA U-Th-Pb 葛祥坤, 2013 73.3±4.7 沥青铀矿 SIMS U-Pb 骆金诚, 2015 66.5±2.0 沥青铀矿 EPMA U-Th-Pb 骆金诚, 2015 下庄 石土岭 134±2 沥青铀矿 SIMS U-Pb Bonnetti et al., 2017 127±2 沥青铀矿 SIMS U-Pb Bonnetti et al., 2017 希望 72±2 沥青铀矿 SIMS U-Pb Bonnetti et al., 2017 66±1 沥青铀矿 SIMS U-Pb Bonnetti et al., 2017 62±1 沥青铀矿 SIMS U-Pb Bonnetti et al., 2017 仙石 52±2 沥青铀矿 SIMS U-Pb Bonnetti et al., 2017 41±1 沥青铀矿 SIMS U-Pb Bonnetti et al., 2017 135±4 沥青铀矿 SIMS U-Pb Luo et al., 2015a 113±2 沥青铀矿 SIMS U-Pb Luo et al., 2015a 104±2 沥青铀矿 SIMS U-Pb Luo et al., 2015a -
[1] Anders, E., Grevesse, N., 1989. Abundances of the Elements: Meteoritic and Solar. Geochimica et Cosmochimica Acta, 53(1): 197-214. https://doi.org/10.1016/0016-7037(89)90286-x [2] Bonnetti, C., Liu, X. D., Li, G. L., et al., 2017. New Insights for the Genesis of Granite-Related Vein-Type Uranium Deposits in Xiazhuang and Zhuguang Ore Fields, SE China. SGA 2017 Conference, Beijing. [3] Bowles, J. F. W., 1990. Age Dating of Individual Grains of Uraninite in Rocks from Electron Microprobe Analyses. Chemical Geology, 83(1-2): 47-53. https://doi.org/10.1016/0009-2541(90)90139-x [4] Cai, Y. Q., Zhang, J. D., Li, Z. Y., et al., 2015. Outline of Uranium Resources Characteristics and Metallogenetic Regularity in China. Acta Geologica Sinica, 89(6):1051-1069 (in Chinese with English abstract). [5] Chen, Y. H., Chen, Z. B., Chen, Z. Y., 1998. Meso-Cenozoic Extensional Tectonics and Uranium Metallogenesis in South China. Atomic Energy Publishing House, Beijing (in Chinese). [6] Chipley, D., Polito, P. A., Kyser, T. K., 2007. Measurement of U-Pb Ages of Uraninite and Davidite by Laser Ablation-HR-ICP-MS. American Mineralogist, 92(11-12): 1925-1935. https://doi.org/10.2138/am.2007.2226 [7] Deng, P., Shen, W. Z., Ling, H. F., et al., 2003. Uranium Mineralization Related to Mantle Fluid: A Case Study of the Xianshi Deposit in the Xiazhuang Uranium Orefield. Geochimica, 32(6):520-528 (in Chinese with English abstract). [8] Fayek, M., Janeczek, J., Ewing, R. C., 1997. Mineral Chemistry and Oxygen Isotopic Analyses of Uraninite, Pitchblende and Uranium Alteration Minerals from the Cigar Lake Deposit, Saskatchewan, Canada. Applied Geochemistry, 12(5): 549-565. https://doi.org/10.1016/s0883-2927(97)00032-2 [9] Fayek, M., Kyser, T. K., Riciputi, L. R., 2002. U and Pb Isotope Analysis of Uranium Minerals by Ion Microprobe and the Geochronology of the McArthur River and Sue Zone Uranium Deposits, Saskatchewan, Canada. The Canadian Mineralogist, 40(6): 1553-1570. https://doi.org/10.2113/gscanmin.40.6.1553 [10] Förster, H. J., Rhede, D., Stein, H. J., et al., 2012. Paired Uraninite and Molybdenite Dating of the Königshain Granite: Implications for the Onset of Late-Variscan Magmatism in the Lausitz Block. International Journal of Earth Sciences, 101(1): 57-67. https://doi.org/10.1007/s00531-010-0631-1 [11] Gao, P., Zheng, Y. F., Zhao, Z. F., 2017. Triassic Granites in South China: A Geochemical Perspective on Their Characteristics, Petrogenesis, and Tectonic Significance. Earth-Science Reviews, 173: 266-294. https://doi.org/10.1016/j.earscirev.2017.07.016 [12] Gao, S., Yang, J., Zhou, L., et al., 2011. Age and Growth of the Archean Kongling Terrain, South China, with Emphasis on 3.3 Ga Granitoid Gneisses. American Journal of Science, 311(2): 153-182. https://doi.org/10.2475/02.2011.03 [13] Ge, X. K., 2013. Development and Researh of Electronic Probe Dating Technology in Dating Uranium and Uranium-Bearing Minerals (Dissertation). Beijing Research Insitute of Uranium Geology, Beijing (in Chinese with English abstract). [14] Greentree, M. R., Li, Z. X., 2008. The Oldest Known Rocks in South-Western China: SHRIMP U-Pb Magmatic Crystallisation Age and Detrital Provenance Analysis of the Paleoproterozoic Dahongshan Group. Journal of Asian Earth Sciences, 33(5-6): 289-302. https://doi.org/10.1016/j.jseaes.2008.01.001 [15] Hu, H., Wang, R. C., Chen, W. F., et al., 2013. Timing of Hydrothermal Activity Associated with the Douzhashan Uranium-Bearing Granite and Its Significance for Uranium Mineralization in Northeastern Guangxi, China. Chinese Science Bulletin, 58(36): 3849-3858 (in Chinese). doi: 10.1360/csb2013-58-36-3849 [16] Hu, R. Z., Bi, X. W., Zhou, M. F., et al., 2008. Uranium Metallogenesis in South China and Its Relationship to Crustal Extension during the Cretaceous to Tertiary. Economic Geology, 103(3): 583-598. https://doi.org/10.2113/gsecongeo.103.3.583 [17] Hua, R. M., Chen, P. R., Zhang, W. L., et al., 2003. Metallogenic Systems Related to Mesozoic and Cenozoic Granitoids in South China. Science in China (Series D), 33(4): 335-343 (in Chinese). [18] Hua, R. M., Zhang, W. L., Chen, P. R., et al., 2013. Relationship between Caledonian Granitoids and Large-Scale Mineralization in South China. Geological Journal of China Universities, 19(1):1-11 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb201301003 [19] Huang, G. L., Yin, Z. P., Ling, H. F., et al., 2010. Formation Age, Geochemical Characteristics and Genesis of Pitchblende from No.302 Uranium Deposit in Northern Guangdong. Mineral Deposits, 29(2):352-360 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201002017 [20] Jiang, X.F., Peng, S.B., Kusky, T. M., et al., 2018. Petrogenesis and Geotectonic Significance of Early-Neoproterozoic Olivine-Gabbro within the Yangtze Craton: Constrains from the Mineral Composition, U-Pb Age and Hf Isotopes of Zircons. Journal of Earth Science, 29(1): 93-102. https://doi.org/10.1007/s12583-018-0821-5 [21] Kempe, U., 2003. Precise Electron Microprobe Age Determination in Altered Uraninite: Consequences on the Intrusion Age and the Metallogenic Significance of the Kirchberg Granite (Erzgebirge, Germany). Contributions to Mineralogy and Petrology, 145(1): 107-118. https://doi.org/10.1007/s00410-002-0439-5 [22] Koppers, A. A. P., Morgan, J. P., Morgan, J. W., et al., 2001. Testing the Fixed Hotspot Hypothesis Using 40Ar/39Ar Age Progressions along Seamount Trails. Earth and Planetary Science Letters, 185(3-4): 237-252. https://doi.org/10.1016/s0012-821x(00)00387-3 [23] Li, W. W., Wang, G., Chen, W. F., et al., 2010. Geochemical and Chronological Characteristics of Xiangcaoping Granite Pluton in Miaoershan Area. Uranium Geology, 26(4):215-221, 227 (in Chinese with English abstract). [24] Li, X. H., 1997. Timing of the Cathaysia Block Formation: Constraints from SHRIMP U-Pb Zircon Geochronology. Episodes, 20(3): 188-192. https://doi.org/10.18814/epiiugs/1997/v20i3/008 [25] Li, X. H., Li, W. X., He, B., 2012. Building of the South China Block and Its Relevence to Assembly and Breakup of Rodinia Supercontinent: Observations, Interpretations and Tests. Bulletin of Mineralogy, Petrology and Geochemistry, 31(6): 543-559 (in Chinese with English abstract). [26] Li, Z. X., Li, X. H., Zhou, H. W., et al., 2002. Grenvillian Continental Collision in South China: New SHRIMP U-Pb Zircon Results and Implications for the Configuration of Rodinia. Geology, 30(2): 163-166. https://doi.org/10.1130/0091-7613(2002)030 < 0163:gccisc > 2.0.co; 2 doi: 10.1130/0091-7613(2002)030<0163:gccisc>2.0.co;2 [27] Li, Z. X., Wartho, J. A., Occhipinti, S., et al., 2007. Early History of the Eastern Sibao Orogen (South China) during the Assembly of Rodinia: New Mica 40Ar/39Ar Dating and SHRIMP U-Pb Detrital Zircon Provenance Constraints. Precambrian Research, 159(1-2): 79-94. https://doi.org/10.1016/j.precamres.2007.05.003 [28] Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2): 537-571. https://doi.org/10.1093/petrology/egp082 [29] Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1-2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004 [30] Ludwig, K.R., 2003. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley. [31] Luo, J. C., 2015. Genesis of Granite-Hosted Uranium Deposits in the Northern Guangdong, China: Constraints from Mineralogy, Uranium Mineral U-Pb Geochronology and Geochemistry (Dissertation). Institute of Geochemistry Chinese Academy of Sciences, Guiyang (in Chinese with English abstract). [32] Luo, J. C., Hu, R. Z., Fayek, M., et al., 2015a. In-Situ SIMS Uraninite U-Pb Dating and Genesis of the Xianshi Granite-Hosted Uranium Deposit, South China. Ore Geology Reviews, 65: 968-978. https://doi.org/10.1016/j.oregeorev.2014.06.016 [33] Luo, J. C., Hu, R. Z., Shi, S. H., 2015b. Timing of Uranium Mineralization and Geological Implications of Shazijiang Granite-Hosted Uranium Deposit in Guangxi, South China: New Constraint from Chemical U-Pb Age. Journal of Earth Science, 26(6): 911-919. https://doi.org/10.1007/s12583-015-0542-y [34] Luo, J. C., Hu, R. Z., Fayek, M., et al., 2017. Newly Discovered Uranium Mineralization at ~2.0 Ma in the Menggongjie Granite-Hosted Uranium Deposit, South China. Journal of Asian Earth Sciences, 137: 241-249. https://doi.org/10.1016/j.jseaes.2017.01.021 [35] Mao, J. W., Xie, G. Q., Guo, C. L., et al., 2008. Spatial-Temporal Distribution of Mesozoic Ore Deposits in South China and Their Metallogenic Settings. Geological Journal of China Universities, 14(4):510-526 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb200804005 [36] Mercadier, J., Cuney, M., Lach, P., et al., 2011. Origin of Uranium Deposits Revealed by Their Rare Earth Element Signature. Terra Nova, 23(4): 264-269. https://doi.org/10.1111/j.1365-3121.2011.01008.x [37] Min, M. Z., Luo, X. Z., Li, X. G., et al., 2003. Geochemical Constraints on the Petrogenesis of the Middle Miaoershan Granitoids, South China. Geochemical Journal, 37(5): 603-625. https://doi.org/10.2343/geochemj.37.603 [38] Peng, S. B., Liu, S. F., Lin, M. S., et al., 2016. Early Paleozoic Subduction in Cathaysia (Ⅰ): New Evidence from Nuodong Ophiolite. Earth Science, 41(5):765-778 (in Chinese with English abstract). [39] Ranchin, G., 1968. Contribution à 1'étude de la Répartition de l'uranium à 1'état de Traces dans les Roches Granitiques Saines les Uranitesàteneur élevée du Massif de Saint-Sylvestre (Limousin-Massif Gentral Francal). Science Terre, 13: 161-205 (in French). [40] Shabaga, B. M., Fayek, M., Quirt, D., et al., 2017. Mineralogy, Geochronology, and Genesis of the Andrew Lake Uranium Deposit, Basin Thelon, Nunavut, Canada. Canadian Journal of Earth Sciences, 54(8): 850-868. https://doi.org/10.1139/cjes-2017-0024 [41] Sharp, W. D., Clague, D. A., 2006. 50-Ma Initiation of Hawaiian-Emperor Bend Records Major Change in Pacific Plate Motion. Science, 313(5791): 1281-1284. https://doi.org/10.1126/science.1128489 [42] Sharpe, R., Fayek, M., 2011. The World's Oldest Observed Primary Uraninite. The Canadian Mineralogist, 49(5): 1199-1210. https://doi.org/10.3749/canmin.49.5.1199 [43] Shi, S. H., Hu, R. Z., Wen, H. J., et al., 2010. Geochronology of the Shazijiang Uranium Ore Deposit, Northern Guangxi, China: U-Pb Ages of Pitchblende and Their Geological Significance. Acta Geologica Sinica, 84(8):1175-1182 (in Chinese with English abstract). [44] Shu, L. S., 2012. An Analysis of Principal Features of Tectonic Evolution in South China Block. Geological Bulletin of China, 31(7):1035-1053 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201207003 [45] Shu, L. S., Wang, B., Cawood, P.A., et al., 2015. Early Paleozoic and Early Mesozoic Intraplate Tectonic and Magmatic Events in the Cathaysia Block, South China. Tectonics, 34(8): 1600-1621. https://doi.org/10.1002/2015tc003835 [46] Shu, L., Charvet, J., 1996. Kinematics and Geochronology of the Proterozoic Dongxiang-Shexian Ductile Shear Zone: With HP Metamorphism and Ophiolitic Melange (Jiangnan Region, South China). Tectonophysics, 267(1-4): 291-302. https://doi.org/10.1016/s0040-1951(96)00104-7 [47] Sun, W. D., Ding, X., Hu, Y. H., et al., 2007. The Golden Transformation of the Cretaceous Plate Subduction in the West Pacific. Earth and Planetary Science Letters, 262(3-4): 533-542. https://doi.org/10.1016/j.epsl.2007.08.021 [48] Tang, A., Li, G. L., Su, Y., et al., 2016. EMPA Chemical U-Th-Pb Dating of Uraninite in Ziyunshan Granite, Centre Jiangxi Province. Earth Science, 42(3): 378-388 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201703005 [49] The Fourth Research Office of Beijing Third Research Institute, 1974. Proceedings of the Second National Isotope Geological Conference (The Second Series). Geological Publishing House, Beijing (in Chinese). [50] Wang, H. Z., Mo, X. X., 1995. An Outline of the Tectonic Evolution of China. Episodes, 18(1-2): 6-16. https://doi.org/10.18814/epiiugs/1995/v18i1.2/003 [51] Wu, Y. B., Gao, S., Zhang, H. F., et al., 2012. Geochemistry and Zircon U-Pb Geochronology of Paleoproterozoic Arc Related Granitoid in the Northwestern Yangtze Block and Its Geological Implications. Precambrian Research, 200-203: 26-37. https://doi.org/10.1016/j.precamres.2011.12.015 [52] Xie, X. H., Chen, W. F., Zhao, K. D., et al., 2008. Geochemical Characteristics and Geochronology of the Douzhashan Granite, Northeastern Guangxi Province, China. Acta Petrologica Sinica, 24(6):1302-1312 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200806013 [53] Xu, W. C., Zhang, Y. H., Liu, Y. B., 1994. Progression in Geochronological Study and Scheme of Chronoclassification on Miaoershan Granite Batholith. Acta Petrologica Sinica, 10(3): 330-337 (in Chinese with English abstract). [54] Yu, J. H., O'Reilly, S. Y., Zhou, M. F., et al., 2012. U-Pb Geochronology and Hf-Nd Isotopic Geochemistry of the Badu Complex, Southeastern China: Implications for the Precambrian Crustal Evolution and Paleogeography of the Cathaysia Block. Precambrian Research, 222-223: 424-449. https://doi.org/10.1016/j.precamres.2011.07.014 [55] Zhang, F. F., Wang, Y. J., Zhang, A. M., et al., 2012. Geochronological and Geochemical Constraints on the Petrogenesis of Middle Paleozoic (Kwangsian) Massive Granites in the Eastern South China Block. Lithos, 150: 188-208. https://doi.org/10.1016/j.lithos.2012.03.011 [56] Zhao, F. Y., Li, X. B., Ying, J. L., et al., 1995. U-Pb Isotopic Age Standard Material for Pitchblende. Beijing Research Insitute of Uranium Geology, Beijing (in Chinese). [57] Zhao, K. D., Jiang, S. Y., Ling, H. F., et al., 2014. Reliability of LA-ICP-MS U-Pb Dating of Zircons with High U Concentrations: A Case Study from the U-Bearing Douzhashan Granite in South China. Chemical Geology, 389: 110-121. https://doi.org/10.1016/j.chemgeo.2014.09.018 [58] Zhao, K. D., Jiang, S. Y., Ling, H. F., et al., 2016. Late Triassic U-Bearing and Barren Granites in the Miao'ershan Batholith, South China: Petrogenetic Discrimination and Exploration Significance. Ore Geology Reviews, 77: 260-278. https://doi.org/10.1016/j.oregeorev.2016.02.016 [59] Zhao, K. D., Jiang, S. Y., Sun, T., et al., 2013. Zircon U-Pb Dating, Trace Element and Sr-Nd-Hf Isotope Geochemistry of Paleozoic Granites in the Miao'ershan-Yuechengling Batholith, South China: Implication for Petrogenesis and Tectonic-Magmatic Evolution. Journal of Asian Earth Sciences, 74: 244-264. https://doi.org/10.1016/j.jseaes.2012.12.026 [60] Zheng, Y. F., Shen, W. Z., Zhang, Z. H., et al., 1986. An Isotope Geological Study on the Genesis of the 6217 Uranium Deposit. Mineral Deposits, 5(2):53-62 (in Chinese with English abstract). [61] Zheng, Y. F., Zhang, S. B., 2007. Formation and Evolution of Precambrian Continental Crust in South China. Chinese Science Bulletin, 52(1): 1-12. https://doi.org/10.1007/s11434-007-0015-5 [62] Zhou, X. M., 2003. My Thinking about Granite Geneses of South China. Geological Journal of China Universities, 9(4):556-565 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb200304009 [63] Zhou, X. M., Chen, P. R., Xu, X. S., et al., 2007. Genesis and Lithospheric Dynamic Evolution of Late Mesozoic Granite in South China. Science Press, Beijing (in Chinese). [64] Zhuang, G. S., Najman, Y., Guillot, S., et al., 2015. Constraints on the Collision and the Pre-Collision Tectonic Configuration between India and Asia from Detrital Geochronology, Thermochronology, and Geochemistry Studies in the Lower Indus Basin, Pakistan. Earth and Planetary Science Letters, 432: 363-373. https://doi.org/10.1016/j.epsl.2015.10.026 [65] Zong, K. Q., Chen, J. Y., Hu, Z. C., et al. 2015. In-Situ U-Pb Dating of Uraninite by fs-LA-ICP-MS. Science in China (Series D), 45(9): 1304-1315 (in Chinese with English abstract). [66] Zou, D. F., Li, F. L., Zhang, S., et al., 2011. Timing of No.335 Ore Deposit in Xiazhuang Uranium Orefield, Northern Guangdong Province: Evidence from LA-ICP-MS U-Pb Dating of Pitchblende. Mineral Deposits, 30(5): 912-922 (in Chinese with English abstract). [67] 蔡煜琦, 张金带, 李子颖, 等, 2015.中国铀矿资源特征及成矿规律概要.地质学报, 89(6): 1051-1069. doi: 10.3969/j.issn.0001-5717.2015.06.005 [68] 陈跃辉, 陈肇博, 陈祖伊, 等, 1998.华东南中新生代伸展构造与铀成矿作用.北京:原子能出版社. [69] 邓平, 沈渭洲, 凌洪飞, 等, 2003.地幔流体与铀成矿作用:以下庄矿田仙石铀矿床为例.地球化学, 32(6): 520-528. doi: 10.3321/j.issn:0379-1726.2003.06.002 [70] 葛祥坤, 2013.电子探针定年技术在铀及含铀矿物测年中的开发与研究(博士学位论文).北京: 核工业北京地质研究院. [71] 胡欢, 王汝成, 陈卫锋, 等, 2013.桂东北豆乍山产铀花岗岩热液活动时限的确定与铀成矿意义.科学通报, 58(36): 3849-3858. [72] 华仁民, 陈培荣, 张文兰, 等, 2003.华南中、新生代与花岗岩类有关的成矿系统.中国科学(D辑), 33(4): 335-343. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200304006 [73] 华仁民, 张文兰, 陈培荣, 等, 2013.初论华南加里东花岗岩与大规模成矿作用的关系.高校地质学报, 19(1): 1-11. doi: 10.3969/j.issn.1006-7493.2013.01.003 [74] 黄国龙, 尹征平, 凌洪飞, 等, 2010.粤北地区302矿床沥青铀矿的形成时代、地球化学特征及其成因研究.矿床地质, 29(2): 352-360. doi: 10.3969/j.issn.0258-7106.2010.02.017 [75] 李妩巍, 王敢, 陈卫锋, 等, 2010.香草坪花岗岩体年代学和地球化学特征.铀矿地质, 26(4): 215-221, 227. doi: 10.3969/j.issn.1000-0658.2010.04.004 [76] 李献华, 李武显, 何斌, 2012.华南陆块的形成与Rodinia超大陆聚合-裂解——观察、解释与检验.矿物岩石地球化学通报, 31(6): 543-559. doi: 10.3969/j.issn.1007-2802.2012.06.002 [77] 骆金诚, 2015.粤北花岗岩型铀矿床成因机制研究: 矿物学和铀矿物U-Pb年代学及地球化学约束(博士学位论文).贵阳: 中国科学院地球化学研究所. [78] 毛景文, 谢桂青, 郭春丽, 等. 2008.华南地区中生代主要金属矿床时空分布规律和成矿环境.高校地质学报, 14(4): 510-526. doi: 10.3969/j.issn.1006-7493.2008.04.005 [79] 彭松柏, 刘松峰, 林木森, 等, 2016.华夏早古生代俯冲作用(Ⅰ):来自糯垌蛇绿岩的新证据.地球科学, 41(5): 765-778. doi: 10.3799/dqkx.2016.065 [80] 石少华, 胡瑞忠, 温汉捷, 等, 2010.桂北沙子江铀矿床成矿年代学研究:沥青铀矿U-Pb同位素年龄及其地质意义.地质学报, 84(8): 1175-1182. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201008010 [81] 舒良树, 2012.华南构造演化的基本特征.地质通报, 31(7): 1035-1053. doi: 10.3969/j.issn.1671-2552.2012.07.003 [82] 唐傲, 李光来, 苏晔, 等, 2016.赣中紫云山花岗岩晶质铀矿的电子探针U-Th-Pb化学定年.地球科学, 42(3): 378-388. doi: 10.3969/j.issn.1672-6561.2016.03.008 [83] 北京第三研究所四室, 1974.第二届全国同位素地质会议论文集(第二集).北京: 地质出版社. [84] 谢晓华, 陈卫锋, 赵葵东, 等, 2008.桂东北豆乍山花岗岩年代学与地球化学特征.岩石学报, 24(6): 1302-1312. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200806013 [85] 徐伟昌, 张运洪, 刘跃宝, 1994.苗儿山花岗岩复式岩基年代学研究的进展及时代划分方案.岩石学报, 10(3): 330-337. doi: 10.3321/j.issn:1000-0569.1994.03.011 [86] 赵溥云, 李喜斌, 营俊龙, 等, 1995.沥青铀矿铀铅同位素年龄标准物质.北京: 核工业北京地质研究院. [87] 郑永飞, 沈渭洲, 张祖还, 等, 1986. 6217铀矿床成因的同位素地质研究.矿床地质, 5(2): 53-62. [88] 周新民, 2003.对华南花岗岩研究的若干思考.高校地质学报, 9(4): 556-565. doi: 10.3969/j.issn.1006-7493.2003.04.009 [89] 周新民, 陈培荣, 徐夕生, 等, 2007.南岭地区晚中生代花岗岩成因与岩石圈动力学演化.北京:科学出版社. [90] 宗克清, 陈金勇, 胡兆初, 等, 2015.铀矿fs-LA-ICP-MS原位微区U-Pb定年.中国科学(D辑), 45(9): 1304-1315. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201509005 [91] 邹东风, 李方林, 张爽, 等, 2011.粤北下庄335矿床成矿时代的厘定——来自LA-ICP-MS沥青铀矿U-Pb年龄的制约.矿床地质, 30(5): 912-922. doi: 10.3969/j.issn.0258-7106.2011.05.012