• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    考虑初始损伤和残余强度的岩石变形过程模拟

    温韬 唐辉明 马俊伟 张俊荣 范志强

    温韬, 唐辉明, 马俊伟, 张俊荣, 范志强, 2019. 考虑初始损伤和残余强度的岩石变形过程模拟. 地球科学, 44(2): 652-663. doi: 10.3799/dqkx.2018.212
    引用本文: 温韬, 唐辉明, 马俊伟, 张俊荣, 范志强, 2019. 考虑初始损伤和残余强度的岩石变形过程模拟. 地球科学, 44(2): 652-663. doi: 10.3799/dqkx.2018.212
    Wen Tao, Tang Huiming, Ma Junwei, Zhang Junrong, Fan Zhiqiang, 2019. Deformation Simulation for Rock in Consideration of Initial Damage and Residual Strength. Earth Science, 44(2): 652-663. doi: 10.3799/dqkx.2018.212
    Citation: Wen Tao, Tang Huiming, Ma Junwei, Zhang Junrong, Fan Zhiqiang, 2019. Deformation Simulation for Rock in Consideration of Initial Damage and Residual Strength. Earth Science, 44(2): 652-663. doi: 10.3799/dqkx.2018.212

    考虑初始损伤和残余强度的岩石变形过程模拟

    doi: 10.3799/dqkx.2018.212
    基金项目: 

    项目 编号

    详细信息
      作者简介:

      温韬(1990-), 男, 博士生, 主要从事工程地质和岩土工程的研究.

      通讯作者:

      唐辉明

    • 中图分类号: P589

    Deformation Simulation for Rock in Consideration of Initial Damage and Residual Strength

    • 摘要: 针对现有损伤模型的不足,提出同时反映岩石初始损伤和残余强度的岩石变形过程模拟方法.将岩石材料分为未损伤部分、损伤部分和微缺陷,未损伤部分和损伤部分共同承担岩石所受的应力.通过岩石材料几何条件及微观受力分析建立未损伤部分的应变分析.再考虑岩石的形变比能只与损伤部分材料相关,从而建立损伤部分的应变分析.然后探讨岩石损伤和耗散能的关系,提出了可以反映岩石初始损伤的损伤演化方程,基于各部分应变分析建立模拟岩石变形过程的损伤本构模型,同时给出模型各参数的确定方法.结果表明:损伤演化方程不仅表现了岩石的初始损伤特征,也可以完整地体现岩石变形破坏过程的5个阶段;与前人模型相比,提出的岩石变形模拟方法与试验曲线更加吻合,体现了岩石的变形全过程,特别是更加直观地反映了岩石的初始损伤和残余强度特征.综合体现了本文模型在模拟岩石变形全过程时的优势.

       

    • 图  1  含微缺陷的岩石损伤模型

      a.损伤岩石材料;b.未损伤部分;c.损伤部分;d.微缺陷部分

      Fig.  1.  Rock damage model including micro-defects

      图  2  压缩情况下典型的岩石损伤演化曲线

      a.前人的理论曲线;b.本文的理论曲线

      Fig.  2.  Typical rock damage curves under loading conditions

      图  3  岩石各部分之间的变形关系

      Fig.  3.  Deformation relationships among each portion of rock

      图  4  岩石损伤演化曲线

      a.σ3=5 MPa; b.σ3=10 MPa; c.σ3=20 MPa; d.σ3=30 MPa

      Fig.  4.  Rock damage evolution curves

      图  5  试验曲线与理论曲线的比较

      a.σ3=5 MPa; b.σ3=10 MPa; c.σ3=20 MPa; d.σ3=30 MPa

      Fig.  5.  The comparison of experimental curves and theoretical curves

      表  1  不同围压下确定损伤模型所需的参数

      Table  1.   The damage model parameters under different confining pressures

      σ3(MPa) ε10(10-3) γ β U0d(mJ/mm3) R2
      5 2.61 9.92×10-8 1.48 137.69 0.99
      10 1.80 3.55×10-6 1.03 154.62 0.99
      20 1.87 6.88×10-8 1.27 270.68 0.99
      30 1.78 9.55×10-20 3.39 466.80 0.99
      下载: 导出CSV

      表  2  不同损伤变量对应的强度参数值

      Table  2.   The strength parameters corresponding to different damage variables

      D 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
      φ(°) 36.65 37.82 36.73 35.48 34.13 32.77 31.31 29.73 28.02 26.29 24.10
      c(MPa) 7.72 6.55 5.89 4.95 4.77 4.67 4.60 4.47 4.40 4.26 4.19
      下载: 导出CSV

      表  3  不同围压下的δγ的值

      Table  3.   The values of δ and γ under different confining pressures

      σ3(MPa) 5 10 20 30
      δ(10-3) 2.448 1.721 1.411 1.277
      γ 2.194 1.387 1.084 1.722
      下载: 导出CSV

      表  4  岩石各部分的变形参数

      Table  4.   Mechanical parameters of each portion of rock

      σ3(MPa) E1(GPa) μ1 E2(GPa) μ2 E3(MPa) μ3
      5 2.502 0.14 2.085 0.23 1.133 0.47
      10 3.377 0.16 2.598 0.25 1.634 0.47
      20 3.657 0.18 2.709 0.26 1.643 0.48
      30 3.75 0.19 2.778 0.26 1.681 0.49
      下载: 导出CSV
    • [1] Cao W.G., Zhang C., He M., et al.2016a.Deformation Simulation of Brittle Rock Based on Micromechanical Properties.Rock and Soil Mechanics, 37(10):2753-2760(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ytlx201610003
      [2] Cao W.G., Zhang C., He M., et al.2016b.Statistical Damage Simulation Method of Strain Softening Deformation Process for Rocks Considering Characteristics of Void Compaction Stage.Chinese Journal of Geotechnical Engineering, 38(10):1754-1761(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ytgcxb201610002
      [3] Cao W.G., Zhang S..2005.Study on the Statistical Analysis of Rock Damage Based on Mohr-Coulomb Criterion.Journal of Hunan University (Natural Sciences), 32(1):43-47(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hndxxb200501010
      [4] Cao W.G., Zhang S., Zhao M.H..2006.Study on Statistical Damage Constitutive Model of Rock Based on New Definition of Damage.Rock and Soil Mechanics, 27(1):41-46(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YTLX200601007.htm
      [5] Cao W.G., Zhao H., Zhang Y.J., et al.2011.Strain Softening and Hardening Damage Constitutive Model for Rock Considering Effect of Volume Change and Its Parameters Determination Method.Rock and Soil Mechanics, 32(3):647-654(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx201103002
      [6] Cao W.G., Zhao M.H., Liu C.X..2004.Study on the Model and Its Modifying Method for Rock Softening and Damage Based on Weibull Random Distribution.Chinese Journal of Rock Mechanics and Engineering, 23(19):3226-3231(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb200419003
      [7] Cui D.S., Xiang W., Chen Q., et al.2016.Experiment of Energy Dissipation and Energy Release during Stick-Slip within Glass Beads.Earth Science, 41(9):1603-1610(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201609015
      [8] Diederichs M.S., Kaiser P.K., Eberhardt E..2004.Damage Initiation and Propagation in Hard Rock during Tunnelling and the Influence of Near-Face Stress Rotation.International Journal of Rock Mechanics and Mining Sciences, 41(5):785-812. https://doi.org/10.1016/j.ijrmms.2004.02.003
      [9] Fairhurst C.E., Hudson J.A..1999.Draft ISRM Suggested Method for the Complete Stress-Strain Curve for Intact Rock in Uniaxial Compression.International Journal of Rock Mechanics and Mining Sciences, 36(3):279-289. https://doi.org/10.1016/S0148-9062(99)00006-6
      [10] Fan H.L., Jin F.N..2000.Effective Modulus Method in Damage Mechanics of Rock.Chinese Journal of Rock Mechanics and Engineering, 19(4):432-435(in Chinese with English abstract). http://www.cqvip.com/Main/Detail.aspx?id=4334429
      [11] Gong X.N..2000.Prospects for the Development of Geotechnical Engineering in the 21th Century.Chinese Journal of Geotechnical Engineering, 22(2):238-242(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-YTGC200002019.htm
      [12] Hu L.M., Pu J.L..2002.Damage of Soil-Structure Interface.Rock and Soil Mechanics, 23(1):6-11(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ytlx201802021
      [13] Hu Z., Liu Y.R., Wu S., et al.2014.Experimental Study of Deformation Parameters Degradation of Sandstone in High Geostress Regions under Unloading Conditions.Rock and Soil Mechanics, 35(Suppl.1):78-84(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YTLX2014S1011.htm
      [14] Li X., Cao W.G., Su Y.H..2012.A Statistical Damage Constitutive Model for Softening Behavior of Rocks.Engineering Geology, 143-144:1-17. https://doi.org/10.1016/j.enggeo.2012.05.005
      [15] Peng J., Cai M., Liu D.Q., et al.2015a.A Phenomenological Model of Brittle Rocks under Uniaxial Compression.International Journal of Geohazards and Environment, 1(2):53-62.https://doi.org/10.1016/j.enggeo.2015.12.011 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e00f7462fe3053a9caaa5bdca6d8962a
      [16] Peng J., Cai M., Rong G., et al.2015b.Stresses for Crack Closure and Its Application to Assessing Stress-Inducing Microcrack Damage.Chinese Journal of Rock Mechanics and Engineering, 34(6):1091-1100(in Chinese with English abstract). http://www.jstor.org/stable/41666839
      [17] Tian H.M., Chen W.Z., Tian T., et al.2012.Experimental and Theoretical Studies of Creep Damage Behavior of Soft Rock.Chinese Journal of Rock Mechanics and Engineering, 31(3):610-617(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201203020
      [18] Wang X.G., Hu B., Tang H.M., et al.2016.Triaxial Rheological Experiments and Rheological Constitutive of Mudstone under Hydro-Mechanical Coupling State.Earth Science, 41(5):886-894(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201605014
      [19] Wen T., Liu Y.R., Yang C.G., et al.2017.A Rock Damage Constitutive Model and Damage Energy Dissipation Rate Analysis for Characterising the Crack Closure Effect.Geomechanics and Geoengineering, 13(1):54-63.https://doi.org/10.1080/17486025.2017.1330969 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/17486025.2017.1330969
      [20] Wen T., Tang H.M., Liu Y.R., et al.2016a.Newly Modified Damage Statistical Constitutive Model of Rock Based on Impact Factor.Journal of China University of Mining & Technology, 45(1):141-149(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/zgkydxxb201601019
      [21] Wen T., Tang H.M., Liu Y.R., et al.2016b.Energy and Damage Analysis of Slate during Triaxial Compression under Different Confining Pressures.Coal Geology & Exploration, 44(3):80-86(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=mtdzykt201603015
      [22] Wu E.L., Wei C.F., Wei H.Z., et al.2013.A Statistical Damage Constitutive Model of Hydrate-Bearing Sediments.Rock and Soil Mechanics, 34(1):60-65(in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/ytlx201301009
      [23] Xie H.P..1990.Damage Mechanics of Rock and Concrete.China University of Mining & Technology Press, Xuzhou, 173-186(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/slfdxb201106007
      [24] Yang M.H., Zhao M.H., Cao W.G..2005.Method for Determining the Parameters of Statistical Damage Softening Constitutive Model for Rock.Journal of Hydraulic Engineering, 36(3):345-349(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=slxb200503015
      [25] Yang S.Q., Xu P., Ranjith P.G..2015.Damage Model of Coal under Creep and Triaxial Compression.International Journal of Rock Mechanics and Mining Sciences, 80:337-345. https://doi.org/10.1016/j.ijrmms.2015.10.006
      [26] Yang S.Q., Xu W.Y., Wei L.D., et al.2004.Statistical Constitutive Model for Rock Damage under Uniaxial Compression and Its Experimental Study.Journal of Hohai University (Natural Sciences), 32(2):200-203(in Chinese with English abstract). http://www.cqvip.com/Main/Detail.aspx?id=9392062
      [27] Zhang K., Liu, S.Wei C.Y., et al.2016.Constitutive Model and Damage Evolution of Rock under Different Loads.Journal of Shenyang Jianzhu University (Natural Science), 32(5):896-903(in Chinese with English abstract).
      [28] Zhao H., Shi C.J., Zhao M.H., et al.2016.Statistical Damage Constitutive Model for Rocks Considering Residual Strength.International Journal of Geomechanics, 17(1):04016033.https://doi.org/10.1061/(asce)gm.1943-5622.0000680 http://cn.bing.com/academic/profile?id=524bcc2b4e181af69c67a75b190ea7a6&encoded=0&v=paper_preview&mkt=zh-cn
      [29] Zhu J.M., Xu B.Y., Ren T.G., et al.2000.Establishing the Damage Evolution Equation of the Fractured Rocks Based on the Triaxial Compression Tests.Journal of Engineering Geology, 8(2):175-179(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ200002008.htm
      [30] 曹文贵, 张超, 贺敏, 等.2016a.基于微观力学特性的脆性岩石变形过程模拟.岩土力学, 37(10):2753-2760. http://d.old.wanfangdata.com.cn/Periodical/ytlx201610003
      [31] 曹文贵, 张超, 贺敏, 等.2016b.考虑空隙压密阶段特征的岩石应变软化统计损伤模拟方法.岩土工程学报, 38(10):1754-1761. http://d.old.wanfangdata.com.cn/Periodical/ytgcxb201610002
      [32] 曹文贵, 张升.2005.基于Mohr-Coulomb准则的岩石损伤统计分析方法研究.湖南大学学报(自然科学版), 32(1):43-47. doi: 10.3321/j.issn:1000-2472.2005.01.010
      [33] 曹文贵, 赵衡, 张永杰, 等.2011.考虑体积变化影响的岩石应变软硬化损伤本构模型及参数确定方法.岩土力学, 32(3):647-654. doi: 10.3969/j.issn.1000-7598.2011.03.002
      [34] 曹文贵, 张升, 赵明华.2006.基于新型损伤定义的岩石损伤统计本构模型探讨.岩土力学, 27(1):41-46. doi: 10.3969/j.issn.1000-7598.2006.01.008
      [35] 曹文贵, 赵明华, 刘成学.2004.基于Weibull分布的岩石损伤软化模型及其修正方法研究.岩石力学与工程学报, 23(19):3226-3231. doi: 10.3321/j.issn:1000-6915.2004.19.003
      [36] 崔德山, 项伟, 陈琼, 等.2016.细颗粒粘滑运动的能量耗散与释放试验.地球科学, 41(9):1603-1610. http://earth-science.net/WebPage/Article.aspx?id=3365
      [37] 范华林, 金丰年.2000.岩石损伤定义中的有效模量法.岩石力学与工程学报, 19(4):432-435. doi: 10.3321/j.issn:1000-6915.2000.04.008
      [38] 龚晓南.2000.21世纪岩土工程发展展望.岩土工程学报, 22(2):238-242. doi: 10.3321/j.issn:1000-4548.2000.02.020
      [39] 胡黎明, 濮家骝.2002.土与结构物接触面损伤本构模型.岩土力学, 23(1):6-11. doi: 10.3969/j.issn.1000-7598.2002.01.002
      [40] 胡政, 刘佑荣, 武尚, 等.2014.高地应力区砂岩在卸荷条件下的变形参数劣化试验研究.岩土力学, 35(增刊1):78-84. http://d.old.wanfangdata.com.cn/Periodical/ytlx2014z1011
      [41] 彭俊, 蔡明, 荣冠, 等.2015.裂纹闭合应力及其岩石微裂纹损伤评价.岩石力学与工程学报, 34(6):1091-1100. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201506002.htm
      [42] 田洪铭, 陈卫忠, 田田, 等.2012.软岩蠕变损伤特性的试验与理论研究.岩石力学与工程学报, 31(3):610-617. doi: 10.3969/j.issn.1000-6915.2012.03.020
      [43] 王新刚, 胡斌, 唐辉明, 等.2016.渗透压-应力耦合作用下泥岩三轴流变实验及其流变本构.地球科学, 41(5):886-894. http://earth-science.net/WebPage/Article.aspx?id=3302
      [44] 温韬, 唐辉明, 刘佑荣, 等.2016a.影响因子修正的新型岩石损伤统计本构模型.中国矿业大学学报, 45(1):141-149. http://d.old.wanfangdata.com.cn/Periodical/zgkydxxb201601019
      [45] 温韬, 唐辉明, 刘佑荣, 等.2016b.不同围压下板岩三轴压缩过程能量及损伤分析.煤田地质与勘探, 44(3):80-86. http://d.old.wanfangdata.com.cn/Periodical/mtdzykt201603015
      [46] 吴二林, 韦昌富, 魏厚振, 等.2013.含天然气水合物沉积物损伤统计本构模型.岩土力学, 34(1):60-65. http://d.old.wanfangdata.com.cn/Periodical/ytlx201301011
      [47] 谢和平.1990.岩石、混凝土损伤力学, 徐州:中国矿业大学出版社, 173-186.
      [48] 杨明辉, 赵明华, 曹文贵.2005.岩石损伤软化统计本构模型参数的确定方法.水利学报, 36(3):345-349. doi: 10.3321/j.issn:0559-9350.2005.03.015
      [49] 杨圣奇, 徐卫亚, 韦立德, 等.2004.单轴压缩下岩石损伤统计本构模型与试验研究.河海大学学报(自然科学版), 32(2):200-203. doi: 10.3321/j.issn:1000-1980.2004.02.019
      [50] 张珂, 刘帅, 魏春雨, 等.2016.岩石在不同应力条件下的本构模型与损伤演化.沈阳建筑大学学报(自然科学版), 32(5):896-903. http://cdmd.cnki.com.cn/Article/CDMD-10611-2009148286.htm
      [51] 朱建明, 徐秉业, 任天贵, 等.2000.基于三轴压缩试验的破裂岩损伤演化方程的建立.工程地质学报, 8(2):175-179. doi: 10.3969/j.issn.1004-9665.2000.02.008
    • 加载中
    图(5) / 表(4)
    计量
    • 文章访问数:  5087
    • HTML全文浏览量:  1623
    • PDF下载量:  40
    • 被引次数: 0
    出版历程
    • 收稿日期:  2018-05-05
    • 刊出日期:  2019-02-15

    目录

      /

      返回文章
      返回