• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    高寒山区河水与地下水相互作用的温度示踪:以黑河上游葫芦沟流域为例

    葛孟琰 马瑞 孙自永 龙翔 邢文乐 王烁 尹茂生

    葛孟琰, 马瑞, 孙自永, 龙翔, 邢文乐, 王烁, 尹茂生, 2018. 高寒山区河水与地下水相互作用的温度示踪:以黑河上游葫芦沟流域为例. 地球科学, 43(11): 4246-4255. doi: 10.3799/dqkx.2018.203
    引用本文: 葛孟琰, 马瑞, 孙自永, 龙翔, 邢文乐, 王烁, 尹茂生, 2018. 高寒山区河水与地下水相互作用的温度示踪:以黑河上游葫芦沟流域为例. 地球科学, 43(11): 4246-4255. doi: 10.3799/dqkx.2018.203
    Ge Mengyan, Ma Rui, Sun Ziyong, Long Xiang, Xing Wenle, Wang Shuo, Yin Maosheng, 2018. Using Heat Tracer to Estimate River Water and Groundwater Interactions in Alpine and Cold Regions: A Case Study of Hulugou Watershed in Upper Reach of Heihe River. Earth Science, 43(11): 4246-4255. doi: 10.3799/dqkx.2018.203
    Citation: Ge Mengyan, Ma Rui, Sun Ziyong, Long Xiang, Xing Wenle, Wang Shuo, Yin Maosheng, 2018. Using Heat Tracer to Estimate River Water and Groundwater Interactions in Alpine and Cold Regions: A Case Study of Hulugou Watershed in Upper Reach of Heihe River. Earth Science, 43(11): 4246-4255. doi: 10.3799/dqkx.2018.203

    高寒山区河水与地下水相互作用的温度示踪:以黑河上游葫芦沟流域为例

    doi: 10.3799/dqkx.2018.203
    基金项目: 

    国家重点研发课题"重要湿地地下水调控及水生态功能保护关键技术与示范" 2017YFC0406105

    国家自然科学基金项目"黑河上游冻土区地下水流过程及其与地表水转化研究" 91325101

    详细信息
      作者简介:

      葛孟琰(1994-), 男, 硕士研究生, 主要从事水文地质和温度示踪研究

      通讯作者:

      马瑞

    • 中图分类号: P641

    Using Heat Tracer to Estimate River Water and Groundwater Interactions in Alpine and Cold Regions: A Case Study of Hulugou Watershed in Upper Reach of Heihe River

    • 摘要: 高寒山区的地表水与地下水相互作用的定量研究对水资源的评价及管理等具有重要意义,而目前在高寒山区开展的地表水与地下水相互作用的定量研究相对较少.以黑河上游葫芦沟流域为研究区域,采用温度示踪方法对高寒山区河水与地下水的相互作用进行了研究,并对温度示踪方法在高寒山区的适用性进行了讨论.监测了研究区两个时段的地温、河水水位、地下水水位以及河床沉积物底部不同深度处的温度,并对温度系列数据进行定量分析,计算了不同位置处河水入渗流速.结果表明:研究区河水水位普遍高于地下水水位;河床底部温度在9月份整体低于7月;流速计算结果表明监测时段内主要为河水入渗补给地下水,入渗速率整体介于2×10-6~5×10-5 m/s.温度示踪法在高寒山区的适用性分析表明:在地下水受多途径补给时,温度示踪法仅指示河水对地下水的补给,而其他水源对地下水的补给还要通过同位素方法和数值模拟等其他手段进行计算.影响高寒山区河水对地下水补给的因素主要有:河水与地下水水位、河床沉积物的水力传导系数与热容.

       

    • 图  1  研究区位置、监测点位置以及现场仪器布设

      Fig.  1.  Locations of study area and monitoring point, and photos of facilities setting

      图  2  河水水深及地下水埋深随时间的变化曲线

      Fig.  2.  Time series of depth of river and groundwater depth below ground surface

      图  3  井群a和b处地下水温度随时间的变化

      Fig.  3.  Time series of groundwater temperatures at sites well group a and b

      图  4  1~3号点处气温、河水温度和河床温度随时间的变化

      Fig.  4.  Time series of air temperature, river water temperature, and riverbed temperature at the site Nos.1, 2 and 3

      图  5  基于Hatch振幅和相位法计算的河床水流垂向流速

      Fig.  5.  Calculated results of vertical water flow's velocity in riverbed based on Hatch amplitude and phase methods

      图  6  基于Hatch振幅和相位法计算的河水入渗流速对不同参数的敏感度

      Fig.  6.  Calculated sensitivities of velocity results based on Hatch amplitude and phase methods to different parameters

      表  1  计算垂向流速时所使用参数

      Table  1.   Settings of Parameters used to calculate vertical velocity of water flow

      参数 导热系数(W·m-1·K-1) 热弥散度(m) 水体积比热容(J·m-3·K-1) 固体体积比热容(J·m-3·K-1) 孔隙度
      1.88 0.001 4.18×106 2.09×106 0.3
      下载: 导出CSV

      表  2  河水-地下水水位差与计算流速间的泊松相关系数

      Table  2.   Pearson correlation coefficient between river-groundwater water level difference and calculated velocity

      第1个监测时段 第2个监测时段
      井群a河水-地下水水位差和1号点计算流速的显著性(双侧) 0.000 0.000
      井群a河水-地下水水位差和1号点计算流速的Pearson相关系数 0.653 0.766
      下载: 导出CSV
    • [1] Barth, G., Hill, M.C., 2005.Numerical Methods for Improving Sensitivity Analysis and Parameter Estimation of Virus Transport Simulated Using Sorptive-Reactive Processes.Journal of Contaminant Hydrology, 76(3-4):251-277.doi: 10.1016/j.jconhyd.2004.10.001
      [2] Bastola, H., Peterson, E.W., 2016.Heat Tracing to Examine Seasonal Groundwater Flow beneath a Low-Gradient Stream in Rural Central Illinois, USA.Hydrogeology Journal, 24(1):181-194.doi: 10.1007/s10040-015-1320-8
      [3] Brunke, M., Gonser, T., 1997.The Ecological Significance of Exchange Processes between Rivers and Groundwater.Freshwater Biology, 37(1):1-33.doi: 10.1046/j.1365-2427.1997.00143.x
      [4] Du, Y., Ma, T., Deng, Y.M., et al., 2017.Hydro-Biogeochemistry of Hyporheic Zone:Principles, Methods and Ecological Significance.Earth Science, 42(5):661-673 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201705001.htm
      [5] Genereux, D.P., Leahy, S., Mitasova, H., et al., 2008.Spatial and Temporal Variability of Streambed Hydraulic Conductivity in West Bear Creek, North Carolina, USA.Journal of Hydrology, 358(3-4):332-353.doi: 10.1016/j.jhydrol.2008.06.017
      [6] Gordon, R.P., Lautz, L.K., Briggs, M.A., et al., 2012.Automated Calculation of Vertical Pore-Water Flux from Field Temperature Time Series Using the VFLUX Method and Computer Program.Journal of Hydrology, 420-421:142-158.doi: 10.1016/j.jhydrol.2011.11.053
      [7] Hatch, C.E., Fisher, A.T., Revenaugh, J.S., et al., 2006.Quantifying Surface Water-Groundwater Interactions Using Time Series Analysis of Streambed Thermal Records:Method Development.Water Resources Research, 42(10):W10410.doi: 10.1029/2005wr004787
      [8] Hatch, C.E., Fisher, A.T., Ruehl, C.R., et al., 2010.Spatial and Temporal Variations in Streambed Hydraulic Conductivity Quantified with Time-Series Thermal Methods.Journal of Hydrology, 389(3-4):276-288.doi: 10.1016/j.jhydrol.2010.05.046
      [9] Hayashi, M., Rosenberry, D.O., 2002.Effects of Ground Water Exchange on the Hydrology and Ecology of Surface Water.Ground Water, 40(3):309-316.doi: 10.1111/j.1745-6584.2002.tb02659.x
      [10] Horton, P., Schaefli, B., Mezghani, A., et al., 2006.Assessment of Climate-Change Impacts on Alpine Discharge Regimes with Climate Model Uncertainty.Hydrological Processes, 20(10):2091-2109.doi: 10.1002/hyp.6197
      [11] Irvine, D.J., Lautz, L.K., Briggs, M.A., et al., 2015.Experimental Evaluation of the Applicability of Phase, Amplitude, and Combined Methods to Determine Water Flux and Thermal Diffusivity from Temperature Time Series Using VFLUX 2.Journal of Hydrology, 531:728-737.doi: 10.1016/j.jhydrol.2015.10.054
      [12] Jasper, K., Calanca, P., Gyalistras, D., et al., 2004.Differential Impacts of Climate Change on the Hydrology of Two Alpine River Basins.Climate Research, 26(2):113-129.doi: 10.3354/cr026113
      [13] Keery, J., Binley, A., Crook, N., et al., 2007.Temporal and Spatial Variability of Groundwater-Surface Water Fluxes:Development and Application of an Analytical Method Using Temperature Time Series.Journal of Hydrology, 336(1-2):1-16.doi: 10.1016/j.jhydrol.2006.12.003
      [14] Laudon, H., Seibert, J., Köhler, S., et al., 2004.Hydrological Flow Paths during Snowmelt:Congruence between Hydrometric Measurements and Oxygen 18 in Meltwater, Soil Water, and Runoff.Water Resources Research, 40(3):W03102.doi: 10.1029/2003wr002455
      [15] Lide, D.R., 2001.CRC Handbook of Chemistry and Physics.82nd Edition.CRC Press, Boca Raton, FL.
      [16] Luce, C.H., Tonina, D., Gariglio, F., et al., 2013.Solutions for the Diurnally Forced Advection-Diffusion Equation to Estimate Bulk Fluid Velocity and Diffusivity in Streambeds from Temperature Time Series.Water Resources Research, 49(1):488-506.doi: 10.1029/2012wr012380
      [17] Ma, R., Sun, Z.Y., Hu, Y.L., et al., 2017.Hydrological Connectivity from Glaciers to Rivers in the Qinghai-Tibet Plateau:Roles of Suprapermafrost and Subpermafrost Groundwater.Hydrology and Earth System Sciences Discussions, 21(9):1-39.doi: 10.5194/hess-2017-7
      [18] Ma, R., Dong, Q.M., Sun, Z.Y., et al., 2013.Using Heat to Trace and Model the Surface Water-Groundwater Interactions:A Review.Geological Science and Technology Information, 32(2):131-137 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZKQ201302018.htm
      [19] Ma, R., Zheng, C.M., Zachara, J.M., et al., 2012.Utility of Bromide and Heat Tracers for Aquifer Characterization Affected by Highly Transient Flow Conditions.Water Resources Research, 48(8):W08523.doi: 10.1029/2011wr011281
      [20] McCallum, A.M., Andersen, M.S., Rau, G.C., et al., 2012.A 1-D Analytical Method for Estimating Surface Water-Groundwater Interactions and Effective Thermal Diffusivity Using Temperature Time Series.Water Resources Research, 48(11):W11532.doi: 10.1029/2012wr012007
      [21] Muskat, M., Meres, M.W., 1936.The Flow of Heterogeneous Fluids through Porous Media.Physics, 7(9):346-363. doi: 10.1063/1.1745403
      [22] Rushton, K.R., Tomlinson, L.M., 1979.Possible Mechanisms for Leakage between Aquifers and Rivers.Journal of Hydrology, 40(1-2):49-65.doi: 10.1016/0022-1694(79)90087-8
      [23] Sophocleous, M., 2002.Interactions between Groundwater and Surface Water:The State of the Science.Hydrogeology Journal, 10(1):52-67.doi: 10.1007/s10040-001-0170-8
      [24] Stallman, R.W., 1963.Computation of Ground-Water Velocity from Temperature Data.USGS Water Supply Paper, 1544(H):36-46. http://ci.nii.ac.jp/naid/10003711957
      [25] Vogt, T., Schneider, P., Hahn-Woernle, L., et al., 2010.Estimation of Seepage Rates in a Losing Stream by Means of Fiber-Optic High-Resolution Vertical Temperature Profiling.Journal of Hydrology, 380(1-2):154-164.doi: 10.1016/j.jhydrol.2009.10.033
      [26] Wagner, W., Cooper, J.R., Dittmann, A., et al., 2008.Iapws Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam.Springer, Berlin, Heidelberg, 7-150.
      [27] Welch, A.H., Westjohn, D.B., Helsel, D.R., et al., 2000.Arsenic in Ground Water of the United States:Occurrence and Geochemistry.Ground Water, 38(4):589-604.doi: 10.1111/j.1745-6584.2000.tb00251.x
      [28] Winter, T.C., 1999.Relation of Streams, Lakes, and Wetlands to Groundwater Flow Systems.Hydrogeology Journal, 7(1):28-45.doi: 10.1007/s100400050178
      [29] Xiao, S.C., Xiao, H.L., Lan, Y.C., et al., 2011.Water Issues and Integrated Water Resource Management in Heihe River Basin in Recent 50 Years.Journal of Desert Research, 31(2):529-535 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/zgsm201102040
      [30] Yan, Y.N., Ma, T., Zhang, J.W., et al., 2017.Experiment on Migration and Transformation of Nitrate under Interaction of Groundwater and Surface Water.Earth Science, 42(5):783-792 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201705014
      [31] Zheng, M.J., Wan, C.W., Du, M.D., et al., 2016.Application of Rn-222 Isotope for the Interaction between Surface Water and Groundwater in the Source Area of the Yellow River.Hydrology Research, 47(6):1253-1262.doi: 10.2166/nh.2016.070
      [32] 杜尧, 马腾, 邓娅敏, 等, 2017.潜流带水文-生物地球化学:原理、方法及其生态意义.地球科学, 42(5):661-673. http://earth-science.net/WebPage/Article.aspx?id=3581
      [33] 马瑞, 董启明, 孙自永, 等, 2013.地表水与地下水相互作用的温度示踪与模拟研究进展.地质科技情报, 32(2):131-137. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20132013050700060843
      [34] 肖生春, 肖洪浪, 蓝永超, 等, 2011.近50a来黑河流域水资源问题与流域集成管理.中国沙漠, 31(2):529-535. http://d.old.wanfangdata.com.cn/Conference/7449535
      [35] 闫雅妮, 马腾, 张俊文, 等, 2017.地下水与地表水相互作用下硝态氮的迁移转化实验.地球科学, 42(5):783-792. http://earth-science.net/WebPage/Article.aspx?id=3570
    • 加载中
    图(6) / 表(2)
    计量
    • 文章访问数:  3162
    • HTML全文浏览量:  1176
    • PDF下载量:  15
    • 被引次数: 0
    出版历程
    • 收稿日期:  2017-12-11
    • 刊出日期:  2018-11-15

    目录

      /

      返回文章
      返回