• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    西藏岗巴-东亚地区永珠组沉积时代及沉积环境

    陈泰一 魏启荣 周江羽 王旭东 曾会兰 王健 吉雪峰 许欢 赵闪 欧波

    陈泰一, 魏启荣, 周江羽, 王旭东, 曾会兰, 王健, 吉雪峰, 许欢, 赵闪, 欧波, 2018. 西藏岗巴-东亚地区永珠组沉积时代及沉积环境. 地球科学, 43(8): 2893-2910. doi: 10.3799/dqkx.2018.200
    引用本文: 陈泰一, 魏启荣, 周江羽, 王旭东, 曾会兰, 王健, 吉雪峰, 许欢, 赵闪, 欧波, 2018. 西藏岗巴-东亚地区永珠组沉积时代及沉积环境. 地球科学, 43(8): 2893-2910. doi: 10.3799/dqkx.2018.200
    Chen Taiyi, Wei Qirong, Zhou Jiangyu, Wang Xudong, Zeng Huilan, Wang Jian, Ji Xuefeng, Xu Huan, Zhao Shan, Ou Bo, 2018. Sedimentary Epoch and Depositional Environment of Yunzhug Formation in Gamba-East Asia Area, Tibet. Earth Science, 43(8): 2893-2910. doi: 10.3799/dqkx.2018.200
    Citation: Chen Taiyi, Wei Qirong, Zhou Jiangyu, Wang Xudong, Zeng Huilan, Wang Jian, Ji Xuefeng, Xu Huan, Zhao Shan, Ou Bo, 2018. Sedimentary Epoch and Depositional Environment of Yunzhug Formation in Gamba-East Asia Area, Tibet. Earth Science, 43(8): 2893-2910. doi: 10.3799/dqkx.2018.200

    西藏岗巴-东亚地区永珠组沉积时代及沉积环境

    doi: 10.3799/dqkx.2018.200
    基金项目: 

    中国地质调查局项目 DD20160015

    详细信息
      作者简介:

      陈泰一(1989-), 男, 硕士, 主要从事岩石学与找矿研究

      通讯作者:

      魏启荣

    • 中图分类号: P534

    Sedimentary Epoch and Depositional Environment of Yunzhug Formation in Gamba-East Asia Area, Tibet

    • 摘要: 前人对冈底斯成矿带的研究主要集中在新生代岩浆岩及其矿产方面,而关于其晚古生代沉积地层鲜有报道.近年来的冈底斯成矿带西段1:5万区域地质调查工作显示其出露大量的晚古生代永珠组的沉积地层.从野外地质调查、岩石学、典型沉积构造、孢粉化石、粒度分析、沉积地球化学等方面对永珠组展开了研究,结果表明,永珠组形成于晚石炭世(C2Bashikirian-Moscovian期(中、晚巴什基-莫斯科期),孢粉化石中裸子植物花粉占优势(80%)、蕨类植物孢子居从属地位(20%).永珠组发育大量的水平层理、平行层理、粒序层理、浊积纹层、滑塌变形构造和鲍马序列等典型沉积构造.永珠组沉积岩表现出高Si(SiO2为60.94%~76.24%)、Al(Al2O3为9.24%~13.20%)、K(K2O为2.81%~5.47%)和低Mg(MgO为1.32%~2.82%)、Ca(CaO为1.19%~2.78%)、Na(Na2O为0.2%~1.87%)的主量元素特征,且具有明显高的FeO含量(3.31%~6.67%)和明显低的Fe2O3含量(0.14%~0.65%).稀土元素总量(174.24×10-6~278.39×10-6)较高,经北美页岩标准化的稀土元素配分模式不具Ce异常,Ce/Ce*=0.94~1.03.微量元素表现出Rb、Th、K等元素富集和Ba、U、Nb、Ta、Sr、P、Ti等元素亏损的特征.永珠组形成于大陆边缘环境的陆坡-深水盆地,为暖温气候、中盐度环境下的海退沉积产物,是古特提斯在冈底斯地区的沉积响应.

       

    • 图  1  西藏南木林县岗巴-东亚地区地质简图

      潘桂棠等(2006, 2013).Ⅰ.喜马拉雅板块;Ⅱ.冈底斯-念青唐古拉板块:Ⅱ1.冈底斯-下察隅晚燕山-喜山期岩浆弧带;Ⅱ2.隆格尔-念青唐古拉复合古岛弧带;Ⅱ3.革吉-申扎弧后盆地带;Ⅱ4.它日错-班戈-那曲前陆盆地;Ⅲ.羌南-保山板块;Ⅳ.羌北-昌都板块;Ⅴ.巴彦喀拉-甘孜板块.①印度河-雅鲁藏布江板块缝合带;②工布达江断隆带;③狮泉河-永珠-嘉黎弧后蛇绿岩带;④班公湖-怒江板块缝合带;⑤龙木错-双湖板块缝合带;⑥西金乌兰-金沙江板块缝合带.1.年波组灰绿色、灰色英安质晶屑凝灰岩夹灰色块状砾岩;2.典中组灰色、灰绿色安山质、英安岩晶屑岩屑凝灰岩;3.灰色(含砾)中细粒石英砂岩夹粉砂岩;4.永珠组上段灰色、深灰色(含砾)细粒石英砂岩;5.永珠组下段深灰色、灰黑色泥质、炭质粉砂岩、泥岩、细砂岩;6.晚白垩世闪长玢岩;7.晚三叠世二长花岗岩;8.晚三叠世花岗闪长岩;9.晚三叠世石英闪长岩;10.晚白垩世二长花岗岩;11.地质界线;12.角度不整合;13.性质不明断层;14.实测正断层;15.实测逆断层;16.剖面位置及编号;17.飞来峰;18.产状

      Fig.  1.  Geological map of Gamba-East Asia area in Namling County, Tibet

      图  2  上石炭统永珠组岗巴地区实测地层-构造剖面(P6)

      1.细粒石英砂岩; 2.细粒含砾石英砂岩; 3.细砂岩; 4.泥质砂岩; 5.泥质粉砂岩; 6.泥质炭质细砂岩; 7二长花岗岩; 8.晚三叠世二长花岗岩; 9.上石炭统永珠组上段;10.上石炭统永珠组下段;11.硅酸盐分析;12.孢粉分析;13.粒度分析;14.地质界线;15.实测逆断层;16.样品位置及编号;17.产状

      Fig.  2.  The Upper Carboniferous Yunzhug Formation of Gamba measured stratigraphic-structural profile (P6)

      图  3  上石炭统永珠组东亚实测地层-构造剖面(P12)

      1.滑塌角砾岩; 2.细粒石英砂岩; 3.细粒含砾石英砂岩; 4.含砾细砂岩; 5.细砂岩; 6.粉砂岩; 7.泥质细砂岩; 8.泥质炭质细砂岩; 9.含砾粉砂岩;10.花岗闪长岩;11.晚白垩世花岗闪长岩;12.上石炭统-下二叠统拉嘎组;13.上石炭统永珠组上段;14.上石炭统永珠组下段;15.桂酸盐分析;16.孢粉分析;17.粒度分析;18.地质界线;19.实测逆断层; 20.实测正断层; 21.样品位置及编号; 22.产状

      Fig.  3.  The Upper Carboniferous Yunzhug Formation of East Asian measured stratigraphic-structural profile (P12)

      图  4  永珠组孢粉照片

      Fig.  4.  Sporopollen photos of Yunzhug Formation

      a.Pityosporites sp.; b. Limitisporites pristinus; c.Pityosporites evolutus; d.Klausipollenites tetragonius, e.Hamiapollenites obliqus; f.Protohaploxypinus explexus; g.Cordaitina sp.; h.Klausipollenites tetragonius; i.Verrucorpipollis sp.; j.Fuldasporites sp.; k.Angulisporites cf. Screupus; l.Discernisporites micromanifestus

      图  5  永珠组岗巴剖面典型沉积构造

      a.正粒序层理到水平层理;b.深水浊积纹层;c.深水浊积层理;d.层间滑动变形;e.层间滑动变形;f.鲍马序列;g.深水浊积层理;h.透镜状层理.图f中(a+b)为底部递变层段与平行纹层段组成,砂岩逐步变细;c以粉砂为主,可见细砂和泥质;d为水平层理,由泥质粉砂岩与粉砂质泥岩组成;e为深水泥岩段

      Fig.  5.  Typical sedimentary structure of Gamba section of Yunzhug Formation

      图  6  东亚剖面永珠组典型沉积构造

      a.水平层理;b.平行层理;c.深水浊积层理;d.层间滑动变形

      Fig.  6.  Typical sedimentary structures of Yunzhug Formation of East Asia section

      图  7  岗巴剖面(a)和东亚剖面(b)永珠组粒度分析图

      Visher(1964, 1969);朱筱敏(2008)

      Fig.  7.  Yunzhug Formation granularity analysis charts of Gamba (a) and East Asia (b) sections

      图  8  岗巴剖面(a)和东亚剖面(b)永珠组C-M

      Visher(1964, 1969);朱筱敏(2008).1.牵引流沉积;2.浊流沉积;3.静水悬浮沉积.NO段为滚动搬运;OP段为滚动+悬浮搬运;PQ段为悬浮+滚动搬运;QR段为递变悬浮搬运;RS段为均匀悬浮搬运.C值和M值分别为累积曲线上1%和50%处对应的粒径

      Fig.  8.  Yunzhug Formation C-M charts of Gamba (a) and East Asia (b) sections

      图  9  上石炭统永珠组充填序列

      Fig.  9.  Filling sequence of the Upper Carboniferous Yunzhug Formation

      图  10  永珠组稀土元素配分模式

      球粒陨石标准化数据据Sun and McDonough(1981);北美页岩标准化数据据Gromet et al.(1984)

      Fig.  10.  REE pattern of Yunzhug Formation

      图  11  永珠组原始地幔标准化微量元素蛛网图

      据Gromn et al.(1984)

      Fig.  11.  PM-normalized trace element spider diagram of Yunzhug Formation

      图  12  永珠组源区构造背景判别图解

      Bhatia(1985)Roser and Korsch(1986).构造背景判别函数:F1=-0.0447 SiO2-0.972 TiO2+0.008 Al2O3-0.267 Fe2O3+0.208 FeO-3.082 MnO+0.140 MgO+0.195 CaO+0.719 Na2O-0.032 K2O-7.510 P2O5+0.303;F2=-0.421 SiO2+1.988 TiO2-0.526 Al2O3-0.551 Fe2O3-1.610 FeO+2.720 MnO+0.881 MgO-0.907 CaO-0.177 Na2O-1.840 K2O+7.244 P2O5+43.57

      Fig.  12.  Tectonic background discrimination diagrams of Yunzhug Formation

      图  13  永珠组源区构造背景距离判别图解

      图a为主量元素距离判别图;图b为微量元素距离判别图.A.大洋岛弧;B.大陆岛弧;C.活动大陆边缘;D.被动大陆边缘.A、B、C、D为各构造环境下数据组质心,红色三角形为永珠组质心

      Fig.  13.  Tectonic background distance discrimination diagrams of source area of Yunzhug Formation

      图  14  青藏高原古特提斯地体、缝合带与增生楔体系分布

      许志琴等(2013).CAOB.中亚造山系;TRMB.塔里木地块;IDB.印度板块;YZB.扬子板块;ALS+NCB.阿拉善+北中国陆块.QL.祁连地体;QDM.柴达木地体;ALT.阿尔金地体;WQL.西秦岭地体;EKL.西昆仑地体;NP.北帕米尔地体;CP.中帕米尔地体;SP.南帕米尔地体;BY.巴彦喀拉地体;SPGZ.松潘甘孜地体;NQT.北羌塘地体;SQT.南羌塘地体;CD.昌都地体;NLS.北拉萨地体;SLS.南拉萨地体;HM.喜马拉雅地体;GDS.冈底斯岩浆岛弧带;YD.义敦岛弧带;ANMQS.阿尼玛卿缝合带;JSJS.金沙江缝合带;LSS.龙木错-双湖缝合带;KXWS.康西瓦缝合带;ALTF.阿尔金断裂;LMSF.龙门山断裂

      Fig.  14.  Distribution of Paleo-Tethys terrane, suture zone and accretionary wedge system in the Qinghai-Tibet Plateau

      表  1  永珠组地质时代对比

      Table  1.   The geologic age comparison of Yunzhug Formation

      样品来源化石对应地质时代
      措勤县(四川省地质调查院,2003)Annularia sp.晚石炭世-
      早二叠世
      罗仓地区(成都理工大学,2013)Agishanoceras sp.早石炭世
      南木林县岗巴-东亚地区(中国地质大学(武汉),2016)Protohaploxypinus含量高,StriatolebachiitesNoeggerathiopsidozonotrilete含量低以及CordaitinaParasaccites的出现为特征晚石炭世
      注:据成都理工大学地质调查研究院,2013西藏1:5万罗仓地区(H45E010005、H45E010006、H45E010007、H45E011007)4幅区域地质矿产调查工作.
      下载: 导出CSV

      表  2  岗巴剖面永珠组沉积岩粒度分析结果

      Table  2.   The particle size analysis of Yunzhug Formation sedimentary rocks of Gamba section

      样号岩性1%5%10%16%25%50%75%84%90%95%MzσSKK
      Bp6-6-1砂质粗粉砂岩3.303.523.763.833.944.204.454.604.738.004.210.870.383.57
      Bp6-14-1砂质粗粉砂岩3.303.493.583.683.804.104.444.614.768.334.130.970.423.14
      Bp6-35-1细砂岩1.641.992.092.212.332.632.953.133.303.492.660.460.131.00
      Bp6-47-1泥质细砂岩1.561.771.922.052.192.713.233.523.998.892.761.450.412.80
      Bp6-57-1泥质中细砂岩1.061.301.611.862.112.673.273.563.848.572.691.530.332.58
      Bp6-64-1泥质中细砂岩1.021.111.221.441.692.222.953.344.509.002.331.670.452.56
      Bp6-72-1泥质粉砂岩3.123.673.843.974.114.414.744.958.009.004.451.050.413.50
      Bp12-15-1泥质中细砂岩1.551.731.902.112.392.873.403.693.998.752.891.460.362.85
      Bp12-45-1泥质细砂岩1.041.202.012.242.543.013.523.814.759.003.021.570.273.25
      Bp12-99-1泥质粉砂岩2.792.933.363.763.974.444.935.878.679.334.691.50.442.73
      Bp12-124-1泥质粉砂岩3.043.213.353.493.754.094.565.238.679.334.271.360.513.09
      Bp12-139-1泥质粉砂岩3.783.914.034.124.244.544.925.848.679.334.831.250.643.30
      Bp12-140-1泥质粉砂岩2.372.682.913.103.303.664.094.568.679.333.771.370.473.41
      下载: 导出CSV

      表  3  岗巴-东亚地区永珠组沉积岩主量(%)、微量(10-6)和稀土元素(10-6)分析结果

      Table  3.   Major elements (%), trace elements (10-6) and REE (10-6) results of Yunzhug Formation sedimentary rocks in Gamba-East Asia area

      岩性深灰色泥质
      细砂岩
      深灰色泥质
      粗粒粉砂岩
      泥质
      粉砂岩
      灰色细砂质
      粉砂岩
      灰色粉砂质
      细粒石英砂岩
      灰色细砂质
      粉砂岩
      样号BP6-9-1BP6-14-1BP6-54-1BP6-62-1BP6-66-1BP6-71-1
      SiO269.5560.9465.9076.2473.3672.65
      TiO20.630.840.660.440.510.50
      Al2O313.2016.0813.899.2410.5010.48
      Fe2O30.290.530.650.140.180.25
      FeO3.496.674.763.313.943.70
      MnO0.060.110.180.060.060.07
      MgO1.322.822.281.751.971.98
      CaO1.192.252.761.962.162.78
      Na2O1.872.650.200.931.271.21
      K2O5.473.593.502.813.052.97
      P2O50.130.200.180.100.110.11
      H2O+1.121.312.801.630.931.22
      CO20.981.501.611.001.441.54
      Total99.31699.48599.37799.60199.48799.465
      CaO+Na2O3.074.902.962.893.433.99
      Al2O3/SiO20.190.260.210.120.140.14
      Fe2O3+MgO5.1010.017.705.206.095.94
      SiO2/Al2O35.273.794.758.256.996.93
      Fe2O3/K2O0.692.001.551.231.351.33
      K2O/Na2O2.921.3617.713.022.402.45
      Rb155177186117124121
      Ba807769709550586566
      Th18.724.821.513.716.016.3
      U2.132.172.331.361.411.53
      K45 381.8929 800.1529 004.3823 319.5125 291.9124 618.96
      Nb15.120.719.110.413.113
      Ta1.131.511.420.791.081.02
      La48.461.659.835.542.640.5
      Ce101114113738679.9
      Sr121205141145137153
      P586.380 3861.887 3805.563 4418.718 3465.873 2473.295 8
      Nd45.854.552.533.839.936.7
      Sm8.349.229.675.936.986.59
      Zr289157222259263253
      Hf8.145.306.747.177.297.16
      Ti3 773.5015 038.1273 944.3152 647.9243 037.5002 976.966
      Tb1.091.141.340.770.850.83
      Dy5.756.067.514.214.724.63
      Y28.531392223.823.5
      Yb2.813.013.812.202.392.41
      Lu0.400.440.540.320.330.35
      La48.461.659.835.542.640.5
      Ce10111411373.086.079.9
      Pr11.313.112.58.19.69.0
      Nd45.854.552.533.839.936.7
      Sm8.349.229.675.936.986.59
      Eu1.661.772.181.261.341.24
      Gd7.898.449.445.586.376.07
      Tb1.091.141.340.770.850.83
      Dy5.756.067.514.214.724.63
      Ho1.121.191.490.830.940.93
      Er3.163.314.262.382.692.65
      Tm0.500.510.640.380.420.41
      Yb2.813.013.812.202.392.41
      Lu0.400.440.540.320.330.35
      ∑REE239.38278.39278.28174.24205.17192.18
      LREE216.66254.29249.25157.57186.46173.9
      HREE22.7224.1029.0316.6718.7018.28
      LREE/HREE9.5410.558.599.459.979.51
      (La/Yb)N12.3514.6811.2811.5912.7912.05
      (La/Sm)N3.744.314.003.873.943.97
      (Gd/Yb)N2.322.322.052.102.202.08
      δEu0.620.60.690.660.600.59
      δCe1.030.940.961.011.000.98
      下载: 导出CSV

      表  4  典型环境下永珠组砂岩主量(%)和微量元素(10-6)含量及有关参数

      Table  4.   Major elements (%) and trace elements (10-6) contents and related parameters of Yunzhug Formation sandstone under different tectonic settings

      特征值大洋岛弧大陆岛弧活动大陆边缘被动大陆边缘平均值
      SiO258.8370.6973.8681.9569.78
      TiO21.060.640.460.490.60
      Al2O317.1114.0412.898.4112.23
      Fe2O31.951.431.301.320.34
      FeO5.523.051.581.764.31
      MnO0.150.100.100.050.09
      MgO3.651.971.231.392.02
      CaO5.832.682.481.892.18
      Na2O4.103.122.771.071.36
      K2O1.601.892.901.713.56
      P2O50.260.160.090.120.14
      Al2O3/SiO20.290.200.180.100.18
      K2O/Na2O0.390.610.991.604.98
      Al2O3/(CaO+Na2O)1.722.422.564.153.45
      Pb6.9±1.415.1±1.124±1.116±3.427.1
      Rb/Sr0.05±0.050.65±0.330.89±0.241.19±0.400.1
      Th2.3±0.711.1±1.118.8±316.7±3.518.5
      Zr96±20229±27179±3329.8±8240.5
      Hf2.1±0.66.3±26.810.16.9
      Nb2±0.48.5±0.810.7±1.47.9±1.915.2
      K/Th1524±4051296±2501252±360681±1941627
      Th/U2.1±0.784.65±0.454.8±0.385.6±0.710.3
      Zr/Th48±13.421.5±2.49.5±0.719±5.813.8
      Ti(%)0.48±0.120.39±0.060.26±0.020.22±0.060.3
      Ti/Zr56.8±21.419.7±4.315.3±2.46.74±0.916.1
      Sc19.5±5.214.8±1.78±1.66±1.410.7
      V131±4089±13.748±5.931±9.975.5
      Co18±6.312±2.710±1.75±2.411.3
      Zn89±18.674±9.852±8.626±2.463.6
      Sc/Cr0.57±0.160.32±0.060.3±0.020.16±0.020.16
      注:据Bhatia(1985)Bhatia and Crook(1986).
      下载: 导出CSV
    • [1] Bhatia, M.R., 1985.Plate Tectonics and Geochemical Composition of Sandstones:A Reply.The Journal of Geology, 93(1):85-87. https://doi.org/10.1086/628922
      [2] Bhatia, M.R., Crook, K.A.W., 1986.Trace Element Characteristics of Graywackes and Tectonic Setting Discrimination of Sedimentary Basins.Contributions to Mineralogy and Petrology, 92(2):181-193. https://doi.org/10.1007/bf00375292
      [3] Chen, S. Y., 2010. The Development of Sumdo Suture in the Lhasa Block, Tibet (Dissertation). Chinese Academy of Geological Sciences, Beijing (in Chinese with English abstract).
      [4] Chen, S.Y., Yang, J.S., Li, Y., et al., 2009.Ultramafic Blocks in Sumdo Region, Lhasa Block, Eastern Tibet Plateau:An Ophiolite Unit.Journal of Earth Science, 20(2):332-347. doi: 10.1007/s12583-009-0028-x
      [5] Chen, S.Y., Yang, J.S., Zhang, C., et al., 2017.Development of the Sumdo Suture in the LhasaBlock, Tibet, China.Acta Geologica Sinica (English Edition), 91(s1):7. https://doi.org/10.1111/1755-6724.13150
      [6] Gromet, L.P., Silver, L.T., 1983.Rare Earth Element Distributions among Minerals in a Granodiorite and Their Petrogenetic Implications.Geochimica et Cosmochimica Acta, 47(5):925-939. https://doi.org/10.1016/0016-7037(83)90158-8
      [7] Hou, Z.Q., Lu, Q.T., Wang, A.J., et al., 2003a.Continental Collision and Related Metallogeny:A Case Study of Mineralization in Tibetan Orogen.Mineral Deposits, 22(4):319-333 (in Chinese with English abstract). http://www.researchgate.net/publication/312921630_Continental_collision_and_related_metallogeny_A_case_study_of_mineralization_in_Tibetan_orogen
      [8] Hou, Z.Q., Qu, X.M., Wang, S.X., et al., 2003b.Re-Os age of Molybdenite in the Gangdese Porphyry Copper Deposit, Tibet Plateau:Mineralization Time Limit and Dynamics Background Application.Science in China(Series D), 33(7):609-618 (in Chinese).
      [9] Hu, D.G, Wu, Z.H., Jiang, W., et al., 2005.SHRIMP zircon U-Pb Age and Nd Isotope Study in the Nyainqentanglha Group, Tibet.Science in China(Series D), 35(1):29-37 (in Chinese). http://www.researchgate.net/publication/284790145_SHRIMP_zircon_U-Pb_dating_and_Nd_isotope_research_of_Nyainqentanglha_Group_Tibet
      [10] Kapp, J.L.D., Harrison, T.M., Kapp, P., et al., 2005a.Nyainqentanglha Shan:A Window into the Tectonic, Thermal, and Geochemical Evolution of the Lhasa Block, Southern Tibet.Journal of Geophysical Research, 110(B8):B08413. https://doi.org/10.1029/2004jb003330
      [11] Kapp, P., Yin, A., Harrison, T.M., et al., 2005b.Cretaceous-Tertiary Shortening, Basin Development, and Volcanism in Central Tibet.Geological Society of America Bulletin, 117(7):865-878. https://doi.org/10.1130/b25595.1
      [12] Leeder, M.R., Smith, A.B., Yin, J.X., 1988.Sedimentology, Palaeoecology and Palaeoenvironmental Evolution of the 1985 Lhasa to Golmud Geotraverse.Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 327(1594):107-143. https://doi.org/10.1098/rsta.1988.0123
      [13] Lei, B.J., Que, H.P., Hu, N., et al., 2002.Geochemistry and Sedimentary Environments of the Palaeozoic Siliceous Rocks in Western Hubei.Sedimentary Geology and Tethyan Geology, 22(2):70-79 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yxgdl200202010
      [14] Leier, A.L., Kapp, P., Gehrels, G.E., et al., 2007.Detrital Zircon Geochronology of Carboniferous-Cretaceous Strata in the Lhasa Terrane, Southern Tibet.Basin Research, 19(3):361-378. https://doi.org/10.1111/j.1365-2117.2007.00330.x
      [15] Li, C., 1987.The Longmucuo-Shuanghu-Lancangjiang Plate Suture and the North Boundary of Distribution of Gondwana Facies Permo-Carboniferous System in Northern Xizang, China.Journal of Changchun College of Geology, 17(2):155-166 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000001164867
      [16] Li, C., Wang, T.W., Li, H.M., et al., 2003.Discovery of Indosinian Megaporphyritic Granodiorite in the Gangdise Area:Evidence for the Existence of Paleo-Gangdise.Geological Bulletin of China, 22(5):364-366 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200305010.htm
      [17] Li, C., Zhai, Q.G., Dong, Y.S., et al., 2006.Discovery of Eclogites in the Central Qiangtang of the Qinghai-Tibet Plateau and Its Significance.Chinese Science Bulletin, 51(1):70-74 (in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CAS201303040000271375
      [18] Li, G.M., Gao, D.F., Huang, Z.Y., 2002.The Discovery and Implications of the Nalong Late Palaeozoic Rift Basin in Damxung, Xizang.Sedimentary Geology and Tethyan Geology, 22(1):83-87 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yxgdl200201014
      [19] Li, H.Q., Cai, Z.H., Chen, S.Y., et al., 2008.The Indosinian Orogenesis Occurred in Lhasa Terrain and the Evidence from Muscovite 40Ar/39Ar Geochronology.Acta Petrologica Sinica, 24(7):1595-1604 (in Chinese with English abstract). http://www.researchgate.net/publication/299206720_The_Indosinian_orogenesis_occurred_in_Lhasa_terrain_and_the_evidence_from_muscovite_Ar-40-Ar-39_geochronology
      [20] Li, L., Sun, F.Y., Li, B.L., et al., 2017.Geochronology of Ershi'erzhan Formation Sandstone in Mohe Basin and Tectonic Environment of Its Provenance.Earth Science, 42(1):35-52 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.003
      [21] Lin, B.Y., Qiu, H.R., 1982.New Understanding of Paleozoic Strata in Himalaya Area, Tibet.Geological Collection of the Qinghai Tibet Plateau, (5):149-152.
      [22] McDonough, W.F., McCulloch, M.T., Sun, S.S., 1985.Isotopic and Geochemical Systematics in Tertiary-Recent Basalts from Southeastern Australia and Implications for the Evolution of the Sub-Continental Lithosphere.Geochimica et Cosmochimica Acta, 49(10):2051-2067. https://doi.org/10.1016/0016-7037(85)90063-8
      [23] Mo, X.X., 2011.Magmatism and Evolution of the Tibetan Plateau.Geological Journal of China Universities, 17(3):351-367 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDX201103003.htm
      [24] Pan, G.T., Ding, J., Yao, D.S., 2004.Geological Map of the Qinghai-Tibet Plateau and Adjacent Areas (1:1 500 000 with Instructions).Chengdu Map Publishing House, Chengdu (in Chinese).
      [25] Pan, G.T., Mo, X.X., Hou, Z.Q., et al., 2006.Spatial-Temporal Framework of the Gangdese Orogenic Belt and Its Evolution.Acta Petrologica Sinica, 22(3):521-533 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200603001
      [26] Pan, G.T., Wang, L.Q., Zhang, W.P., et al., 2013.Tectonic Maps and Manuals of the Qinghai-Tibet Plateau and Its Adjacent Areas (1:1 500 000).Geological Publishing House, Beijing (in Chinese).
      [27] Roser, B.P., Korsch, R.J., 1986.Determination of Tectonic Setting of Sandstone-Mudstone Suites Using SiO2 Content and K2O/Na2O Ratio.The Journal of Geology, 94(5):635-650. https://doi.org/10.1086/629071
      [28] Rui, Z.Y., Hou, Z.Q., Li, G.M., et al., 2006.A Genetic Model for the Gandise Porphyry Copper Deposits.Geological Review, 52(4):459-466 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/OA000005017
      [29] Song, L.J., Liu, C.Y., Zhao, H.G., et al., 2016.Geochemical Characteristics, Sedimentary Environment and Tectonic Setting of Huangqikou Formation, Ordos Basin.Earth Science, 41(8):1295-1308, 1321 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.105
      [30] Visher, G.S., 1964.Fluvial Processes as Interpreted from Ancient and Recent Fluvial Deposits:ABSTRACT.AAPG Bulletin, 48(4):550. https://doi.org/10.1306/bc743d0d-16be-11d7-8645000102c1865d
      [31] Visher, G.S., 1969.Grain Size Distributions and Depositional Processes.Journal of Sedimentary Research (SEPM), 39(3):1074-1106. https://doi.org/10.1306/74d71d9d-2b21-11d7-8648000102c1865d
      [32] Wang, E.Q., 2013.Evolution of the Tibetan Plateau:As Constrained by Major Tectonic-Thermo Events and a Discussion on Their Origin.Chinese Journal of Geology, 48(2):334-353 (in Chinese with English abstract).
      [33] Wright, J., Schrader, H., Holser, W.T., 1987.Paleoredox Variations in Ancient Oceans Recorded by Rare Earth Elements in Fossil Apatite.Geochimica et Cosmochimica Acta, 51(3):631-644. https://doi.org/10.1016/0016-7037(87)90075-5
      [34] Xu, Z.Q., Yang, J.S., Li, W.C., et al., 2013.Paleo-Tethys System and Accretionary Orogen in the Tibet Plateau.Acta Petrologica Sinica, 29(6):1847-1860 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201306001
      [35] Xu, Z.Q., Yang, J.S., Ji, S.C., et al., 2010.On the Continental Tectonics and Dynamics of China.Acta Geologica Sinica, 84(1):1-29 (in Chinese with English abstract). doi: 10.1111/j.1755-6724.2010.00164.x
      [36] Yan, Z., Wang, Z.Q., Li, J.L., 2012.Tectonic Settings and Accretionary Orogenesis of the West Qinling Terrane, Northeastern Margin of the Tibet Plateau.Acta Petrologica Sinica, 28(6):1808-1828 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201206008
      [37] Yang, J.S., Bai, W.J., Fang, Q.S., et al., 2007.Discovery of Diamond and an Unusual Mineral Group from the Podiform Chromite, Polar Ural.Chinese Geology, 34(5):950-952 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi200705024
      [38] Yang, J.S., Xu, Z.Q., Geng, Q.R., et al., 2006.A Possible New HP/UHP(?) Metamorphic Belt in China:Discovery of Eclogite in the Lasha Terrane, Tibet.Acta Geologica Sinica, 80(12):1787-1792 (in Chinese with English abstract).
      [39] Yin, J.X., Xu, J.T., Liu, C.J., et al., 1988.The Tibetan Plateau:Regional Stratigraphic Context and Previous Work.Philosophical Transactions of the Royal Society of London, 327(1594):5-52. https://doi.org/10.1098/rsta.1988.0121
      [40] Yu, X.J., Liu, Z.Q., Xu, X., et al., 1990.Geotectonics Formation and Evolution of the Tibetan Plateau.Geological Publishing House, Beijing.
      [41] Zhang, S.Q., Wang, Y.S., Qu, Y.G., 2006.Lithostratigraphic and Paleontological Characteristics of the Carboniferous Yunzhug Formation in the Yunzhug Area, Northern Tibet.Geology in China, 33(5):980-987 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi200605005
      [42] Zhang, Z.K., Zhou, Y.Q., Peng, T.M., et al., 2017.Geochemical Characteristics and Signatures of Siltstones from Laiyang Group at Lingshan Island, Qingdao, Shandong.Earth Science, 42(3):357-377 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.027
      [43] Zhu, D.C., Mo, X.X., Zhao, Z.D., et al., 2009.Permian and Early Cretaceous Tectonomagmatism in Southern Tibet and Tethyan Evolution:New Perspective.Earth Science Frontiers, 16(2):1-20 (in Chinese with English abstract). http://www.researchgate.net/publication/260835271_Permian_and_Early_Cretaceous_tectonomagmatism_in_southern_Tibet_and_Tethyan_evolution_New_perspective
      [44] Zhu, D.C., Pan, G.T., Mo, X.X., et al., 2006.Late Jurassic-Early Cretaceous Geodynamic Setting in Middle-Northern Gangdese:New Insights from Volcanic Rocks.Acta Petrologica Sinica, 22(3):534-546 (in Chinese with English abstract). http://www.oalib.com/paper/1472180
      [45] Zhu, X.M., 2008.Sedimentary Petrology.Petroleum Industry Press, Beijing (in Chinese).
      [46] 陈松永, 2010. 西藏拉萨地块中古特提斯缝合带的厘定(博士学位论文). 北京: 中国地质科学院. http://cdmd.cnki.com.cn/Article/CDMD-82501-2011012318.htm
      [47] 侯增谦, 吕庆田, 王安建, 等, 2003a.初论陆-陆碰撞与成矿作用——以青藏高原造山带为例.矿床地质, 22(4):319-333. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz200304001
      [48] 侯增谦, 曲晓明, 王淑贤, 等, 2003b.西藏高原冈底斯斑岩铜矿带辉钼矿Re-Os年龄:成矿作用时限与动力学背景应用.中国科学(D辑), 33(7):609-618. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200307001
      [49] 胡道功, 吴珍汉, 江万, 等, 2005.西藏念青唐古拉岩群SHRIMP锆石U-Pb年龄和Nd同位素研究.中国科学(D辑), 35(1):29-37. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200501003
      [50] 雷卞军, 阙洪培, 胡宁, 等, 2002.鄂西古生代硅质岩的地球化学特征及沉积环境.沉积与特提斯地质, 22(2):70-79. doi: 10.3969/j.issn.1009-3850.2002.02.010
      [51] 林宝玉, 邱洪荣, 1982.西藏喜马拉雅地区古生代地层的新认识.青藏高原地质文集, (5):149-152. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199306006802
      [52] 李才, 1987.龙木错-双湖-澜沧江板块缝合带与石炭-二叠纪冈瓦纳北界.长春地质学院学报, 17(2):155-166. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000001164867
      [53] 李才, 王天武, 李惠民, 等, 2003.冈底斯地区发现印支期巨斑花岗闪长岩——古冈底斯造山的存在证据.地质通报, 22(5):364-366. doi: 10.3969/j.issn.1671-2552.2003.05.011
      [54] 李才, 翟庆国, 董永胜, 等, 2006.青藏高原羌塘中部榴辉岩的发现及其意义.科学通报.51(1):70-74. doi: 10.3321/j.issn:0023-074X.2006.01.014
      [55] 李光明, 高大发, 黄志英, 2002.西藏当雄纳龙晚古生代裂谷盆地的识别及其意义.沉积与特提斯地质, 22(1):83-87. doi: 10.3969/j.issn.1009-3850.2002.01.014
      [56] 李化启, 蔡志慧, 陈松永, 等, 2008.拉萨地体中的印支造山事件及年代学证据.岩石学报, 24(7):1595-1604. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200807015
      [57] 李良, 孙丰月, 李碧乐, 等, 2017.漠河盆地二十二站组砂岩形成时代及物源区构造环境判别.地球科学, 42(1):35-52. https://doi.org/10.3799/dqkx.2017.003
      [58] 莫宣学, 2011.岩浆作用与青藏高原演化.高校地质学报, 17(3):351-367. doi: 10.3969/j.issn.1006-7493.2011.03.001
      [59] 潘桂棠, 丁俊, 姚冬生, 2004.青藏高原及邻区地质图(1:1 500 000)及说明书.成都:成都地图出版社.
      [60] 潘桂棠, 莫宣学, 侯增谦, 等, 2006.冈底斯造山带的时空结构及演化.岩石学报, 22(3):521-533. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200603001
      [61] 潘桂棠, 王立全, 张万平, 等, 2013.青藏高原及邻区大地构造图及说明书(1:1 500 000).北京:地质出版社.
      [62] 芮宗瑶, 侯增谦, 李光明, 等, 2006.冈底斯斑岩铜矿成矿模式.地质论评, 52(4):459-466. doi: 10.3321/j.issn:0371-5736.2006.04.004
      [63] 宋立军, 刘池阳, 赵红格, 等, 2016.鄂尔多斯地区黄旗口组地球化学特征及其沉积环境与构造背景.地球科学, 41(8):1295-1308, 1321. https://doi.org/10.3799/dqkx.2016.105
      [64] 王二七, 2013.青藏高原大地构造演化——主要构造-热事件的制约及其成因探讨.地质科学, 48(2):334-353. doi: 10.3969/j.issn.0563-5020.2013.02.002
      [65] 许志琴, 杨经绥, 李文昌, 等, 2013.青藏高原中的古特提斯体制与增生造山作用.岩石学报, 29(6):1847-1860. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201306001
      [66] 许志琴, 杨经绥, 嵇少丞, 等, 2010.中国大陆构造及动力学若干问题的认识.地质学报, 84(1):1-29. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201001001
      [67] 闫臻, 王宗起, 李继亮, 等, 2012.西秦岭楔的构造属性及其增生造山过程.岩石学报, 28(6):1808-1828. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201206008
      [68] 杨经绥, 白文吉, 方青松, 等, 2007.极地乌拉尔豆荚状铬铁矿中发现金刚石和一个异常矿物群.中国地质, 34(5):950-952. doi: 10.3969/j.issn.1000-3657.2007.05.024
      [69] 杨经绥, 许志琴, 耿全如, 等, 2006.中国境内可能存在一条新的高压/超高压(?)变质带——青藏高原拉萨地体中发现榴辉岩带.地质学报, 80(12):1787-1792. doi: 10.3321/j.issn:0001-5717.2006.12.001
      [70] 余希静, 刘增乾, 徐宪, 等, 1990.青藏高原大地构造与形成演化.北京:地质出版社.
      [71] 张树岐, 王永胜, 曲永贵, 2006.西藏北部永珠地区石炭系永珠组岩石地层和古生物特征.中国地质, 33(5):980-987. doi: 10.3969/j.issn.1000-3657.2006.05.005
      [72] 张振凯, 周瑶琪, 彭甜明, 等, 2017.山东灵山岛莱阳群粉砂岩地球化学特征及意义.地球科学, 42(3):357-377. https://doi.org/10.3799/dqkx.2017.027
      [73] 朱弟成, 莫宣学, 赵志丹, 等, 2009.西藏南部二叠纪和早白垩世构造岩浆作用与特提斯演化:新观点.地学前缘, 16(2):1-20. doi: 10.3321/j.issn:1005-2321.2009.02.001
      [74] 朱弟成, 潘桂棠, 莫宣学, 等, 2006.冈底斯中北部晚侏罗世-早白垩世地球动力学环境:火山岩约束.岩石学报, 22(3):534-546. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200603002
      [75] 朱筱敏, 2008.沉积岩石学.北京:石油工业出版社.
    • 加载中
    图(14) / 表(4)
    计量
    • 文章访问数:  5646
    • HTML全文浏览量:  1361
    • PDF下载量:  30
    • 被引次数: 0
    出版历程
    • 收稿日期:  2018-02-01
    • 刊出日期:  2018-08-15

    目录

      /

      返回文章
      返回