Fluid Filling Rule in Intra-Granular Pores of Feldspar and Fractal Characteristics: A Case Study on Yanchang Formation Tight Sandstone Reservoir in Ordos Basin
-
摘要: 鄂尔多斯盆地延长组致密砂岩储层长石含量较高且脆性破裂发育广泛,目前对该类储层长石粒内孔流体充注规律及分形特征等了解仍然十分匮乏.综合铸体薄片、场发射扫描电镜、图像处理、分形维数计算等手段,提出"粒内充注"概念并对延长组储层长石粒内孔开展了微观充注过程定量模拟,指出长石粒内孔相对于粒间孔的特殊性.从时间上将粒内充注过程划分为前期非稳态充注和后期稳态充注两大阶段,转折点为充注关键时刻.依据充注速率值分布特点,将长石粒内孔某一时刻发生充注的所有空间位置划分为高速充注区、中速充注区、低速充注区三大充注区域,并建立了粒内充注波及系数幂函数变化曲线,厘清了流动轨迹分形维数的物理意义.研究成果可为鄂尔多斯盆地延长组储层油气成藏过程恢复提供较为重要的启示.Abstract: The tight sandstone reservoir of Yanchang Formation in Ordos basin has a high content of feldspar and a wide range of brittle fractures. At present, there is still a lack of understanding of the fluid filling rule in intra-granular pores of feldspar and the fractal characteristics. In this study, the concept of "fluid filling in intra-granular pores" of feldspar is proposed by means of casting thin section, field emission scanning electron microscope, image processing and fractal dimension calculation. The micro filling process of feldspar in Yanchang Formation reservoir is simulated quantitatively, and the specialty of the intra-granular pores in feldspar compared with inter-granular pores is pointed out. According to time, the filling process could be divided into two stages, one is unsteady filling in the early stage and the other is steady filling in the later stage. According to the distribution characteristics of filling rate value, all the filling space in the inner-granular pores of feldspar could be divided into three filling areas:high-speed filling area, medium speed filling area and low-speed filling area, and the power function curve of the sweep efficiency is established and the physical significance of the fractal dimension of the flow path is also clarified. The conclusion could provide important enlightenment for the recovery of reservoir forming process of Yanchang Formation in Ordos basin.
-
Key words:
- Ordos basin /
- feldspar /
- intra-granular pore /
- fluid filling in intra-granular pores /
- fractal /
- petroleum geology
-
表 1 储层架构简化模型物性及力学属性的设定参数
Table 1. Parameters of reservoir physical and mechanical properties of simplified model
组分/属性 孔隙度 渗透率(mD) 杨氏模量(GPa) 泊松比 长石矿物骨架 0 0 85.0 0.29 孔喉中的饱和油水 100% 50 0 0.50 表 2 各时期长石粒内孔道流体充注路径分形维数计算
Table 2. Fractal dimension of fluid filling path calculation
时刻(min) 分形维数 时刻(min) 分形维数 时刻(min) 分形维数 时刻(min) 分形维数 25 1.177 275 1.027 525 1.368 775 1.337 50 1.198 300 1.038 550 1.366 800 1.328 75 1.217 325 1.04 575 1.358 825 1.329 100 1.201 350 1.039 600 1.355 850 1.326 125 1.171 375 1.033 625 1.338 875 1.33 150 1.202 400 1.216 650 1.342 900 1.328 175 1.218 425 1.235 675 1.34 925 1.329 200 1.226 450 1.281 700 1.345 950 1.335 225 1.23 475 1.311 725 1.338 975 1.331 250 1.152 500 1.367 750 1.333 1 000 1.303 -
[1] Abushaikha, A.S., Voskov, D.V., Tchelepi, H.A., 2017.Fully Implicit Mixed-Hybrid Finite-Element Discretization for General Purpose Subsurface Reservoir Simulation.Journal of Computational Physics, 346:514-538. https://doi.org/10.1016/j.jcp.2017.06.034 [2] Bai, Y.L., Wang, X.M., Liu, H.Q., et al., 2006.Determination of the Borderline of the Western Ordos Basin and Its Geodynamics Background.Acta Geologica Sinica, 80(6):792-813(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200606003 [3] Balankin, A.S., Morales-Ruiz, L., Matías-Gutierres, S., et al., 2018.Comparative Study of Gravity-Driven Discharge from Reservoirs with Translationally Invariant and Fractal Pore Networks.Journal of Hydrology, 565:467-473. https://doi.org/10.1016/j.jhydrol.2018.08.052 [4] Chen, T, 2007.Experimental Study of Water-Oil Displacement with Microscopic Models of Heterogeneous Reservoirs.Petroleum Geology and Recovery Efficiency, 14(4):72-75(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yqdzycsl200704022 [5] Correia, M.G., Maschio, C., Schiozer, D.J., 2015.Integration of Multiscale Carbonate Reservoir Heterogeneities in Reservoir Simulation.Journal of Petroleum Science and Engineering, 131:34-50. https://doi.org/10.1016/j.petrol.2015.04.018 [6] Deng, X.Q., Fu, J.H., Yao, J.L., et al., 2011.Sedimentary Facies of the Middle-Upper Triassic Yanchang Formation in Ordos Basin and Breakthrough in Petroleum Exploration.Journal of Palaeogeography, 13(4):443-455(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdlxb201104007 [7] Dong, J.X., Tong, M., Ran, B., et al., 2013.Nonlinear Percolation Mechanisms in Different Storage-Percolation Modes in Volcanic Gas Reservoirs.Petroleum Exploration and Development, 40(3):372-377. https://doi.org/10.1016/s1876-3804(13)60045-2 [8] Dou, H.G., Yang, Y., 2012.Further Understanding on Fluid Flow through Multi-Porous Media in Low Permeability Reservoirs.Petroleum Exploration and Development, 39(5):633-640. https://doi.org/10.1016/s1876-3804(12)60092-5 [9] Du, S.H., Pang, S., Shi, Y.M., 2018a.Quantitative Characterization on the Microscopic Pore Heterogeneity of Tight Oil Sandstone Reservoir by Considering Both the Resolution and Representativeness.Journal of Petroleum Science and Engineering, 169:388-392. https://doi.org/10.1016/j.petrol.2018.05.058 [10] Du, S.H., Pang, S., Shi, Y.M., 2018b.A New and More Precise Experiment Method for Characterizing the Mineralogical Heterogeneity of Unconventional Hydrocarbon Reservoirs.Fuel, 232:666-671. https://doi.org/10.1016/j.fuel.2018.06.012 [11] Du, S.H., Shi, G.X., Yue, X.J., et al., 2019d.Imaging-Based Characterization of Perthite in the Upper Triassic Yanchang Formation Tight Sandstone of the Ordos Basin, China.Acta Geologica Sinica(English Edition), 93(2):373-385. doi: 10.1111/1755-6724.13768 [12] Du, S.H., Shi, Y.M., Zheng, X.J., et al., 2019a.Using "Umbrella Deconstruction and Energy Dispersive Spectrometer (UD-EDS)" Technique to Quantify the Anisotropic Distribution of Elements in Shale Gas Reservoir and Its Significance.Energy. https://doi.org/10.1016/j.energy.2019.116443 [13] Du, S.H., Xu, F., Taskyn, A., et al., 2019b.Anisotropy Characteristics of Element Composition in Upper Triassic "Chang 8" Shale in Jiyuan District of Ordos Basin, China:Microscopic Evidence for the Existence of Predominant Fracture Zone.Fuel, 253:685-690. https://doi.org/10.1016/j.fuel.2019.05.031 [14] Du, S.H., Zhao, Y.P., Jin, J., et al., 2019c.Significance of the Secondary Pores in Perthite for Oil Storage and Flow in Tight Sandstone Reservoir.Marine and Petroleum Geology, 110:178-188. https://doi.org/10.1016/j.marpetgeo.2019.07.006 [15] Hu, G., 2013.A New Method for Calculating Volumetric Sweep Efficiency in a Water-Flooding Oilfield.Petroleum Exploration and Development, 40(1):111-114. https://doi.org/10.1016/s1876-3804(13)60011-7 [16] Hu, Y., Li, X.Z., Wan, Y.J., et al., 2013.Physical Simulation on Gas Percolation in Tight Sandstone.Petroleum Exploration and Development, 40(5):621-626. https://doi.org/10.1016/s1876-3804(13)60081-6 [17] Ji, S.H., Tian, C.B., Shi, C.F., et al., 2012.New Understanding on Water-Oil Displacement Efficiency in a High Water-Cut Stage.Petroleum Exploration and Development, 39(3):338-345. https://doi.org/10.1016/s1876-3804(12)60052-4 [18] Jiang, J., Younis, R.M., 2016.Hybrid Coupled Discrete-Fracture/Matrix and Multicontinuum Models for Unconventional-Reservoir Simulation.SPE Journal, 21(3):1-9. [19] Li, S.X., Deng, X.Q., Pang, J.L., et al., 2010.Relationship between Petroleum Accumulation of Mesozoic and Tectonic Movement in Ordos Basin.Acta Sedimentologica Sinica, 28(4):798-807 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjxb201004019 [20] Li, Y., Wang, D.P., Liu, J.M., 2005.Remaining Oil Enrichment Areas in Continental Water Flooding Reservoirs.Petroleum Exploration and Development, 32(3):91-96. [21] Liu, C.Y., Zhao, H.G., Gui, X.J., et al., 2006.Space-Time Coordinate of the Evolution and Reformation and Mineralization Response in Ordos Basin.Acta Geologica Sinica, 80(5):617-638(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200605001 [22] Mishra, D.K., Samad, S.K., Varma, A.K., et al., 2018.Pore Geometrical Complexity and Fractal Facets of Permian Shales and Coals from Auranga Basin, Jharkhand, India.Journal of Natural Gas Science and Engineering, 52:25-43. https://doi.org/10.1016/j.jngse.2018.01.014 [23] Ning, Z.F., Wang, B., Yang, F., et al., 2014.Microscale Effect of Microvadose in Shale Reservoirs.Petroleum Exploration and Development, 41(4):492-499. https://doi.org/10.1016/s1876-3804(14)60056-2 [24] Olorode, O.M., Akkutlu, I.Y., Efendiev, Y., 2017.Compositional Reservoir-Flow Simulation for Organic-Rich Gas Shale.SPE Journal, 22(6), 1-963. http://cn.bing.com/academic/profile?id=949917ee7ede10f5ad7f77a4a52cf0b8&encoded=0&v=paper_preview&mkt=zh-cn [25] Peng, R.D., Yang, Y.C., Ju, Y., et al., 2011.Computation of Fractal Dimension of Rock Pores Based on Gray CT Images. Chinese Science Bulletin, 56(26):2256-2266 (in Chinese). doi: 10.1360/csb2011-56-26-2256 [26] Rahner, M.S., Halisch, M., Fernandes, C.P., et al., 2018.Fractal Dimensions of Pore Spaces in Unconventional Reservoir Rocks Using X-Ray Nano- and Micro-Computed Tomography.Journal of Natural Gas Science and Engineering, 55:298-311. https://doi.org/10.1016/j.jngse.2018.05.011 [27] Ren, D.Z., Sun, W., Huang, H., et al., 2016.Formation Mechanism of Chang 6 Tight Sandstone Reservoir in Jiyuan Oilfield, Ordos Basin.Earth Science, 41(10):1735-1744 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201610009 [28] Xu, C.F., Liu, H.X., Qian, G.B., et al., 2011.Microcosmic Mechanisms of Water-Oil Displacement in Conglomerate Reservoirs in Karamay Oilfield, NW China.Petroleum Exploration and Development, 38(6):725-732. https://doi.org/10.1016/s1876-3804(12)60006-8 [29] Xu, L., Shi, Y.M., Xu, C.S., et al., 2013.Influences of Feldspars on the Storage and Permeability Conditions in Tight Oil Reservoirs:A Case Study of Chang-6 Group, Ordos Basin.Petroleum Exploration and Development, 40(4):448-454. https://doi.org/10.1016/s1876-3804(13)60061-0 [30] Yang, Q.F., 2013.Study of Xingliu Area of Daqing Oilfield Water Flooding Development Effect Evaluation and Optimization(Dissertation).Northeast Petroleum University, Daqing(in Chinese with English abstract). [31] Yuan, X.J., Lin, S.H., Liu, Q., et al., 2015.Lacustrine Fine-Grained Sedimentary Features and Organic-Rich Shale Distribution Pattern:A case Study of Chang 7 Member of Triassic Yanchang Formation in Ordos Basin, NW China.Petroleum Exploration and Development, 42(1):37-47. doi: 10.1016/S1876-3804(15)60004-0 [32] Zhao, G.Q., Li, K.M., Zhao, H.L., et al., 2005.Feldspar Corrosion and Secondary Pore Formation in the Upper Paleozoic Gas Reservoir, Ordos Basin.Petroleum Exploration and Development, 32(1):53-55(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf200501013 [33] Zhu, W.Y., Qi, Q., Ma, Q., et al., 2016.Unstable Seepage Modeling and Pressure Propagation of Shale Gas Reservoirs.Petroleum Exploration and Development, 43(2):285-292. https://doi.org/10.1016/s1876-3804(16)30032-5 [34] 白云来, 王新民, 刘化清, 等, 2006.鄂尔多斯盆地西部边界的确定及其地球动力学背景.地质学报, 80(6):792-813. http://d.old.wanfangdata.com.cn/Periodical/dizhixb200606003 [35] 陈霆, 2007.非均质储层模型微观水驱油实验.油气地质与采收率, 14(4):72-75. doi: 10.3969/j.issn.1009-9603.2007.04.022 [36] 邓秀芹, 付金华, 姚泾利, 等, 2011.鄂尔多斯盆地中及上三叠统延长组沉积相与油气勘探的突破.古地理学报, 13(4):443-455. http://d.old.wanfangdata.com.cn/Periodical/gdlxb201104007 [37] 李士祥, 邓秀芹, 庞锦莲, 等, 2010.鄂尔多斯盆地中生界油气成藏与构造运动的关系.沉积学报, 28(4):798-807. http://d.old.wanfangdata.com.cn/Conference/7248137 [38] 刘池洋, 赵红格, 桂小军, 等, 2006.鄂尔多斯盆地演化-改造的时空坐标及其成藏(矿)响应.地质学报, 80(5):617-638. doi: 10.3321/j.issn:0001-5717.2006.05.001 [39] 彭瑞东, 杨彦从, 鞠杨, 等, 2011.基于灰度CT图像的岩石孔隙分形维数计算.科学通报, 56(26):2256-2266. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201126016 [40] 任大忠, 孙卫, 黄海, 等, 2016.鄂尔多斯盆地姬塬油田长6致密砂岩储层成因机理.地球科学, 41(10):1735-1744. doi: 10.3799/dqkx.2016.124 [41] 杨奇峰, 2013.杏六区水驱开发效果评价及措施优化方法研究(硕士学位论文).大庆: 东北石油大学. http://cdmd.cnki.com.cn/Article/CDMD-10220-1013291020.htm [42] 赵国泉, 李凯明, 赵海玲, 等, 2005.鄂尔多斯盆地上古生界天然气储集层长石的溶蚀与次生孔隙的形成.石油勘探与开发, 32(1):53-55. doi: 10.3321/j.issn:1000-0747.2005.01.013