Neoarchean Granitic Gneisses in the Kongling Complex, Yangtze Craton: Petrogenesis and Tectonic Implications
-
摘要: 以崆岭杂岩中新太古代花岗片麻岩为研究对象,系统研究了其锆石U-Pb年代学和全岩地球化学特征,并对其岩石成因和扬子陆核~3.0~2.6 Ga构造演化过程进行了初步探讨.锆石LA-ICP-MS U-Pb同位素测年结果表明,花岗片麻岩形成年龄为2 673±39 Ma,且遭受了古元古代(2 042±27 Ma)的高压麻粒岩相变质作用.地球化学研究表明,该套花岗片麻岩富Si,贫Mg、Cr、Ni,具有Eu、Sr和高场强元素的负异常.花岗片麻岩的εNd(t)值在-1.9~-0.1之间变化,对应两阶段Nd同位素模式年龄为3.15~3.01 Ga,锆石饱和温度为789~825 ℃,显示岩体可能形成于初生长英质地壳物质在后碰撞伸展构造背景高温条件下部分熔融.结合前人已有的研究成果,认为以崆岭杂岩为代表的扬子陆核可能完整记录了~2.9~2.6 Ga板块俯冲-碰撞-后碰撞与造山作用相关的完整过程.Abstract: This study carries out systematical geochronological and whole-rock geochemical investigations for the Neoarchean granitic gneisses of the Kongling complex, and discusses the petrogenesis and~3.0-2.6 Ga tectonic evolution of the nucleus of the Yangtze craton. The zircon LA-ICP-MS U-Pb dating reveals that the gneisses were crystallized at 2 673±39 Ma, and experienced high-pressure granulite-facies metamorphism at 2 042±27 Ma. The geochemical study illustrates an enrichment of Si and depletions of Mg, Cr and Ni, as well as negative anomalies of high field strength elements, Eu and Sr. The εNd(t) values of the gneisses vary between -1.9 to -0.1 and the corresponding two-stage Nd isotopic model ages range from 3.15-3.01 Ga, combined with their relatively high calculated zircon saturation temperature (789-825℃), indicating that the Kongling Neoarchean gneisses might have formed by partial melting of juvenile felsic crustal materials under a high-temperature condition in the post-collisional extensional tectonic setting. Combined with the documented work, it is suggested that the nucleus of the Yangtze craton, represented by the Kongling complex, may fully record an~2.9-2.6 Ga orogenic-related event including earlier stage of oceanic slab subduction, middle stage of arc (or continent)-continent collision, and later stage of post-collisional extension.
-
Key words:
- Neoarchean /
- granitic gneisses /
- Kongling complex /
- rock /
- tectonic implications
-
图 1 崆岭地区地质简图及采样位置
Fig. 1. Sketch geological map of the study area in the Kongling region and sampling locations
图 5 崆岭地区新太古代花岗片麻岩锆石稀土元素配分模式图
球粒陨石标准化值据Sun and McDonough(1989)
Fig. 5. Chondrite-normalized REE patterns of zircons from the Kongling Neoarchean granitic gneisses
图 7 崆岭杂岩新太古代花岗片麻岩CIPW标准化三长石分类图
实验研究得到的部分熔体经Yang et al.(2016)修改
Fig. 7. CIPW-normative An-Ab-Or diagram for the Kongling Neoarchean granitic gneisses
图 8 崆岭杂岩新太古代花岗片麻岩(a)稀土元素配分模式图;(b)微量元素蛛网图
原始地幔归一化值据McDonough and Sun(1995);球粒陨石标准化值据Sun and McDonough(1989)
Fig. 8. (a) Chondrite-normalized rare earth element patterns and (b) primitive mantle-normalized spiderdiagram for the Kongling Neoarchean granitic gneisses
图 9 崆岭杂岩新太古代花岗片麻岩的(Nb+Y)-Rb构造判别图解
修改自Pearce et al.(1984);ORG.海洋山脊花岗岩; syn-COLG.syn-COLG花岗岩; VAG.火山弧花岗岩; WPG.板内花岗岩
Fig. 9. Rb versus (Nb+Y) diagram for the Kongling Neoarchean granitic gneisses
表 2 崆岭杂岩新太古代花岗片麻岩锆石稀土元素组成
Table 2. LA-ICP-MS REE (10-6) compositions of zircons crystals for the Kongling Neoarchean granitic gneisses
点号 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 12ZG-47-6 1.01 39.40 1.83 14.4 14.30 2.73 55.5 19.6 243.0 94.3 431.0 89.40 798.0 148.00 12ZG-47-7 0.28 23.20 0.37 3.56 9.05 2.43 56.8 20.1 241.0 91.0 407.0 83.60 775.0 160.00 12ZG-47-8 0.09 23.00 0.22 2.63 8.61 3.48 53.6 18.7 217.0 82.4 351.0 70.00 624.0 125.00 12ZG-47-10 0.01 38.90 0.08 1.55 5.71 0.52 42.8 17.5 225.0 91.4 425.0 89.90 840.0 164.00 12ZG-47-12 0.07 39.80 0.21 4.54 10.40 3.56 63.1 23.8 274.0 106.0 479.0 103.00 963.0 196.00 12ZG-47-13 0.06 12.00 0.22 2.54 5.92 2.21 35.5 12.3 131.0 46.1 192.0 38.70 355.0 71.40 12ZG-47-16 0.00 45.90 0.07 2.31 7.01 0.96 53.0 20.7 262.0 103.0 491.0 102.00 971.0 193.00 12ZG-47-18 0.00 11.80 0.09 2.52 6.86 2.36 42.5 13.9 154.0 54.3 226.0 46.20 418.0 84.40 12ZG-47-14 0.01 2.27 0.07 0.79 5.62 0.10 44.3 12.1 73.7 14.1 33.7 4.80 34.6 7.55 12ZG-47-11 0.00 1.86 0.08 1.65 13.80 0.32 97.5 25.7 130.0 18.3 32.7 4.07 22.7 3.49 12ZG-47-15 0.49 1.54 0.05 1.45 7.98 0.34 68.6 19.1 106.0 15.2 25.5 2.28 11.8 1.95 12ZG-47-19 0.11 3.03 0.17 1.68 9.09 0.67 63.5 18.3 128.0 25.5 67.1 8.64 59.0 10.10 12ZG-47-20 0.06 1.51 0.04 0.23 4.69 0.28 43.6 16.2 123.0 24.8 68.3 9.58 66.2 11.20 表 3 崆岭杂岩新太古代花岗片麻岩主量(%)及微量元素(10-6)组成
Table 3. Major (%) and trace element (10-6) compositions of the Kongling Neoarchean granitic gneisses
样品号 12ZG-47 12ZG-49 13SNJ111 13SNJ110 13SNJ104 13SNJ105 SiO2 72.97 72.35 70.99 71.68 71.00 71.67 TiO2 0.24 0.23 0.29 0.19 0.26 0.26 Al2O3 13.57 14.28 14.74 15.35 14.02 14.28 Fe2O3 3.60 3.12 3.78 2.10 2.95 3.42 MnO 0.03 0.03 0.06 0.02 0.03 0.03 MgO 0.65 0.73 0.78 0.41 0.39 0.37 CaO 0.77 1.49 1.36 1.28 1.43 1.03 Na2O 3.26 3.56 4.17 4.23 3.88 4.41 K2O 4.70 4.13 3.56 4.25 4.74 3.98 P2O5 0.04 0.03 0.05 0.13 0.06 0.07 LOI 0.02 -0.10 0.07 0.23 1.10 0.28 Total 99.84 99.84 99.85 99.85 99.86 99.80 Sc 4.56 4.75 5.89 3.60 2.19 2.32 V 8.94 12.5 13.9 8.17 14.9 19.3 Cr 33.7 12.7 13.9 11.8 25.0 16.6 Ni 6.67 15.6 4.59 3.92 5.81 4.85 Ga 46.6 46.1 19.4 22.5 23.1 24.7 Rb 130 86.8 83.8 108 119 68.0 Sr 214 204 376 247 243 289 Y 9.98 12.0 17.3 13.4 10.9 17.6 Zr 150 159 172 92.5 166 170 Nb 8.39 9.06 9.23 7.68 12.7 13.7 Cs 8.58 7.68 1.03 0.90 0.57 0.33 Ba 880 841 880 837 817 1 320 La 63.7 61.7 83.4 39.0 81.0 35.2 Ce 105 107 156 76.0 150 69.1 Pr 12.4 12.7 15.1 8.52 16.0 6.75 Nd 41.5 43.0 52.1 31.3 49.5 26.9 Sm 7.93 7.49 8.23 6.91 6.88 5.82 Eu 2.08 1.90 1.42 1.44 1.60 0.92 Gd 6.81 6.76 5.48 5.17 3.97 3.38 Tb 0.71 0.72 0.61 0.64 0.42 0.33 Dy 2.66 2.81 3.16 2.97 1.86 1.57 Ho 0.42 0.54 0.64 0.47 0.35 0.27 Er 1.05 1.59 1.74 1.01 0.90 0.71 Tm 0.16 0.23 0.26 0.14 0.11 0.10 Yb 0.94 1.49 1.70 0.76 0.77 0.60 Lu 0.13 0.19 0.24 0.11 0.12 0.09 Hf 5.00 5.26 5.59 2.68 5.82 6.06 Ta 0.55 0.73 0.67 0.50 0.96 1.03 Pb 46.2 15.9 47.0 42.9 22.9 24.6 Th 9.45 9.79 35.0 15.5 36.9 37.5 U 1.68 0.84 1.96 2.26 2.67 2.34 表 4 崆岭地区新太古代花岗片麻岩Sm-Nd同位素组成
Table 4. Sm-Nd isotopic compositions of the Kongling Neoarchean granitic gneisses
样品 Sm(10-6) Nd(10-6) 143Nd/144Nd 2εm(10-6) 147Sm/144Nd T2DM(Ga) εNd(t) 12ZG-43 8.486 50.24 0.510 970 5 0.102 2 3.01 -0.1 12ZG-47 7.592 42.52 0.511 012 3 0.108 0 3.10 -1.2 12ZG-49 7.227 45.34 0.510 775 5 0.096 4 3.15 -1.9 注:(1).Sm、Nd含量与147Sm/144Nd比值通过ID-TIMS法测量结果计算获得,误差 < 5‰;(2).计算εsub>Nd(t)值和T2DM年龄时,年龄值t采用锆石年龄2 673 Ma;T2DM计算过程中参数(147Sm/144Nd)DM=0.213 7、(144Nd/144Nd)DM=0.513 15、(147Sm/144Nd)CC=0.118 (DM、CC分别代表亏损地幔和大陆地壳),εsub>Nd(t)值计算过程中参数(147Sm/144Nd)CHUR=0.196 7、(143Nd/144Nd)CHUR=0.512 638. -
[1] Bingen, B., Austrheim, H., Whitehouse, M.J., et al., 2004.Trace Element Signature and U-Pb Geochronology of Eclogite-Facies Zircon, Bergen Arcs, Caledonides of W Norway.Contributions to Mineralogy and Petrology, 147(6):671-683. https://doi.org/10.1007/s00410-004-0585-z [2] Bradley, D.C., 2011.Secular Trends in the Geologic Record and the Supercontinent Cycle.Earth-Science Reviews, 108(1-2):16-33. https://doi.org/10.1016/j.earscirev.2011.05.003 [3] Cao, Z.Q., Cai, Y.T., Zeng, Z.X., et al., 2017.Discovery of Neoproterozoic A-Type Granite in Northern Yangtze Craton and Its Tectonic Significance.Earth Science, 42(6):957-973 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201706008.htm [4] Chen, K., Gao, S., Wu, Y.B., et al., 2013.2.6-2.7 Ga Crustal Growth in Yangtze Craton, South China.Precambrian Research, 224:472-490. https://doi.org/10.1016/j.precamres.2012.10.017 [5] Conrad, W.K., Nicholls, I.A., Wall, V.J., 1988.Water-Saturated and -Undersaturated Melting of Metaluminous and Peraluminous Crustal Compositions at 10 Kb:Evidence for the Origin of Silicic Magmas in the Taupo Volcanic Zone, New Zealand, and other Occurrences.Journal of Petrology, 29(4):765-803. https://doi.org/10.1093/petrology/29.4.765 [6] Finger, F., Schiller, D., 2012.Lead Contents of S-Type Granites and their Petrogenetic Significance.Contributions to Mineralogy and Petrology, 164(5):747-755. https://doi.org/10.1007/s00410-012-0771-3 [7] Förster, H.J., Tischendorf, G., Trumbull, R.B., et al., 1999.Late-Collisional Granites in the Variscan Erzgebirge, Germany.Journal of Petrology, 40(11):1613-1645. https://doi.org/10.1093/petroj/40.11.1613 [8] Gao, S., Ling, W.L., Qiu, Y.M., et al., 1999.Contrasting Geochemical and Sm-Nd Isotopic Compositions of Archean Metasediments from the Kongling High-Grade Terrain of the Yangtze Craton:Evidence for Cratonic Evolution and Redistribution of REE during Crustal Anatexis.Geochimica et Cosmochimica Acta, 63(13-14):2071-2088. https://doi.org/10.1016/s0016-7037(99)00153-2 [9] Gao, S., Yang, J., Zhou, L., et al., 2011.Age and Growth of the Archean Kongling Terrain, South China, with Emphasis on 3.3 Ga Granitoid Gneisses.American Journal of Science, 311(2):153-182. https://doi.org/10.2475/02.2011.03 [10] Guo, J.L., Gao, S., Wu, Y.B., et al., 2014.3.45Ga Granitic Gneisses from the Yangtze Craton, South China:Implications for Early Archean Crustal Growth.Precambrian Research, 242:82-95. https://doi.org/10.1016/j.precamres.2013.12.018 [11] Guo, J.L., Wu, Y.B., Gao, S., et al., 2015.Episodic Paleoarchean-Paleoproterozoic (3.3-2.0 Ga) Granitoid Magmatism in Yangtze Craton, South China:Implications for Late Archean Tectonics.Precambrian Research, 270:246-266. https://doi.org/10.1016/j.precamres.2015.09.007 [12] Han, P.Y., Guo, J.L., Chen, K., et al., 2017.Widespread Neoarchean (~2.7-2.6 Ga) Magmatism of the Yangtze Craton, South China, as Revealed by Modern River Detrital Zircons.Gondwana Research, 42:1-12. https://doi.org/10.1016/j.gr.2016.09.006 [13] Jiao, W.F., Wu, Y.B., Yang, S.H., et al., 2009.The Oldest Basement Rock in the Yangtze Craton Revealed by Zircon U-Pb Age and Hf Isotope Composition.Science in China Series D:Earth Sciences, 52(9):1393-1399. https://doi.org/10.1007/s11430-009-0135-7 [14] Li, L.M., Lin, S.F., Davis, D.W., et al., 2014.Geochronology and Geochemistry of Igneous Rocks from the Kongling Terrane:Implications for Mesoarchean to Paleoproterozoic Crustal Evolution of the Yangtze Block.Percambrian Research, 255:30-47. https://doi.org/10.1016/j.precamres.2014.09.009 [15] Li, Y.H., Zheng, J.P., Xiong, Q., et al., 2016.Petrogenesis and Tectonic Implications of Paleoproterozoic Metapelitic Rocks in the Archean Kongling Complex from the Northern Yangtze Craton, South China.Precambrian Research, 276:158-177. https://doi.org/10.1016/j.precamres.2016.01.028 [16] Ling, W.L., Gao, S., Zhang, B.R., et al., 2001.The Recognizing of ca.1.95 Ga Tectono-Thermal Eventin Kongling Nucleus and Its Significance for the Evolution of Yangtze Block, South China.Chinese Science Bulletin, 46(4):326-329. https://doi.org/10.1007/bf03187196 [17] Ling, W.L., Gao, S., Zheng, H.F., et al., 1998.An Sm-Nd Isotopic Dating Study of the Archean Kongling Complex in the Huangling Area of the Yangtze Craton.Chinese Science Bulletin, 43(14):1187-1191. https://doi.org/10.1007/bf02883222 [18] Liu, X.M., Gao, S., Diwu, C., et al., 2008.Precambrian Crustal Growth of Yangtze Craton as Revealed by Detrital Zircon Studies.American Journal of Science, 308(4):421-468. https://doi.org/10.2475/04.2008.02 [19] Liu, Y.S., Gao, S., Hu, Z., et al., 2010.Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths.Journal of Petrology, 51(1-2):537-571. https://doi.org/10.1093/petrology/egp082 [20] Ludwig, K.R., 2003.Users Manual for Isoplot/Ex:A Geochronological Toolkit for Microsoft Excel.Berkeley Geochronology Center Special Publication, Berkeley, 1-56. https://www.researchgate.net/publication/284696948_User's_manual_for_a_geochronological_toolkit_for_Microsoft_Excel_IsoplotEx_version_30 [21] Macpherson, C.G., Dreher, S.T., Thirlwall, M.F., 2006.Adakites without Slab Melting:High Pressure Differentiation of Island Arc Magma, Mindanao, the Philippines.Earth and Planetary Science Letters, 243(3-4):581-593. https://doi.org/10.1016/j.epsl.2005.12.034 [22] McDonough, W.F., Sun, S.S., 1995.The Composition of the Earth.Chemical Geology, 120(3-4):223-253. https://doi.org/10.1016/0009-2541(94)00140-4 [23] Pearce, J.A., Harris, N.B.W., Tindle, A.G., 1984.Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks.Journal of Petrology, 25(4):956-983. https://doi.org/10.1093/petrology/25.4.956 [24] Peng, M., Wu, Y.B., Wang, J., et al., 2009.Paleoproterozoic Mafic Dyke from Kongling Terrain in the Yangtze Craton and its Implication.Science Bulletin, 54(6):1098-1104. https://doi.org/10.1007/s11434-008-0558-0 [25] Qiu, X.F., Yang, H.M., Lu, S.S., et al., 2015.Geochronology and Geochemistry of Grenville-Aged (1 063±16 Ma) Metabasalts in the Shennongjia District, Yangtze Block:Implications for Tectonic Evolution of the South China Craton.International Geology Review, 57(1):76-96. https://doi.org/10.1080/00206814.2014.991949 [26] Qiu, X.F., Yang, H.M., Lu, S.S., et al., 2016.Geochronology of the Khondalite Series in the Kongling Complex, Yangtze Craton and Its Geological Implication.Geotectonica et Metallogenia, 40(3):549-558 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DGYK201603011.htm [27] Qiu, X.F., Yang, H.M., Zhang, L.G., et al., 2015.Geochronology of Serpentinized Harzburgite in Miaowan Ophiolite, Yangtze Block and Its Tectonic Implications.Earth Science, 40(7):1121-1128 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201507002.htm [28] Qiu, X.F., Zhao, X.M., Yang, H.M., et al., 2017.Paleoproterozoic Metamorphic Event in the Nucleus of the Yangtze Craton:Evidence from U-Pb Geochronology of the Metamorphic Zircons from the Khondalite.Geological Bulletin of China, 36(5):706-714 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201705003.htm [29] Qiu, Y.M., Gao, S., McNaughton, N.J., et al., 2000.First Evidence of >3.2 Ga Continental Crust in the Yangtze Craton of South China and its Implications for Archean Crustal Evolution and Phanerozoic Tectonics.Geology, 28(1):11-14.https://doi.org/10.1130/0091-7613(2000)028<0011:feogcc>2.3.co;2 doi: 10.1130/0091-7613(2000)028<0011:feogcc>2.3.co;2 [30] Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [31] Wang, Z.J., Wang, J., Du, Q.D., et al., 2013a.The Evolution of the Central Yangtze Block during Early Neoarchean Time:Evidence from Geochronology and Geochemistry.Journal of Asian Earth Sciences, 77:31-44. https://doi.org/10.1016/j.jseaes.2013.08.013 [32] Wang, Z.J., Wang, J., Du, Q.D., et al., 2013b.Mature Archean Continental Crust in the Yangtze Craton:Evidence from Petrology, Geochronology and Geochemistry.Chinese Science Bulletin, 58(19):2360-2369. https://doi.org/10.1007/s11434-013-5668-7 [33] Watkins, J.M., Clemens, J.D., Treloar, P.J., 2007.Archaean TTGs as Sources of Younger Granitic Magmas:Melting of Sodic Metatonalites at 0.6-1.2 GPa.Contributions to Mineralogy and Petrology, 154(1):91-110. https://doi.org/10.1007/s00410-007-0181-0 [34] Watson, E.B., Harrison, T.M., 1983.Zircon Saturation Revisited:Temperature and Composition Effects in a Variety of Crustal Magma Types.Earth and Planetary Science Letters, 64(2):295-304. https://doi.org/10.1016/0012-821x(83)90211-x [35] Wei, J.Q., Jing, M.M., 2013.Chronology and Geochemistry of Amphibolites from the Kongling Complex.Chinese Journal of Geology (Scientia Geologica Sinica), 48(4):970-983 (in Chinese with English abstract). [36] Wei, Y.X., Peng, S.B., Jiang, X.F., et al., 2012.SHRIMP Zircon U-Pb Ages and Geochemical Characteristics of the Neoproterozoic Granitoids in the Huangling Anticline and Its Tectonic Setting.Journal of Earth Science, 23(5):659-676. https://doi.org/10.1007/s12583-012-0284-z [37] Weinberg, R.F., Hasalová, P., 2015.Water-Fluxed Melting of the Continental Crust:A Review.Lithos, 212-215:158-188. https://doi.org/10.1016/j.lithos.2014.08.021 [38] Wu, Y.B., Gao, S., Gong, H.J., et al., 2009.Zircon U-Pb Age, Trace Element and Hf Isotope Composition of Kongling Terrane in the Yangtze Craton:Refining the Timing of Palaeoproterozoic High-Grade Metamorphism.Journal of Metamorphic Geology, 27(6):461-477. https://doi.org/10.1111/j.1525-1314.2009.00826.x [39] Wu, Y.B., Gao, S., Zhang, H.F., et al., 2012.Geochemistry and Zircon U-Pb Geochronology of Paleoproterozoic Arc Related Granitoid in the Northwestern Yangtze Block and its Geological Implications.Precambrian Research, 200-203:26-37. https://doi.org/10.1016/j.precamres.2011.12.015 [40] Wu, Y.B., Zheng, Y.F., Gao, S., et al., 2008.Zircon U-Pb Age and Trace Element Evidence for Paleoproterozoic Granulite-Facies Metamorphism and Archean Crustal Rocks in the Dabie Orogen.Lithos, 101(3-4):308-322. https://doi.org/10.1016/j.lithos.2007.07.008 [41] Wu, Y.B., Zhou, G.Y., Gao, S., et al., 2014.Petrogenesis of Neoarchean TTG Rocks in the Yangtze Craton and its Implication for the Formation of Archean TTGs.Precambrian Research, 254:73-86. https://doi.org/10.13039/501100001809 [42] Xiong, Q., Zheng, J.P., Yu, C.M., et al., 2009.Zircon U-Pb Age and Hf Isotope of Quanyishang A-Type Granite in Yichang:Signification for the Yangtze Continental Cratonization in Paleoproterozoic.Science Bulletin, 54(3):436-446. https://doi.org/10.1007/s11434-008-0401-7 [43] Yang, H., Zhang, H.F., Luo, B.J., et al., 2016.Generation of Peraluminous Granitic Magma in a Post-Collisional Setting:A Case Study from the Eastern Qilian Orogen, NE Tibetan Plateau.Gondwana Research, 36:28-45. https://doi.org/10.1016/j.gr.2016.04.006 [44] Yin, C.Q., Lin, S.F., Davis, D.W., et al., 2013.2.1-1.85Ga Tectonic Events in the Yangtze Block, South China:Petrological and Geochronological Evidence from the Kongling Complex and Implications for the Reconstruction of Supercontinent Columbia.Lithos, 182-183:200-210. https://doi.org/10.1016/j.lithos.2013.10.012 [45] Yuan, H.L., Gao, S., Liu, X.M., et al., 2004.Accurate U-Pb Age and Trace Element Determinations of Zircon by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry.Geostandards and Geoanalytical Research, 28(3):353-370. https://doi.org/10.1111/j.1751-908x.2004.tb00755.x [46] Zeng, R.Y., Lai, J.Q., Zhang, L.J., et al., 2016.Petrogenesis of Mafic Microgranular Enclaves:Evidence from Petrography, Whole-Rock and Mineral Chemistry of Ziyunshan Pluton, Central Hunan.Earth Science, 41(9):1461-1481 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201609003 [47] Zhang, S.B., Zheng, Y.F., Wu, Y.B., et al., 2006a.Zircon U-Pb Age and Hf-O Isotope Evidence for Paleoproterozoic Metamorphic Event in South China.Precambrian Research, 151(3-4):265-288. https://doi.org/10.1016/j.precamres.2006.08.009 [48] Zhang, S.B., Zheng, Y.F., Wu, Y.B., et al., 2006b.Zircon U-Pb Age and Hf Isotope Evidence for 3.8 Ga Crustal Remnant and Episodic Reworking of Archean Crust in South China.Earth and Planetary Science Letters, 252(1-2):56-71. https://doi.org/10.1016/j.epsl.2006.09.027 [49] Zhao, J.H., Zhou, M.F., Zheng, J.P., 2013a.Neoproterozoic High-K Granites Produced by Melting of Newly Formed Mafic Crust in the Huangling Region, South China.Precambrian Research, 233:93-107. https://doi.org/10.1016/j.precamres.2013.04.011 [50] Zhao, J.H., Zhou, M.F., Zheng, J.P., et al., 2013b.Neoproterozoic Tonalite and Trondhjemite in the Huangling Complex, South China:Crustal Growth and Reworking in a Continental Arc Environment.American Journal of Science, 313(6):540-583. https://doi.org/10.2475/06.2013.02 [51] 曹正琦, 蔡逸涛, 曾佐勋, 等, 2017.扬子克拉通北缘新元古代A型花岗岩的发现及大地构造意义.地球科学, 42(6):957-973. http://earth-science.net/WebPage/Article.aspx?id=3590 [52] 邱啸飞, 杨红梅, 卢山松, 等, 2016.扬子克拉通崆岭杂岩孔兹岩系同位素年代学研究及其地质意义.大地构造与成矿学, 40(3):549-558. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201603012 [53] 邱啸飞, 杨红梅, 张利国, 等, 2015.扬子陆块庙湾蛇绿岩中橄榄岩的同位素年代学及其构造意义.地球科学, 40(7):1121-1128. http://earth-science.net/WebPage/Article.aspx?id=3119 [54] 邱啸飞, 赵小明, 杨红梅, 等, 2017.扬子陆核古元古代变质事件-来自孔兹岩系变质锆石U-Pb同位素年龄的证据.地质通报, 36(5):706-714. doi: 10.3969/j.issn.1671-2552.2017.05.003 [55] 魏君奇, 景明明, 2013.崆岭杂岩中角闪岩类的年代学和地球化学.地质科学, 48(4):970-983. doi: 10.3969/j.issn.0563-5020.2013.04.002 [56] 曾认宇, 赖健清, 张利军, 等, 2016.湘中紫云山岩体暗色微粒包体的成因:岩相学、全岩及矿物地球化学证据.地球科学, 41(9):1461-1481. http://earth-science.net/WebPage/Article.aspx?id=3352