Sensitivity Analysis of Maliulin Landslide Stability Based on Orthogonal Design
-
摘要: 以麻柳林滑坡为例,选取了内摩擦角、粘聚力、渗透系数、浸没率、库水位下降速率及降雨量等6个因素进行了正交试验,采用极差分析法进行了稳定性敏感分析.结果表明,滑坡稳定性及其变化率主要由内因决定,库水和降雨对其影响较小.滑坡稳定性对内摩擦角最敏感,其次依次为渗透系数、粘聚力和浸没率.滑坡初始稳定性主要由内摩擦角和粘聚力决定.滑坡稳定性随浸没率的降低而逐步增加,但增幅较小;渗透系数对滑坡稳定系数变化率的影响最大,并存在临界值K0,渗透系数大于K0时,滑坡稳定性随渗透系数的增加而增加,渗透系数小于K0时,滑坡稳定性随渗透系数的降低而降低.Abstract: Taken Maliulin landslide as a case, the friction angle, cohesive strength, hydraulic conductivity, immersion ratio, reservoir drawdown rate and rainfall are chosen as influential factors and orthogonal experiment was carried out. Sensitivity analysis was performed using range analysis.Results show that the stability of Maliulin landslide is mainly influenced by its self-factors, and the reservoir and rainfall have limited impact on landslide stability. Landslide stability is most sensitive to friction angle, followed by hydraulic conductivity, cohesive strength and immersion ratio. The initial landslide stability is mainly influenced by friction angle and cohesive strength. As the decreasing of immersion ratio, the landslide stability has limited increase. The changed ratio of factor of safety is mainly influenced by hydraulic conductivity in which a critical value K0 existed. When hydraulic conductivity is greater than K0, the landslide stability increases with the increasing of permeability coefficient. On the contrary, the landslide stability decreases with the decreasing of hydraulic conductivity when hydraulic conductivity is less than K0.
-
Key words:
- sensitivity analysis /
- orthogonal design /
- Maliulin landslide /
- Three Gorges Reservoir /
- stability
-
表 1 万州3 d降雨量降雨重现期(单位:mm)
Table 1. The extreme rainfall of three consecutive days in Wanzhou district
重现期 第一阶段
1/1~4/20第二阶段
4/21~6/20第三阶段
6/21~9/30第四阶段
10/1~12/315年 50.32 108.61 167.15 64.37 10年 61.58 133.21 208.48 76.48 20年 72.27 157.23 249.16 87.82 50年 85.85 188.44 302.32 102.08 100年 95.84 211.76 342.22 112.50 表 2 正交试验因素水平
Table 2. Factor levels of orthogonal experiment
水平 粘聚力
c(kPa)内摩擦角
φ(°)渗透系数
K(m/s)浸没率α
(%)重现期T
(a)下降速率
V(m/d)1 15 10 1E-4 77.85 5 0.3 2 19 12 5E-5 72.85 10 0.6 3 23 14 1E-5 67.85 20 0.9 4 27 16 5E-6 62.85 50 1.2 5 31 18 1E-6 57.85 100 1.5 表 3 正交设计方案及计算结果
Table 3. Calculation scheme and results of the orthogonal experiment
试验序号 工况 c φ K α V T 稳定系数Fs 变化率η(%) 1 A1 1 1 1 1 1 1 0.81 11.42 2 B1 1 2 2 2 2 2 0.91 7.16 3 C1 1 3 3 3 3 3 0.95 -1.93 4 D1 1 4 4 4 4 4 1.06 -5.61 5 E1 1 5 5 5 5 5 1.17 -7.71 6 C2 2 1 2 3 4 5 0.81 6.19 7 D2 2 2 3 4 5 1 0.88 -3.24 8 E2 2 3 4 5 1 2 0.99 -5.08 9 A2 2 4 5 1 2 3 0.98 -11.60 10 B2 2 5 1 2 3 4 1.40 10.79 11 E3 3 1 3 5 2 4 0.80 -3.53 12 A3 3 2 4 1 3 5 0.84 -7.70 13 B3 3 3 5 2 4 1 0.94 -10.50 14 C3 3 4 1 3 5 2 1.30 10.67 15 D3 3 5 2 4 1 3 1.45 9.13 16 B4 4 1 4 2 5 3 0.78 -8.14 17 C4 4 2 5 3 1 4 0.87 -9.86 18 D4 4 3 1 4 2 5 1.21 9.79 19 E4 4 4 2 5 3 1 1.33 6.66 20 A4 4 5 3 1 4 2 1.27 -3.93 21 D5 5 1 5 4 3 2 0.81 -9.27 22 E5 5 2 1 5 4 3 1.11 8.11 23 A5 5 3 2 1 5 4 1.15 3.41 24 B5 5 4 3 2 1 5 1.20 -3.53 25 C5 5 5 4 3 2 1 1.29 -5.69 表 4 稳定系数极差分析结果
Table 4. Range analysis of factor of safety
均值 c φ K α V T Fs1 0.98 0.80 1.16 1.01 1.06 1.05 Fs2 1.01 0.92 1.13 1.04 1.04 1.06 Fs3 1.06 1.05 1.02 1.04 1.07 1.05 Fs4 1.09 1.17 0.99 1.08 1.04 1.05 Fs5 1.11 1.32 0.95 1.08 1.05 1.05 Rj 0.13 0.52 0.21 0.07 0.03 0.01 改变率 13.62 64.33 21.89 6.83 2.82 0.73 敏感性 φ> K > c > α > V > T 表 5 稳定系数变化率极差分析结果
Table 5. Range analysis of changed ratio of factor of safety
均值 c φ K α V T η1 0.67 -0.67 10.16 -1.68 0.42 -0.27 η2 -0.59 -1.10 6.51 -0.84 -0.77 -0.09 η3 -0.38 -0.86 -3.23 -0.12 -0.29 -0.89 η4 -1.10 -0.68 -6.45 0.16 -1.15 -0.96 η5 -1.39 0.52 -9.79 -0.31 -1.00 -0.59 Rj 2.06 1.62 19.94 1.84 1.57 0.87 敏感性 K > c > α > φ> V > T 表 6 各因素对滑坡稳定性影响曲线的线性拟合
Table 6. Linear fitting of various factors on landslide stability
因素 线性拟合公式 R2值 φ y=0.128 4x+0.666 5 0.999 2 K y=-0.055 4x+1.21 8 0.946 1 c y=0.034 6x+0.948 1 0.978 0 α y=0.017 1x+1.000 4 0.884 2 V y=-0.001 8x+1.057 1 0.044 0 T y=0.000 1x+1.051 4 0.003 7 -
[1] Chen P..2012.Study on the Stability and Its Influence Factors for Highway Bedding Rock Slopes (Dissertation).Zhejiang University, Hangzhou (in Chinese with English abstract). [2] Jia S.X..2002.Some Questions in the Assessment and Investigation of the Landslides in the Three Gorges Reservoir.Hubei Geology & Mineral Resources, 16(4):44-46 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hbdk200204009 [3] Li Y.Y..2007.The Deformation Mechanics and Stability Study of Bedding Bank Rock Slopes in the Head Area of the Three Gorges Reservoir (Dissertation).China University of Geosciences, Wuhan (in Chinese with English abstract). [4] Li Y.Y..2007.The Deformation Mechanics and Stability Study of Bedding Bank Rock Slopes in the Head Area of the Three Gorges Reservoir (Dissertation).China University of Geosciences, Wuhan (in Chinese with English abstract). [5] Li Y.Y., Yin K.L., Chai B., et al.2008.Study on Statistical Rule of Shear Strength Parameters of Soil in Landslide Zone in Three Gorges Reservoir Area.Rock and Soil Mechanics, 29(5):1419-1424, 1429 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx200805053 [6] Liu C.C., Yin K.L., Li Y.Y..2010.Stability Calculation and Sensitivity Analysis of Wenjia Landslide, Badong County.Hydrogeology & Engineering Geology, 37(1):113-117, 123 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SWDG201001026.htm [7] Ni H., Liu Y.R., Long Z.G..2002.Applications of Orthogonal Design to Sensitivity Analysis of Landslide.Chinese Journal of Rock Mechanics and Engineering, 21(7):989-992 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSLX200207011.htm [8] Shang Y.Q., Sun H.Y., Hou L.G., et al.2005.Study on the Stability of Pebbly Clay Slopes with Pipe Drainage System.Chinese Journal of Rock Mechanics and Engineering, 24(8):1371-1375 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb200508015 [9] Singh V.P..1998.Entropy-Based Parameter Estimation in Hydrology.Springer, Netherlands, 231-251. http://www.cabdirect.org/abstracts/19991902508.html [10] Song K., Yan E.C., Zhu D.P., et al.2011.Base on Permeability of Landslide and Reservoir Water Change to Research Variational Regularity of Landslide Stability.Rock and Soil Mechanics, 32(9):2798-2802 (in Chinese with English abstract). [11] Su Q., Liang M.J., Yuan D.Y., et al.2016.Geomorphic Features of the Bailongjiang River Drainage Basin and Its Relationship with Geological Disaster.Earth Science, 41(10):1758-1770 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201610011 [12] Uchida T., Kosugi K., Mizuyama T..2001.Effects of Pipeflow on Hydrological Process and Its Relation to Landslide:A Review of Pipeflow Studies in Forested Headwater Catchments.Hydrological Processes, 15(11):2151-2174. https://doi.org/10.1002/hyp.281 [13] Xia M., Ren G.M., Zhu S.S., et al.2015.Relationship between Landslide Stability and Reservoir Water Level Variation.Bulletin of Engineering Geology and the Environment, 74(3):909-917. https://doi.org/10.1007/s10064-014-0654-0 [14] Yu M.L., Mei H.B., Li J.H., et al.2016.Landslide Displacement Prediction Based on Varying Coefficient Regression Model in Three Gorges Reservoir Area.Earth Science, 41(9):1593-1602 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201609014 [15] Zhang B.T..1991.Finite Comparison Method for the Test on Goodness of Fit.Chinese Journal of Geotechnical Engineering, 13(6):84-91 (in Chinese with English abstract). [16] Zhang W.T., Yu H.M..2009.Applications of Orthogonal Experiment Design to Sensitivity Analysis of Bank Landslide.Safety and Environmental Engineering, 16(5):13-16 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzktaq200905004 [17] Zhang Z., Li S.H., Ma L..2005.Probability Analysis of Relationship between Landslide and Rainfall in Chongqing Area.Chinese Journal of Rock Mechanics and Engineering, 24(17):3185-3191(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSLX200517028.htm [18] 陈鹏.2012.公路顺层岩质边坡稳定及其影响因素分析(博士学位论文).杭州: 浙江大学. [19] 贾淑霞.2002.湖北省三峡库区滑坡勘查评价几个问题的商榷.湖北地矿, 16(4):44-46. doi: 10.3969/j.issn.1671-1211.2002.04.009 [20] 李长江, 麻土华, 朱兴盛.2008.降雨型滑坡预报的理论、方法及应用.北京:地质出版社. [21] 李远耀.2007.三峡库首区顺层基岩岸坡变形机制与稳定性研究(硕士学位论文).武汉: 中国地质大学. [22] 李远耀, 殷坤龙, 柴波, 等.2008.三峡库区滑带土抗剪强度参数的统计规律研究.岩土力学, 29(5):1419-1424.1429. doi: 10.3969/j.issn.1000-7598.2008.05.053 [23] 刘长春, 殷坤龙, 李远耀.2010.巴东县文家滑坡稳定性计算及其敏感性分析.水文地质工程地质, 37(1):113-117, 123. http://d.old.wanfangdata.com.cn/Periodical/swdzgcdz201001023 [24] 倪恒, 刘佑荣, 龙治国.2002.正交设计在滑坡敏感性分析中的应用.岩石力学与工程学报, 21(7):989-992. doi: 10.3321/j.issn:1000-6915.2002.07.010 [25] 尚岳全, 孙红月, 侯利国, 等.2005.管网渗流系统对含碎石粘性土边坡的稳定作用.岩石力学与工程学报, 24(8):1371-1375. doi: 10.3321/j.issn:1000-6915.2005.08.015 [26] 宋琨, 晏鄂川, 朱大鹏, 等.2011.基于滑体渗透性与库水变动的滑坡稳定性变化规律研究.岩土力学, 32(9):2798-2802. doi: 10.3969/j.issn.1000-7598.2011.09.039 [27] 苏琦, 梁明剑, 袁道阳, 等.2016.白龙江流域构造地貌特征及其对滑坡泥石流灾害的控制作用.地球科学, 41(10):1758-1770. http://earth-science.net/WebPage/Article.aspx?id=3377 [28] 喻孟良, 梅红波, 李冀骅, 等.2016.基于变系数回归模型的三峡库区滑坡位移预测.地球科学, 41(9):1593-1602. http://earth-science.net/WebPage/Article.aspx?id=3364 [29] 张博庭.1991.用有限比较法进行拟合优度检验.岩土工程学报, 13(6):84-91. doi: 10.3321/j.issn:1000-4548.1991.06.011 [30] 张万涛, 余宏明.2009.正交试验设计方法在库岸滑坡敏感性分析中的应用.安全与环境工程, 16(5):13-16. doi: 10.3969/j.issn.1671-1556.2009.05.004 [31] 张珍, 李世海, 马力.2005.重庆地区滑坡与降雨关系的概率分析.岩石力学与工程学报, 24(17):3185-3191. doi: 10.3321/j.issn:1000-6915.2005.17.029