Rb-Sr Geochronology, Stable Isotopic Analyses and Geological Significance of the Tianbaoshan Pb-Zn Deposit in Sichuan Province, China
-
摘要: 四川天宝山铅锌矿床是赋存于震旦系灯影组白云岩中的大型铅锌矿床,一直以来缺乏精确的成矿年龄数据,致使其成矿构造环境存在争议.获取了闪锌矿Rb-Sr年龄,联合H-O、C-O同位素数据,以确定其成矿年代、成矿物质来源及成矿构造环境.闪锌矿Rb-Sr年龄为348.5±7.2 Ma(MSWD=1.10),表明矿床形成于早石炭世.热液矿物δDH2O、δ18O值分别为-19.3‰~-58.1‰、-1.4‰~0.6‰,沿海水与地层有机质反应线分布,并有向雨水线漂移的趋势,说明成矿流体中水是海水与地层有机质反应并加入雨水的混合体.热液方解石δ13C、δ18O值明显分为两群,分别为-1.7‰~-1.6‰、12.9‰~15.2‰和-6.5‰~-4.9‰、19.3‰~20.2‰,暗示成矿流体中C、O可能来源于赋矿围岩溶解作用和有机质脱羧基作用.闪锌矿(87Sr/86Sr)i值为0.710 42 ±0.000 13,高于赋矿围岩Sr同位素值而明显低于基底Sr同位素值,指示成矿物质主要来源于赋矿围岩与基底.结果表明川滇黔地区存在两期铅锌成矿作用,分别形成于晚泥盆世-早石炭世与古特提斯洋张开有关的伸展构造环境和晚三叠世-早侏罗世与古特提斯洋闭合有关的收缩构造环境.Abstract: Tianbaoshan deposit is a large Pb-Zn deposit hosted in the carbonate rocks of the Upper Sinian Dengyin Formation in Sichuan-Yunnan-Guizhou district,China. Due to the lack of accurate age data of the Pb-Zn mineralization,the related regional metallotectonic setting is still controversial. In this study,we used direct Rb-Sr chronometry of sphalerite,and combined H-O and C-O isotopic analyses to constrain the mieralizating age,the possible resources of ore-forming fluids and associated tectonic setting. An effective Rb-Sr sphalerite age of 348.5±7.2 Ma (MSWD=1.10) definitely indicates that the formation of the Tianbaoshan deposit is the Early Carboniferous. The δDH2O and δ18O values of the hydrothermal minerals (-19.3‰—-58.1‰ and 1.4‰-0.6‰,respectively) are plotted in the region of the sea water interacted with organic matter in the crustal water and the drifting to the rainwater line,indicating that the mineralizing hydrothermal fluids are mixed resources derived from interaction between seawater and organic matter of sedimentary rocks,added with meteoric water. The δ13C and δ18O values of hydrothermal calcite are divided into two different groups (-1.7‰—-1.6‰ and 12.9‰-15.2‰,and -6.5‰—-4.9‰ and 19.3‰-20.2‰,respectively),suggesting that C and O compositions of hydrothermal fluids may be derived from the dissolution of host carbonates and decarboxylation of sedimentary organic matters hosted in carbonates. The (87Sr/86Sr)i ratios of sphalerite (0.710 42±0.000 13) are higher than the those of ore-hosting carbonate rocks,whereas distinctly lower than the those of basement rocks,implying that the ore-forming material is mainly derived from the mixture of the host rocks and basement rocks. So this study highlights that there are two independent lead-zinc mineralization events in Sichuan-Yunnan-Guizhou district,in which one occurs in extensional geological environments during the Late Devonian to Early Carboniferous related to the opening of the Paleo-Tethys Ocean and the other is associated with compressional geological environments from the Late Triassic to Early Jurassic related to the closure of the Paleo-Tethys Ocean,respectively.
-
图 1 川滇黔地区区域地质简图(a)和主要铅锌矿床分布(b)
据林方成(2005)修改
Fig. 1. Simplified geologic map of Sichuan-Yunnan-Guizhou district (a) and the distribution of typical Zn-P deposits (b)
图 4 天宝山矿床矿物组构特征
a. I阶段方铅矿闪锌矿组合胶结黄铜矿(Ⅰ)角砾;b. Ⅱ阶段闪锌矿-方铅矿-方解石组合;c. Ⅲ阶段浅色闪锌矿穿插Ⅱ阶段深棕色细粒闪锌矿-深棕色粗粒闪锌矿-方解石;d. Ⅲ阶段方铅矿沿Ⅱ阶段闪锌矿裂隙呈脉状分布;e. Ⅲ阶段方解石胶结Ⅱ阶段闪锌矿角砾、深色白云岩角砾;f. Ⅲ阶段浅色闪锌矿-方解石胶结深色白云岩角砾;g.黄铜矿(Ⅰ)交代黄铁矿(Ⅰ),而被稍晚的方铅矿(Ⅰ)交代;h.方铅矿(Ⅱ)、黄铜矿(Ⅱ)固溶体出溶于闪锌矿(Ⅱ)中;i.方铅矿(Ⅱ)交代闪锌矿(Ⅱ);j.晚阶段方铅矿(Ⅲ)交代早阶段闪锌矿(Ⅱ);k.晚阶段闪锌矿(Ⅱ)-方解石(Ⅱ)交代早阶段黄铁矿(Ⅰ),晚阶段黄铁矿(Ⅲ)沿闪锌矿(Ⅱ)裂隙分布;l.重结晶白云岩(Dol Ⅱ)-闪锌矿(Ⅱ)-方铅矿(Ⅱ)脉沿灯影组白云岩(Ⅰ)裂隙分布.BD.深色白云岩;Cc.方解石;Ccp.黄铜矿;Dol.白云岩;Gn.方铅矿;Sp.闪锌矿
Fig. 4. Field and microscope photograph of different textures from Tianbaoshan Zn-Pb deposit
图 6 天宝山铅锌矿床热液矿物流体包裹体δDV-SMDW和δ18OV-SMDW关系
Fig. 6. δDV-SMDW vs. δ18OV-SMDW of the ore fluids at the Tianbaoshan deposit
图 7 天宝山铅锌矿床热液方解石、深色白云岩及浅色白云岩的δ13C和δ18O关系
Fig. 7. The relation between δ13C and δ18O of the hydrothermal calcite, black dolomite, and light dolomite of the Tianbaoshan deposit
表 1 天宝山铅锌矿床闪锌矿铷锶同位素测试结果
Table 1. Rb-Sr isotope data of sphalerite from the Tianbaoshan deposit
样品编号 样品名 Rb (10-6) Sr (10-6) 87Rb/ 86Sr 87Sr/ 86Sr (1σ) A-1 闪锌矿 0.061 39 1.692 0 0.104 60 0.710 99±0.000 02 A-2 闪锌矿 0.073 12 1.917 0 0.110 00 0.711 06±0.000 03 A-4 闪锌矿 0.466 20 0.985 8 1.365 00 0.717 13±0.000 04 A-5 闪锌矿 0.175 50 0.545 4 0.927 90 0.714 99±0.000 05 A-6 闪锌矿 0.179 20 1.068 0 0.484 00 0.712 87±0.000 03 A-7 闪锌矿 0.061 51 1.349 0 0.131 50 0.711 04±0.000 03 A-10 闪锌矿 0.574 10 1.020 0 1.625 00 0.718 56±0.000 03 表 2 天宝山矿床热液矿物氢氧同位素测试结果
Table 2. The δDH2O and δ18OH2O values of the Tianbaoshan deposit
样品编号 测试矿物 δDH2O(‰) δ18OH2O(‰) 资料来源 B-4 热液方解石 -58.1 -1.4 本文 B-5 热液方解石 -19.3 +0.8 B-6 热液方解石 -27.7 +0.6 -- 闪锌矿 -47.6 -1.7 Zhou et al.(2013a) TBS06 石英 -47.9 -0.5 TBS11 石英 -48.4 +0.1 TBS17-7 石英 -51.2 +3.7 -- 闪锌矿 -47.6 -1.9 王小春(1992) 表 3 天宝山铅锌矿床碳氧同位素测试结果
Table 3. The δ13CPDB and δ18OSMOW values of the Tianbaoshan deposit
样品编号 矿物 δ13CPDB(‰) δ18OSMOW(‰) 文献来源 C-6 热液方解石 -1.6 +12.9 本文 C-7 热液方解石 -1.6 +15.2 C-8 热液方解石 -1.7 +15.0 C-9 黑色白云岩 -1.8 +16.6 C-10 浅色白云岩 +1.9 +23.9 TBS03 热液方解石 -6.5 +20.2 Zhou et al.(2013a) TBS07 热液方解石 -5.8 +19.6 TBS09 热液方解石 -4.9 +19.3 -- 闪锌矿流体包裹体中CO2 -6.1 -- 围岩中方解石 +0.02 Wang et al.(2000) 表 4 川滇黔地区MVT铅锌矿床成矿年龄统计
Table 4. Summary of ages for MVT deposits in Sichuan-Yunnan-Guizhou district
矿床名称 控矿构造 测年矿物 方法 年龄(Ma) 参考文献 天宝山 NWW向张性断裂 辉绿岩锆石 SHRIMP U-Pb 早于156 王瑞等(2012) 闪锌矿 Rb-Sr 348.2±7.2 本文 大梁子 NWW向张性断裂 闪锌矿 Rb-Sr 345.2±3.6 Liu et al.(2018) 闪锌矿 Rb-Sr 366.3±7.7 张长青等(2008) 方解石 Sm-Nd 204.4±1.2 吴越(2013) 茂祖 NE向褶皱构造 闪锌矿 Rb-Sr 194 鲍淼等(2011) 方解石 Sm-Nd 196±13 Zhou et al.(2013b) 跑马 NWW向褶皱构造 闪锌矿 Rb-Sr 200.1±4 蔺志永等(2010) 会泽 NE向断裂构造 粘土矿物 K-Ar 176.5±2.5 张长青等(2005) 方解石 Sm-Nd 225~227 黄智龙等(2004) 闪锌矿 Rb-Sr 224.8~226 同源矿物 Rb-Sr 223.5~226 李文博等(2004) 方解石 Sm-Nd 225~228 闪锌矿 Re-Os 252,226,122 韩润生等(2014) 闪锌矿 Re-Os 50~51 毛坪 NE向断裂构造 闪锌矿 Rb-Sr 321.7±5.8 沈战武等(2016) 乐红 NW向断裂构造 闪锌矿 Rb-Sr 200.9±8.3 张云新等(2014) 天桥 NW向褶皱构造 闪锌矿 Rb-Sr 191.9±6.9 Zhou et al.(2013c) 金沙厂 NE向褶皱构造 萤石 Sm-Nd 201.1±6.2 Zhang et al.(2015) 闪锌矿 Rb-Sr 206.8±3.7 Zhou et al.(2015) -
[1] Bao, M., Zhou, J.X., Huang, Z.L., et al., 2011.Dating Methods for Pb-Zn Deposits and Chronology Research Progress of Sichuan-Yunnan-Guizhou Pb-Zn Metallogenic Province: A Review. Acta Mineralogica Sinica, 31(3):391-396 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/kwxb201103011 [2] Bethke, C. M., 1985. A Numerical Model of Compaction-Driven Groundwater Flow and Heat Transfer and Its Application to the Paleohydrology of Intracratonic Sedimentary Basins. Journal of Geophysical Research, 90(B8): 6817. https://doi.org/10.1029/jb090ib08p06817 [3] Cheng, H.Z., 2013. Discussion on the Genesis of Tianbaoshan Pb-Zn Deposit. Sichuan Nonferrous Metals, (3):41-44 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=scysjs201303009 [4] Christensen, J. N., Halliday, A. N., Leigh, K. E., et al., 1995. Direct Dating of Sulfides by Rb-Sr: A Critical Test Using the Polaris Mississippi Valley-Type Zn-Pb Deposit. Geochimica et Cosmochimica Acta, 59(24): 5191-5197. https://doi.org/10.1016/0016-7037(95)00345-2 [5] Du, Y.S., Huang, H., Yang, J.H., et al., 2013.The Basin Translation from Late Paleozoic to Triassic of the Youjiang Basin and Its Tectonic Signification. Geological Review, 59(1):1-11 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201301001 [6] Friedman, I., O'Neil, J.R., 1977. Compilation of Stable Isotope Fractionation Factors of Geochemical Interest, Data of Geochemistry. Geological Survey Professional Paper, Washington. [7] Gao, S., Yang, J., Zhou, L., et al., 2011. Age and Growth of the Archean Kongling Terrain, South China, with Emphasis on 3.3 Ga Granitoid Gneisses. American Journal of Science, 311(2): 153-182. https://doi.org/10.2475/02.2011.03 [8] Garven, G., 1995. Continental-Scale Groundwater Flow and Geologic Processes. Annual Review of Earth and Planetary Sciences, 23(1): 89-117. https://doi.org/10.1146/annurev.earth.23.1.89 [9] Han, K., Luo, J.H., Wang, Z.Q., et al., 2012.Feature of Ore-Bearing Breccias of Lead-Zinc Deposits in Sichuan-Yunnan-Guizhou Border Area and Its Tectonic Significance. Mineral Deposits, 31(3):629-641 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ201203020.htm [10] Han, R.S., Wang, F., Hu, Y.Z., et al., 2014.Metallogenic Tectonic Dynamics and Chronology Constrains on the Huize-Type(HZT) Germanium-Rich Silver-Zinc-Lead Deposits. Geotectonica et Metallogenia, 38(4):758-771 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx201404003 [11] He, C.Z., Xiao, C.Y., Wen, H.J., et al., 2016.Zb-S Isotopic Compositions of the Tianbaoshan Carbonatehosted Pb-Zn Deposit in Sichuan, China: Implications for Source of Ore Components. Acta Petrologica Sinica, 32(11):3394-3406 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201611012.htm [12] Huang, Z.L., Chen, J., Han, R.S., et al., 2004. Geochemistry and Metallogenesis of Yunnan Huize Super-Large Pb-Zn Deposits and a Study on the Relationship between the Deposits and Emeishan Basalts. Geological Publishing House, Beijing (in Chinese). [13] Jin, Z.G., Huang, Z.L., 2008. Study on Controlling-Ore Factors of Pb-Zn Deposits and Prospecting Model in the Area of Southwestern Guizhou. Acta Mineralogica Sinica, 28(4): 467-472 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWXB200804020.htm [14] Jian, P., Liu, D. Y., Kröner, A., et al., 2009a. Devonian to Permian Plate Tectonic Cycle of the Paleo-Tethys Orogen in Southwest China (Ⅰ): Geochemistry of Ophiolites, Arc/Back-Arc Assemblages and Within-Plate Igneous Rocks. Lithos, 113(3-4): 748-766. https://doi.org/10.1016/j.lithos.2009.04.004 [15] Jian, P., Liu, D. Y., Kröner, A., et al., 2009b. Devonian to Permian Plate Tectonic Cycle of the Paleo-Tethys Orogen in Southwest China (Ⅱ): Insights from Zircon Ages of Ophiolites, Arc/Back-Arc Assemblages and Within-Plate Igneous Rocks and Generation of the Emeishan CFB Province. Lithos, 113(3-4): 767-784. https://doi.org/10.1016/j.lithos.2009.04.006 [16] Jian, P., Liu, D.Y., Zhang, Q., et al., 2003. Shrimp Dating of Ophiolite and Leucocratic Rocks within Ophiolite. Earth Science Frontiers, 10(4):439-456 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy200304012 [17] Kesler, S. E., Vennemann, T. W., Frederickson, C., et al., 1997. Hydrogen and Oxygen Isotope Evidence for Origin of MVT-Forming Brines, Southern Appalachians. Geochimica et Cosmochimica Acta, 61(7): 1513-1523. https://doi.org/10.1016/s0016-7037(97)00014-8 [18] Leach, D. L., Bradley, D., Lewchuk, M. T., et al., 2001. Mississippi Valley-Type Lead-Zinc Deposits through Geological Time: Implications from Recent Age-Dating Research. Mineralium Deposita, 36(8): 711-740. https://doi.org/10.1007/s001260100208 [19] Li, G.R., Liu, S.G., Song, L.M., et al., 2009.The Hydrothermal Fluids Process of Dongwunian Period and Related Alteration to Carbonate Reservoir of Silurian in Xichang Basin. Journal of Mineralogy and Petrology, 29(4):60-65 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwys200904009 [20] Li, W.B., Huang, Z.L., Chen, J., et al., 2004. Rb-Sr Dating of Mineral Assemblage from the Huize Giant Zn-Pb Deposit, Yunnan Province. Acta Mineralogica Sinica, 24(2):112-116 (in Chinese with English abstract). [21] Li, X.T., Gu, X., 1988. Evolution of Tectonic Stress Field in Panxi Rift and Adjacent Area with Reference to SuperImposition Faulting. Chinese Journal of Geology, 23(1):25-37 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKX198801002.htm [22] Li, Z.Q., Wang, J.Z., Ni, S.J., et al., 2002. Na-Cl-Br Systematics of Mineralizing Fluid in Mississippi Valley-type Deposits from Southwest China. Journal of Mineralogy and Petrology, 22(4):38-41 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwys200204008 [23] Lin, F.C., 2005. Hydrothermal Exhalative Metallogeny of Stratiform Pb-Zn Deposits on Western Margin of the Yangtze Craton (Dissertation).Chengdu University of Technology, Chengdu (in Chinese). [24] Lin, Z.Y., Wang, D.H., Zhang, C.Q., et al., 2010.Rb-Sr Isotopic Age of Sphalerite from the Paoma Lead-Zinc Deposit in Sichuan Province and Its Implications. Geology in China, 37(2):488-494 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201002023 [25] Ling, H. F., Feng, H. Z., Pan, J. Y., et al., 2007. Carbon Isotope Variation through the Neoproterozoic Doushantuo and Dengying Formations, South China: Implications for Chemostratigraphy and Paleoenvironmental Change. Palaeogeography, Palaeoclimatology, Palaeoecology, 254(1-2): 158-174. https://doi.org/10.1016/j.palaeo.2007.03.023 [26] Liu, H.C., Lin, W.D., 1999. Study on the Law of Pb-Zn-Ag Ore Deposit in Northeast Yunnan, Chian. Yunnan University Press, Kunming (in Chinese). [27] Liu, H.Y., 2005. Geochronological Study of Alkaline Rocks in Panxi, SW China and Its Geological Implications (Dissertation).Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou (in Chinese with English abstract). [28] Liu, W. H., Zhang, J., Wang, J., 2017. Sulfur Isotope Analysis of Carbonate-Hosted Zn-Pb Deposits in Northwestern Guizhou Province, Southwest China: Implications for the Source of Reduced Sulfur. Journal of Geochemical Exploration, 181: 31-44. https://doi.org/10.1016/j.gexplo.2017.06.023 [29] Liu, W. H., Zhang, X. J., Zhang, J., et al., 2018. Sphalerite Rb-Sr Dating and in Situ Sulfur Isotope Analysis of the Daliangzi Lead-Zinc Deposit in Sichuan Province, SW China. Journal of Earth Science, 29(3): 573-586. https://doi.org/10.1007/s12583-018-0785-5 [30] Ludwig, K.R., 2001. Users Manual for Isopot/Ex Version 2.49: A Geochronological Toolkit for Microsoft Excel.Berkeley Geochronology Center Special Publication, Berkeley. [31] McCrea, J. M., 1950. On the Isotopic Chemistry of Carbonates and a Paleotemperature Scale. The Journal of Chemical Physics, 18(6): 849-857. https://doi.org/10.1063/1.1747785 [32] Medford, G. A., Maxwell, R. J., Armstrong, R. L., 1983. 87 Sr/ 86 Sr Ratio Measurements on Sulfides, Carbonates, and Fluid Inclusions from Pine Point, Northwest Territories, Canada: An 87Sr/86Sr Ratio Increase Accompanying the Mineralizing Process. Economic Geology, 78(7): 1375-1378. https://doi.org/10.2113/gsecongeo.78.7.1375 [33] Melezhik, V. A., Gorokhov, M., Fallick, A. E., et al., 2002. Isotopic Stratigraphy Suggests Neoproterozoic Ages and Laurentian Ancestry for High-Grade Marbles from the North-Central Norwegian Caledonides. Geological Magazine, 139(4): 375-393. https://doi.org/10.1017/s0016756802006726 [34] Mo, X.X., Pan, G.T., 2006. From the Tethys to the Formation of the Qinghai-Tibet Plateau: Constrained by Tectono-Magmatic Events. Earth Science Frontiers, 13(6):43-51 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200606007.htm [35] Mou, C.L., Lin, S.L., Yu, Q., et al., 2000.Sedimentation and Evolution of the Mesoproterozoic Kunyang Group in the Huili Huidong Region, Sichuan and Its Adjacent Areas. Sedimentary Geology and Tethyan Geology, 20(1):44-51 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yxgdl200001003 [36] Nakai, S., Halliday, A. N., Kesler, S. E., et al., 1990. Rb-Sr Dating of Sphalerites from Tennessee and the Genesis of Mississippi Valley-Type Ore Deposits. Nature, 346(6282): 354-357. https://doi.org/10.1038/346354a0 [37] Nakai, S., Halliday, A. N., Kesler, S. E., et al., 1993. Rb-Sr Dating of Sphalerites from Mississippi Valley-Type (MVT) Ore Deposits. Geochimica et Cosmochimica Acta, 57(2): 417-427. https://doi.org/10.1016/0016-7037(93)90440-8 [38] O'Neil, J. R., Clayton, R. N., Mayeda, T. K., 1969. Oxygen Isotope Fractionation in Divalent Metal Carbonates. The Journal of Chemical Physics, 51(12): 5547-5558. https://doi.org/10.1063/1.1671982 [39] Qin, J.X., Xia, Z., Zhang, C.J., et al., 2001. Sequence Filling Succession and Sedimentary Dynamic Evolution of the Xichang Compound Basin. Journal of Palaeogeography, 3(4):45-55 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdlxb200104005 [40] Qiu, Y. M., Gao, S., McNaughton, N. J., et al., 2000. First Evidence of > 3.2 Ga Continental Crust in the Yangtze Craton of South China and Its Implications for Archean Crustal Evolution and Phanerozoic Tectonics. Geology, 28(1): 11-14. https://doi.org/10.1130/0091-7613(2000)028 < 0011:feogcc > 2.3.co; 2 doi: 10.1130/0091-7613(2000)028<0011:feogcc>2.3.co;2 [41] Ostendorf, J., Henjes-Kunst, F., Mondillo, N., et al., 2015. Formation of Mississippi Valley-Type Deposits Linked to Hydrocarbon Generation in Extensional Tectonic Settings: Evidence from the Jabali Zn-Pb-(Ag) Deposit (Yemen). Geology, 43(12):1055-1058. https://doi.org/10.1130/g37112.1 [42] Ostendorf, J., Henjes-Kunst, F., Schneider, J., et al., 2017. Genesis of the Carbonate-Hosted Tres Marias Zn-Pb-(Ge) Deposit, Mexico: Constraints from Rb-Sr Sphalerite Geochronology and Pb Isotopes. Economic Geology, 112(5): 1075-1088. https://doi.org/10.5382/econgeo.2017.4502 [43] Ruiz, J., Jones, L. M., Kelly, W. C., 1984. Rubidium-Strontium Dating of Ore Deposits Hosted by Rb-Rich Rocks, Using Calcite and Other Common Sr-Bearing Minerals. Geology, 12(5): 259-262. https://doi.org/10.1130/0091-7613(1984)12 < 259:rdoodh > 2.0.co; 2 doi: 10.1130/0091-7613(1984)12<259:rdoodh>2.0.co;2 [44] Schneider, J., Haack, U., Stedingk, K., 2003. Rb-Sr Dating of Epithermal Vein Mineralization Stages in the Eastern Harz Mountains (Germany) by Paleomixing Lines. Geochimica et Cosmochimica Acta, 67(10): 1803-1819. https://doi.org/10.1016/s0016-7037(02)01223-1 [45] Shen, Z.W., Jin, C.H., Dai, Y.P., et al., 2016. Mineralization Age of the Maoping Pb-Zn Deposit in the Northeastern Yunnan Province: Evidence from Rb-Sr Isotopic Dating of Sphalerites. Geological Journal of China Universities, 22(2):213-218 (in Chinese with English abstract). [46] Shi, Z.J., Wang, Y., Tian, Y.M., et al., 2013. Cementation and Diagenetic Fluid of Algal Dolomites in the Sinian Dengying Formation in Southeastern Sichuan Basin. Science in China (Series D), 43(2): 317-328 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-JDXG201302004.htm [47] Song, X.Y., Zhang, C.J., Hu, R.Z., et al., 2005. Genetic Links of Magmatic Deposits in the Emeishan Large Igneous Province with Dynamics of Mantle Plume. Journal of Mineralogy and Petrology, 25(4):35-44 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwys200504007 [48] Tan, J.J., Liu, C.P., Yang, H.M., et al., 2018.Geochronology and Ore-Forming Material Source Constraints for Rouxianshan Pb-Zn Deposit in Huayuan Ore Concentration Area, Western Hunan. Earth Science, 43(7):2438-2448 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201807016 [49] Veizer, J., Hoefs, J., 1976. The Nature of 18O/16O and 13C/12C Secular Trends in Sedimentary Carbonate Rocks. Geochimica et Cosmochimica Acta, 40(11): 1387-1395. https://doi.org/10.1016/0016-7037(76)90129-0 [50] Wang, C. M., Zhang, D., Wu, G. G., et al., 2014. Geological and Isotopic Evidence for Magmatic-Hydrothermal Origin of the Ag-Pb-Zn Deposits in the Lengshuikeng District, East-Central China. Mineralium Deposita, 49(6): 733-749. https://doi.org/10.1007/s00126-014-0521-8 [51] Wang, J., Zhang, J., 2015. Ore-Forming Fluid and Metallization Mechanism of Daliangzi Lead-Zinc Deposit in Sichuan Province, Southwestern China. Acta Mieralogica Sinica, (S1):678 (in Chinese). [52] Wang, J., Zhang, J., Zhong, W.B., et al., 2018. Sources of Ore-Forming Fluids from Tianbaoshan and Huize Pb-Zn Deposits in Yunnan-Sichuan-Guizhou Region, Southwest China: Evidence from Fluid Inclusions and He-Ar Isotopes. Earth Science, 43(6):2076-2099 (in Chinese with English abstract). [53] Wang, R., Zhang, C.Q., Wu, Y., et al., 2012. Relationship between Diabase Dikes and Pb-Zn Mineralization in the Tianbaoshan Deposit, Southwestern China: Constraints of the Zircon U-Pb Isotopic Dating. Mineral Deposits, 31(S1): 449-450 (in Chinese with English abstract). [54] Wang, X.C., 1992. Genesis Analysis of the Tianbaoshan Pb-Zn Deposit. Journal of Chengdu College of Geology, 19(3): 10-20 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/zgdqhx-e201806004 [55] Wang, X. C., Zhang, Z. R., Zheng, M. H., et al., 2000. Metallogenic Mechanism of the Tianbaoshan Pb-Zn Deposit, Sichuan. Chinese Journal of Geochemistry, 19(2): 121-133. https://doi.org/10.1007/bf03166867 [56] Wu, Y., 2013. The Age and Ore-Forming Process of MVT Deposits in the Boundary Area of Sichuan-Yunnan-Guizhou Provinces, Southwest China (Dissertation).China University of Geosciences, Beijing (in Chinese). [57] Xu, Y. K., Huang, Z. L., Zhu, D., et al., 2014. Origin of Hydrothermal Deposits Related to the Emeishan Magmatism. Ore Geology Reviews, 63: 1-8. https://doi.org/10.1016/j.oregeorev.2014.04.010 [58] Yan, D. P., Zhou, M. F., Song, H. L., et al., 2003. Origin and Tectonic Significance of a Mesozoic Multi-Layer Over-Thrust System within the Yangtze Block (South China). Tectonophysics, 361(3-4): 239-254. https://doi.org/10.1016/s0040-1951(02)00646-7 [59] Zhang, C. Q., 2008. The Genetic Model of Mississippi Valley-Type Deposits in the Boundary Area of Sichuan, Yunnan and Guizhou Provinces, China (Dissertation).Chinese Academy of Geological Sciences, Beijing (in Chinese). [60] Zhang, C.Q., Li, X.H., Yu, J.J., et al., 2008.Rb-Sr Dating of Single Sphalerites from the Daliangzi Pb-Zn Deposit, Sichuan, and Its Geological Significances. Geological Review, 54(4):532-538 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/OA000004547 [61] Zhang, C.Q., Mao, J.W., Liu, F., et al., 2005.K-Ar Dating of Altered Clay Minerals from Huize Pb-Zn Deposit in Yunnan Province and Its Geological Significance. Mineral Deposits, 24(3):317-324 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz200503011 [62] Zhang, C.Q., Wu, Y., Hou, L., et al., 2015. Geodynamic Setting of Mineralization of Mississippi Valley-Type Deposits in World-Class Sichuan-Yunnan-Guizhou Zn-Pb Triangle, Southwest China: Implications from Age-Dating Studies in the Past Decade and the Sm-Nd Age of Jinshachang Deposit. Journal of Asian Earth Sciences, 103: 103-114. https://doi.org/10.1016/j.jseaes.2014.08.013 [63] Zhang, Y.X., Wu, Y., Tian, G., et al., 2014.Mineralization Age and the Source of Ore-Forming Material at Lehong Pb-Zn Deposit, Yunnan Province: Constraints from Rb-Sr and S Isotopes System. Acta Mineralogica Sinica, 34(3):305-311 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/kwxb201403002 [64] Zhong, D.L., 1998. The Tethyan Orogenic Belt in Western Yunnan. Science Press, Beijing (in Chinese). [65] Zhou, J.X., Bai, J.H., Huang, Z.L., et al., 2015. Geology, Isotope Geochemistry and Geochronology of the Jinshachang Carbonate-Hosted Pb-Zn Deposit, ChinaSouthwest. Journal of Asian Earth Sciences, 98: 272-284. https://doi.org/10.1016/j.jseaes.2014.11.024 [66] Zhou, J.X., Gao, J.G., Chen, D., et al., 2013a. Ore Genesis of the Tianbaoshan Carbonate-Hosted Pb-Zn Deposit, Southwest China: Geologic and Isotopic (C-H-O-S-Pb) Evidence. International Geology Review, 55(10): 1300-1310. https://doi.org/10.1080/00206814.2013.782973 [67] Zhou, J. X., Huang, Z. L., Yan, Z. F., 2013b. The Origin of the Maozu Carbonate-Hosted Pb-Zn Deposit, Southwest China: Constrained by C-O-S-Pb Isotopic Compositions and Sm-Nd Isotopic Age. Journal of Asian Earth Sciences, 73: 39-47. https://doi.org/10.1016/j.jseaes.2013.04.031 [68] Zhou, J.X., Huang, Z.L., Zhou, M.F., et al., 2013c. Constraints of C-O-S-Pb Isotope Compositions and Rb-Sr Isotopic Age on the Origin of the Tianqiao Carbonate-Hosted Pb-Zn Deposit, SW China. Ore Geology Reviews, 53: 77-92. https://doi.org/10.1016/j.oregeorev.2013.01.001 [69] 鲍淼, 周家喜, 黄智龙, 等, 2011.铅锌矿床定年方法及川-滇-黔铅锌成矿域年代学研究进展.矿物学报, 31(3):391-396. http://d.wanfangdata.com.cn/Periodical/kwxb201103011 [70] 成会章, 2013.天宝山铅锌矿床成因探讨.四川有色金属, (3):41-44. doi: 10.3969/j.issn.1006-4079.2013.03.009 [71] 杜远生, 黄虎, 杨江海, 等, 2013.晚古生代-中三叠世右江盆地的格局和转换.地质论评, 59(1):1-11. doi: 10.3969/j.issn.0371-5736.2013.01.001 [72] 韩奎, 罗金海, 王宗起, 等, 2012.川滇黔交界地区铅锌矿床含矿角砾岩特征及其构造意义.矿床地质, 31(3):629-641. doi: 10.3969/j.issn.0258-7106.2012.03.019 [73] 韩润生, 王峰, 胡煜昭, 等, 2014.会泽型(HZT)富锗银铅锌矿床成矿构造动力学研究及年代学约束.大地构造与成矿学, 38(4):758-771. doi: 10.3969/j.issn.1001-1552.2014.04.003 [74] 何承真, 肖朝益, 温汉捷, 等, 2016.四川天宝山铅锌矿床的锌-硫同位素组成及成矿物质来源.岩石学报, 32(11):3394-3406. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201611012 [75] 黄智龙, 陈进, 韩润生, 等, 2004.云南会泽超大型铅锌矿床地球化学及成因——兼论峨眉山玄武岩与铅锌成矿关系.北京:地质出版社. [76] 简平, 刘敦一, 张旗, 等, 2003.蛇绿岩及蛇绿岩中浅色岩的SHRIMP U-Pb测年.地学前缘, 10(4):439-456. doi: 10.3321/j.issn:1005-2321.2003.04.012 [77] 金中国, 黄智龙, 2008.黔西北铅锌矿床控矿因素及找矿模式.矿物学报, 28(4):467-472. doi: 10.3321/j.issn:1000-4734.2008.04.020 [78] 李国蓉, 刘树根, 宋来明, 等, 2009.西昌盆地东吴期深部热液作用及其对志留系碳酸盐岩储层的改造.矿物岩石, 29(4):60-65. doi: 10.3969/j.issn.1001-6872.2009.04.009 [79] 李文博, 黄智龙, 陈进, 等, 2004.会泽超大型铅锌矿床成矿时代研究.矿物学报, 24(2):112-116. doi: 10.3321/j.issn:1000-4734.2004.02.003 [80] 李兴唐, 古迅, 1988.攀西裂谷及邻区构造应力场演化与叠加断裂作用.地质科学, (1):25-37. http://www.cnki.com.cn/Article/CJFDTotal-DZKX198801002.htm [81] 李泽琴, 王奖臻, 倪师军, 等, 2002.川滇密西西比河谷型铅锌矿床成矿流体来源研究:流体Na-Cl-Br体系的证据.矿物岩石, 22(4):38-41. doi: 10.3969/j.issn.1001-6872.2002.04.008 [82] 林方成, 2005.论扬子地台西缘层状铅锌矿床热水沉积成矿作用(博士学位论文).成都: 成都理工大学. [83] 蔺志永, 王登红, 张长青, 等, 2010.四川宁南跑马铅锌矿床的成矿时代及其地质意义.中国地质, 37(2):488-494. doi: 10.3969/j.issn.1000-3657.2010.02.023 [84] 柳贺昌, 林文达, 1999.滇东北铅锌银成矿规律研究.昆明:云南大学出版社. [85] 刘红英, 2005.攀西地区碱性岩的年代学研究及其地质意义(博士学位论文).广州: 中国科学院广州地球化学研究所. [86] 莫宣学, 潘桂棠, 2006.从特提斯到青藏高原形成:构造-岩浆事件的约束.地学前缘, 13(6):43-51. doi: 10.3321/j.issn:1005-2321.2006.06.007 [87] 牟传龙, 林仕良, 余谦, 等, 2000.四川会理-会东及邻区中元古界昆阳群沉积特征及演化.沉积与特提斯地质, 20(1):44-51. doi: 10.3969/j.issn.1009-3850.2000.01.003 [88] 覃建雄, 夏竹, 张长俊, 等, 2001.西昌复合盆地层序充填序列与沉积动力演化初探.古地理学报, 3(4):45-55. doi: 10.3969/j.issn.1671-1505.2001.04.005 [89] 沈战武, 金灿海, 代堰锫, 等, 2016.滇东北毛坪铅锌矿床的成矿时代:闪锌矿Rb-Sr定年.高校地质学报, 22(2):213-218. http://d.old.wanfangdata.com.cn/Periodical/gxdzxb201602001 [90] 施泽进, 王勇, 田亚铭, 等, 2013.四川盆地东南部震旦系灯影组藻云岩胶结作用及其成岩流体分析.中国科学(D辑), 43(2):317-328. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201302015 [91] 宋谢炎, 张成江, 胡瑞忠, 等, 2005.峨眉火成岩省岩浆矿床成矿作用与地幔柱动力学过程的耦合关系.矿物岩石, 25(4):35-44. doi: 10.3969/j.issn.1001-6872.2005.04.007 [92] 谭娟娟, 刘重芃, 杨红梅, 等, 2018.湘西花垣矿集区柔先山铅锌矿床的成矿时间和物质来源.地球科学, 43(7):2438-2448. doi: 10.3799/dqkx.2018.132 [93] 王健, 张均, 2015.四川省大梁子铅锌矿床成矿流体特征及成矿机制.矿物学报, (S1):678. http://d.old.wanfangdata.com.cn/Conference/9132530 [94] 王健, 张均, 仲文斌, 等, 2018.川滇黔地区天宝山、会泽铅锌矿床成矿流体来源初探:来自流体包裹体及氦氩同位素的证据.地球科学, 43(6):2076-2099. doi: 10.3799/dqkx.2018.601 [95] 王瑞, 张长青, 吴越, 等, 2012.四川天宝山铅锌矿辉绿岩脉形成时代与成矿关系探讨.矿床地质, 31(S1):449-450. http://d.old.wanfangdata.com.cn/Conference/7895246 [96] 王小春, 1992.天宝山铅锌矿床成因分析.成都地质学院学报, 19(3): 10-20. http://www.cqvip.com/qk/91405X/199203/714586.html [97] 吴越, 2013.川滇黔地区MVT铅锌矿床大规模成矿作用的时代与机制(博士学位论文).北京: 中国地质大学. [98] 张长青, 2008.中国川滇黔交界地区密西西比型(MVT)铅锌矿床成矿模型(博士学位论文).北京: 中国地质科学院. [99] 张长青, 李向辉, 余金杰, 等, 2008.四川大梁子铅锌矿床单颗粒闪锌矿铷-锶测年及地质意义.地质论评, 54(4):532-538. doi: 10.3321/j.issn:0371-5736.2008.04.013 [100] 张长青, 毛景文, 刘峰, 等, 2005.云南会泽铅锌矿床粘土矿物K-Ar测年及其地质意义.矿床地质, 24(3):317-324. doi: 10.3969/j.issn.0258-7106.2005.03.011 [101] 张云新, 吴越, 田广, 等, 2014.云南乐红铅锌矿床成矿时代与成矿物质来源: Rb-Sr和S同位素制约.矿物学报, 34(3):305-311. http://d.old.wanfangdata.com.cn/Periodical/kwxb201403002 [102] 钟大赉, 1998.滇川西部古特提斯造山带.北京:科学出版社.