Geochemical Characteristics and Geological Significance of Siliceous Rocks in Upper Ordovician Zhaolaoyu Formation in Fuping Region, Shaanxi Province
-
摘要: 陕西富平上奥陶统赵老峪组发育了一套与深水碳酸盐岩伴生的硅质岩沉积,其地化特征对揭示硅质来源及构造背景等具有重要意义.在研究区地层野外剖面实测、硅质岩岩石地化分析基础上,研究了该区硅质岩硅质来源及构造环境.赵老峪组岩性以深灰色薄板状灰岩为主,夹层状放射虫硅质岩、砾屑灰岩、砂屑灰岩、含斑块灰岩和火山凝灰岩,其中硅质岩呈隐晶质-微晶质,含放射虫化石.样品Al/(Al+Fe+Mn)均值0.68,MnO/TiO2均值0.18,ΣREE均值46.41,δCe均值0.95,δEu均值1.13,LaN/YbN均值1.15,LaN/CeN均值1.08,显示大陆边缘的构造环境,硅质来源主要为陆源来源.结果表明赵老峪组硅质岩发育于奥陶纪扬子板块向华北板块俯冲背景下,形成于华北地块南缘与北秦岭之间的二郎坪弧后前陆盆地北部大陆边缘.Abstract: In Fuping region of Shaanxi Province, a suite of radiolarian siliceous rocks is developed in Upper Ordovician Zhaolaoyu Formation, which is associated with deep water carbonate rocks. The geochemical characteristics of siliceous rocks are of great significance in revealing the source of silicon and tectonic setting. On basis of the field profile, the petrological and geochemical analyses of siliceous rocks in Upper Ordovician Zhaolaoyu Formation in Fuping region, the origin and tectonic setting are studied. It is found that Zhaolaoyu Formation is dominated by dark gray lamellose limestone, with lamellar radiolarian siliceous rocks, conglomerate limestone, calcarenite, patchy limestone and volcanic tuff. Siliceous rocks are cryptocrystalline-microcrystalline, containing radiolarian fossils. The geochemical test of the samples yields the value of Al/(Al+Fe+Mn) (average 0.68), MnO/TiO2 (average 0.18), ΣREE (average 46.41), δCe (average 0.95), δEu (average 1.13), LaN/YbN (average 1.15), LaN/CeN (average 1.08), suggesting that the tectonic environment is continental margin and the silicons are mainly of terrigenous origin. We believe that the siliceous rocks in Fuping region were formed on the northern margin of the Erlangping retroarc foreland basin, which was formed between the southern margin of North China Block and the North Qinling under the background of subduction of the Yangtze Plate to the North China Plate during the Ordovician.
-
图 6 硅质岩样品标准化稀土模式曲线
PAAS标准化数据据McLennan(1989)
Fig. 6. REE pattern of the analyzed samples normalized to PAAS
图 7 赵老峪组硅质岩成因判别图解
a.Al-Fe-Mn三角图,据Adachi et al.(1986),A为非热液成因硅质岩;B为热液成因硅质岩;b.现代海洋沉积物Fe/Ti-Al/(Al+Fe+Mn)图,据Boström et al.(1973),A为生物成因硅质岩,B为平均远洋粘土,C为海渊热水沉积物,D、E为热水粘土,F为西太平洋沉积物,EPB为热液单元沉积物,TM为陆缘物质单元沉积物,BM为生物物质单元沉积物
Fig. 7. Discrimination diagram of origin of siliceous rocks in Zhaolaoyu Formation
图 8 赵老峪组硅质岩构造环境判别图解
a. Fe2O3/TiO2-Al2O3/(Al2O3+Fe2O3)图解;b. 100×(Fe2O3/SiO2)-100×(Al2O3/SiO2)图解;据Murray(1994)
Fig. 8. Discrimination diagram of tectonic setting of silicalite in Zhaolaoyu Formation
图 9 华北地块南缘奥陶纪构造演化模式
Fig. 9. Tectonic evolution map of the southern margin of North China during Ordovician
表 1 赵老峪组硅质岩样品常量元素含量(%)
Table 1. Major elements data (%) in siliceous rocks of Zhaolaoyu Formation
样号 Fpg1 Fpg2 Fpg3 Fpg4 Fpg5 Fpg6 Fpg7 Fpg8 Fpg9 Fpg10 SiO2 36.0 36.2 86.7 85.6 84.7 84.3 83.7 83.4 75.3 76.0 TiO2 0.16 0.16 0.05 0.05 0.05 0.05 0.09 0.09 0.05 0.05 Al2O3 3.53 3.59 1.57 1.60 1.42 1.42 2.61 2.74 1.70 1.44 Fe2O3 1.27 1.29 0.58 0.60 0.46 0.47 0.86 0.89 0.55 0.47 MnO 0.03 0.03 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 MgO 4.79 4.83 0.58 0.59 0.61 0.63 1.81 1.81 0.90 0.80 CaO 26.1 25.6 4.45 4.74 5.47 5.53 3.54 3.54 10.7 10.4 Na2O 0.04 0.05 0.03 0.03 0.03 0.04 0.02 0.02 0.02 0.03 K2O 1.31 1.32 0.40 0.40 0.30 0.33 0.62 0.65 0.39 0.32 P2O5 0.08 0.08 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.03 LOI 26.8 26.5 5.63 5.90 6.42 6.73 6.28 6.31 10.4 10.1 Σ 100 99.5 100 99.5 99.5 99.6 99.6 99.5 100 99.6 Al* 0.67 0.67 0.67 0.66 0.70 0.69 0.69 0.70 0.70 0.69 MnO/TiO2 0.19 0.19 0.20 0.20 0.20 0.20 0.11 0.11 0.20 0.20 注:Al*=Al/(Al+Fe+Mn). 表 2 赵老峪组硅质岩样品稀土元素含量(10-6)
Table 2. Rare earth elements data (10-6) in siliceous rocks of Zhaolaoyu Formation
样号 Fpg1 Fpg2 Fpg3 Fpg4 Fpg5 Fpg6 Fpg7 Fpg8 Fpg9 Fpg10 La 15.7 15.8 4.59 4.71 5.49 5.85 11.0 11.3 5.53 4.87 Ce 36.0 36.3 9.00 9.32 10.1 10.8 19.6 19.9 10.1 8.95 Pr 3.58 3.66 1.05 1.07 1.18 1.28 2.36 2.39 1.22 1.07 Nd 13.9 14.1 3.88 3.98 4.41 4.78 8.47 8.54 4.46 3.93 Sm 2.70 2.73 0.76 0.76 0.85 0.91 1.53 1.57 0.85 0.74 Eu 0.53 0.53 0.20 0.20 0.21 0.21 0.33 0.32 0.20 0.18 Gd 2.51 2.53 0.69 0.71 0.79 0.85 1.30 1.32 0.79 0.71 Tb 0.36 0.36 0.10 0.10 0.11 0.12 0.18 0.18 0.11 0.10 Dy 2.15 2.18 0.60 0.60 0.68 0.72 1.04 1.05 0.71 0.62 Ho 0.42 0.43 0.11 0.12 0.13 0.14 0.20 0.20 0.14 0.13 Er 1.19 1.19 0.33 0.33 0.37 0.41 0.59 0.61 0.40 0.37 Tm 0.17 0.17 0.05 0.05 0.06 0.06 0.09 0.09 0.06 0.05 Yb 1.04 1.06 0.31 0.31 0.36 0.37 0.61 0.61 0.39 0.34 Lu 0.16 0.15 0.05 0.05 0.05 0.06 0.10 0.10 0.06 0.05 Y 13.9 13.7 3.49 3.62 4.22 4.42 6.02 6.13 4.76 4.19 ΣREE 94.3 94.9 25.2 25.9 29.0 31.0 53.4 54.3 29.8 26.3 δEu 0.96 0.95 1.30 1.28 1.21 1.12 1.10 1.05 1.15 1.17 δCe 1.11 1.10 0.95 0.96 0.91 0.91 0.89 0.88 0.90 0.90 LaN/YbN 1.11 1.10 1.09 1.12 1.13 1.17 1.33 1.37 1.05 1.06 LaN/CeN 0.91 0.91 1.06 1.05 1.13 1.13 1.17 1.18 1.14 1.13 -
[1] Adachi, M., Yamamoto, K., Sugisaki, R., 1986. Hydrothermal Chert and Associated Siliceous Rocks from the Northern Pacific Their Geological Significance as Indication of Ocean Ridge Activity. Sedimentary Geology, 47(1-2): 125-148. https://doi.org/10.1016/0037-0738(86)90075-8 [2] Boström, K., Kraemer, T., Gartner, S., 1973. Provenance and Accumulation Rates of Opaline Silica, Al, Ti, Fe, Mn, Cu, Ni and Co in Pacific Pelagic Sediments. Chemical Geology, 11(2): 123-148. https://doi.org/10.1016/0009-2541(73)90049-1 [3] Chen, D. Z., Qing, H. R., Yan, X., et al., 2006. Hydrothermal Venting and Basin Evolution (Devonian, South China): Constraints from Rare Earth Element Geochemistry of Chert. Sedimentary Geology, 183(3/4): 203-216. https://doi.org/10.1016/j.sedgeo.2005.09.020 [4] Chen, J. J., Fu, L. B., Wei, J. H., et al., 2016. Geochemical Characteristics of Late Ordovician Granodiorite in Gouli Area, Eastern Kunlun Orogenic Belt, Qinghai Province: Implications on the Evolution of Proto-Tethys Ocean. Earth Science, 41(11):1863-1882 (in Chinese with English abstract). https://www.researchgate.net/publication/311715114_Geochemical_characteristics_of_Late_Ordovician_granodiorite_in_Gouli_area_Eastern_Kunlun_Orogenic_Belt_Qinghai_province_Implications_on_the_evolution_of_Proto-Tethys_Ocean [5] Cui, Z. L., Hua, H., Song, Q. Y., 2000. The Late Ordovician Radiolarian Assemblage of the North Qinling Back-Arc Basin, China. Acta Geologica Sinica, 74(3):254-258, 294 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200003006.htm [6] Dong, Y. P., Santosh, M., 2016. Tectonic Architecture and Multiple Orogeny of the Qinling Orogenic Belt, Central China. Gondwana Research, 29(1): 1-40. https://doi.org/10.1016/j.gr.2015.06.009 [7] Du, Y. S., Zhu, J., Gu, S. Z., 2007. Sedimentary Geochemistry of Cambrian-Ordovician Cherts in North Qilian Orogenic Belts and Its Implication for Archipelagic Ocean. Science in China (Series D), 37(10):1314-1329 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=0fb48675cd846bb74c72d74afaa2b20d&encoded=0&v=paper_preview&mkt=zh-cn [8] Du, Y. S., Zhu, J., Xu, Y. J., et al., 2009. The Study of Early Hercynian Sedimentary Geology Research of Northern Qilian Orogenic Belt during Caledonian-Early Hercynian. China University of Geosciences Press, Wuhan (in Chinese). [9] Enkelmann, E., Weislogel, A., Ratschbacher, L., et al., 2007. How was the Triassic Songpan-Ganzi Basin Filled? A Provenance Study. Tectonics, 26(4): 1-24. https://doi.org/10.1029/2006tc002078 [10] Feng, Z. Z., Bao, Z. D., 1999. Lithofacies Paleogeography of Majiagou Age of Ordovician in Ordos Basin. Acta Sedimentologica Sinica, 17(1):1-8 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjxb199901001 [11] Guo, Y. R., Zhao, Z. Y., Xu, W. L., et al., 2014. Sequence Stratigraphy of the Ordovician System in the Ordos Basin. Acta Sedimentologica Sinica, 32(1):44-60 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=68bbd27b6c097814f78a1e74738491ae&encoded=0&v=paper_preview&mkt=zh-cn [12] Haq, B. U., Schutter, S. R., 2008. A Chronology of Paleozoic Sea-Level Changes. Science, 322(5898): 64-68. https://doi.org/10.1126/science.1161648 [13] Hara, H., Kurihara, T., Kuroda, J., et al., 2010. Geological and Geochemical Aspects of a Devonian Siliceous Succession in Northern Thailand: Implications for the Opening of the Paleo-Tethys. Palaeogeography, Palaeoclimatology, Palaeoecology, 297(2): 452-464. https://doi.org/10.1016/j.palaeo.2010.08.029 [14] He, B., Xu, Y. G., Zhong, Y. T., et al., 2010. The Guadalupian–Lopingian Boundary Mudstones at Chaotian (SW China) are Clastic Rocks rather than Acidic Tuffs: Implication for a Temporal Coincidence between the End-Guadalupian Mass Extinction and the Emeishan Volcanism. Lithos, 119(1-2): 10-19. https://doi.org/10.1016/j.lithos.2010.06.001 [15] He, Y., Zhao, Y. J., Zhang, W. X., et al., 2018. Zircon U-Pb Ages of a Felsic Vein in Ultrahigh-Pressure Eclogite from North Qinling Terrane and Their Geological Implications. Earth Science, 43(2):389-400 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201802004 [16] Huang, B. C., Zhou, Y. X., Zhu, R. X., 2008. Discussions on Phanerozoic Evolution and Formation of Continental China, Based on Paleomagnetic Studies. Earth Science Frontiers, 15(3):348-359 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy200803031 [17] Huang, H., Du, Y. S., Yang, J. H., et al., 2012. Geochemical Features of Siliceous Sediments of the Shuicheng-Ziyun-Nandan Rift Basin in the Late Paleozoic and Their Tectonic Implication. Acta Geologica Sinica, 86(12):1994-2010 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201212010 [18] Jia, Z. Y., Cai, Z. X., 1997. Evolution and Relation of the Paleozoic in the Southern Margin of Ordos and East Qingling:Use Concept of Mesosequence Review. Earth Science, 22(5):88-94 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX705.012.htm [19] Kidder, D. L., Tomescu, I., 2016. Biogenic Chert and the Ordovician Silica Cycle. Palaeogeography, Palaeoclimatology, Palaeoecology, 458: 29-38. https://doi.org/10.1016/j.palaeo.2015.10.013 [20] Li, H., He, Y. B., Huang, W., et al., 2016. Contourites of the Ordovician Pingliang Formation in Southern Margin of Ordos Basin. Journal of Palaeogeography, 18(4):631-642 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdlxb201604012 [21] Li, W. H., Chen, Q., Li, Z. C., et al., 2012. Lithofacies Palaeogeography of the Early Paleozoic in Ordos Area. Journal of Palaeogeography, 14(1):85-100 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdlxb201201008 [22] Li, W. H., Mei, Z. C., Chen, J. W., et al., 1997. Genetic Environment of Ordovician Radiolarian Cherts and Volcanic Tuffs in Weibei, Shaanxi Province. Regional Geology of China, 16(4):36-41 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD704.011.htm [23] Maliva, R. G., Knoll, A. H., Simonson, B. M., 2005. Secular Change in the Precambrian Silica Cycle: Insights from Chert Petrology. Geological Society of America Bulletin, 117(7): 835. https://doi.org/10.1130/b25555.1 [24] McLennan, S. M., 1989. Rare Earth Elements in Sedimentary Rocks:Influence of Provenance and Sedimentary Processes. Reviews in Mineralogy and Geochemistry, 21(1):169-200. http://cn.bing.com/academic/profile?id=91c0512cdcfae055cb0720632560b9e6&encoded=0&v=paper_preview&mkt=zh-cn [25] Mei, Z. C., Li, W. H., 1986. Depositional Model of Deep Water Carbonate Gravity Flows in the Middle-Upper Ordovician Series in Fuping, Shaanxi Prvince. Acta Sedimentological Sinica, 4(1):34-42 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-cjxb198601004.htm [26] Murray, R. W., 1994. Chemical Criteria to Identify the Depositional Environment of Chert: General Principles and Applications. Sedimentary Geology, 90(3/4): 213-232. https://doi.org/10.1016/0037-0738(94)90039-6 [27] Murray, R. W., Buchholtz ten Brink, M. R., Jones, D. L., et al., 1990. Rare Earth Elements as Indicators of Different Marine Depositional Environments in Chert and Shale. Geology, 18(3): 268-271. https://doi.org/10.1130/0091-7613(1990)018<0268:reeaio>2.3.co;2 doi: 10.1130/0091-7613(1990)018<0268:reeaio>2.3.co;2 [28] Peng, S. B., Liu, S. F., Lin, M. S., et al., 2016a. Early Paleozoic Subduction in Cathaysia(Ⅰ):New Evidence from Nuodong Ophiolite. Earth Science, 41(5):765-778 (in Chinese with English abstract). [29] Peng, S. B., Liu, S. F., Lin, M. S., et al., 2016b. Early Paleozoic Subduction in Cathaysia (Ⅱ):New Evidence from the Dashuang High Magnesian-Magnesian Andesite. Earth Science, 41(6):931-947 (in Chinese with English abstract). [30] Qu, H. J., Mei, Z. C., Li, W. H., et al., 2010. The Middle Ordovician Contour Current Deposits and Its Geological Implication in Fuping Region, Shaanxi Province, China. Geological Bulletin of China, 29(9):1304-1309 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201009006 [31] Shi, Y., Yu, J. H., Santosh, M., 2013. Tectonic Evolution of the Qinling Orogenic Belt, Central China: New Evidence from Geochemical, Zircon U–Pb Geochronology and Hf Isotopes. Precambrian Research, 231: 19-60. https://doi.org/10.1016/j.precamres.2013.03.001 [32] Song, S. G., Niu, Y. L., Su, L., et al., 2013. Tectonics of the North Qilian Orogen, NW China. Gondwana Research, 23(4): 1378-1401. https://doi.org/10.1016/j.gr.2012.02.004 [33] Sugisaki, R., Yamamoto, K., Adachi, M., 1982. Triassic Bedded Cherts in Central Japan are not Pelagic. Nature, 298(5875): 644-647. https://doi.org/10.1038/298644a0 [34] Wang, X. R., Hua, H., Sun, Y., 1995. A Study on Microfossils of the Erlangping Group in Wantan Area Xixia County, Henan Province. Journal of Northwest University (Natural Science Edition), 25(4):353-358 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-xbdz504.016.htm [35] Wang, X. X., Wang, T., Zhang, C. L., 2013. Neoproterozoic, Paleozoic, and Mesozoic Granitoid Magmatism in the Qinling Orogen, China: Constraints on Orogenic Process. Journal of Asian Earth Sciences, 72: 129-151. https://doi.org/10.1016/j.jseaes.2012.11.037 [36] Xu, Y. J., Du, Y. S., 2018. From Perphery Collision to Intraplate Orogeny-Early Paleozoic Orogenesis in the Southeastern Part of South China. Earth Science, 43(2):333-353 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201802001.htm [37] Yang, H., Fu, J. H., Bao, H. P., 2010. Sedimentary Characteristics and Gas Accumulation Potential along Margin of Ordovician trough in Western and Southern Parts of Ordos. Marine Origin Petroleum Geology, 15(2):1-13 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hxyqdz201002001 [38] Zhai, M. G., 2010. Tectonic Evolution and Metallogenesis of North China Craton. Mineral Deposits, 29(1):24-36 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=a549b825115d0cd9ebe5ed5ae8ad19f3&encoded=0&v=paper_preview&mkt=zh-cn [39] Zhang, Z. K., Zhou, Y. Q., Peng, T. M., et al., 2017. Geochemical Characters and Signatures of Siltstone from Laiyang Group at Lingshan Island, Qingdao, Shandong. Earth Science, 42(3):357-377 (in Chinese with English abstract). [40] Zheng, N., Song, T. R., Li, T. D., et al., 2012. The Discovery of the Lower Cambrian and Middle Ordovician Radiolaria in the South China Orogenic Belt. Geology in China, 39(1):260-265 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201201026 [41] 陈加杰, 付乐兵, 魏俊浩, 等, 2016.东昆仑沟里地区晚奥陶世花岗闪长岩地球化学特征及其对原特提斯洋演化的制约.地球科学, 41(11): 1863-1882. doi: 10.3799/dqkx.2016.129 [42] 崔智林, 华洪, 宋庆原, 2000.晚奥陶世北秦岭弧后盆地放射虫组合.地质学报, 74(3): 254-2194. doi: 10.3321/j.issn:0001-5717.2000.03.007 [43] 杜远生, 朱杰, 顾松竹, 等, 2007.北祁连造山带寒武系-奥陶系硅质岩沉积地球化学特征及其对多岛洋的启示.中国科学(D辑), 37(10): 1314-1329. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200710004 [44] 杜远生, 朱杰, 许亚军, 等, 2009.北祁连造山带加里东-早海西沉积地质学研究.武汉:中国地质大学出版社. [45] 冯增昭, 鲍志东, 1999.鄂尔多斯奥陶纪马家沟组岩相古地理.沉积学报, 17(1): 1-8. doi: 10.3969/j.issn.1000-0550.1999.01.001 [46] 郭彦如, 赵振宇, 徐旺林, 等, 2014.鄂尔多斯盆地奥陶系层序地层格架.沉积学报, 32(1): 44-60. http://d.old.wanfangdata.com.cn/Periodical/cjxb201401006 [47] 何宇, 赵宇洁, 张文祥, 等, 2018.北秦岭超高压榴辉岩中长英质脉体的锆石U-Pb年龄及其地质意义.地球科学, 43(2): 389-400. doi: 10.3799/dqkx.2017.597 [48] 黄宝春, 周烑秀, 朱日祥, 2008.从古地磁研究看中国大陆形成与演化过程.地学前缘, 15(3): 348-359. doi: 10.3321/j.issn:1005-2321.2008.03.031 [49] 黄虎, 杜远生, 杨江海, 等, 2012.水城-紫云-南丹裂陷盆地晚古生代硅质沉积物地球化学特征及其地质意义.地质学报, 86(12): 1994-2010. doi: 10.3969/j.issn.0001-5717.2012.12.010 [50] 贾振远, 蔡忠贤, 1997.鄂尔多斯地区南部与东秦岭早古生代的关系和演化——以中层序(mesosequence)观点述之.地球科学, 22(5): 88-94. http://www.earth-science.net/article/id/545 [51] 李华, 何幼斌, 黄伟, 等, 2016.鄂尔多斯盆地南缘奥陶系平凉组等深流沉积.古地理学报, 18(4): 631-642. http://d.old.wanfangdata.com.cn/Periodical/gdlxb201604012 [52] 李文厚, 陈强, 李智超, 等, 2012.鄂尔多斯地区早古生代岩相古地理.古地理学报, 14(1): 85-100. http://d.old.wanfangdata.com.cn/Periodical/gdlxb201201008 [53] 李文厚, 梅志超, 陈景维, 等, 1997.陕西渭北奥陶系放射虫硅质岩与火山凝灰岩的成因环境.中国区域地质, 16(4): 36-41. http://www.cnki.com.cn/article/cjfdtotal-zqyd704.011.htm [54] 梅志超, 李文厚, 1986.陕西富平中-上奥陶统深水碳酸盐重力流沉积模式.沉积学报, 4(1): 34-42. http://www.cnki.com.cn/Article/CJFDTotal-CJXB198601004.htm [55] 彭松柏, 刘松峰, 林木森, 等, 2016a.华夏早古生代俯冲作用(Ⅰ):来自糯垌蛇绿岩的新证据.地球科学, 41(5): 765-778. doi: 10.3799/dqkx.2016.065 [56] 彭松柏, 刘松峰, 林木森, 等, 2016b.华夏早古生代俯冲作用(Ⅱ):大爽高镁-镁质安山岩新证据.地球科学, 41(6): 931-947. doi: 10.3799/dqkx.2016.079 [57] 屈红军, 梅志超, 李文厚, 等, 2010.陕西富平地区中奥陶统等深流沉积的特征及其地质意义.地质通报, 29(9): 1304-1309. doi: 10.3969/j.issn.1671-2552.2010.09.006 [58] 王学仁, 华洪, 孙勇, 1995.河南西峡湾潭地区二郎坪群微体化石研究.西北大学学报(自然科学版), 25(4): 353-358. doi: 10.3321/j.issn:1000-274X.1995.04.003 [59] 徐亚军, 杜远生, 2018.从板缘碰撞到陆内造山-华南东南缘早古生代造山作用演化.地球科学, 43(2): 333-353. doi: 10.3799/dqkx.2017.582 [60] 杨华, 付金华, 包洪平, 2010.鄂尔多斯地区西部和南部奥陶纪海槽边缘沉积特征与天然气成藏潜力分析.海相油气地质, 15(2): 1-13. doi: 10.3969/j.issn.1672-9854.2010.02.001 [61] 翟明国, 2010.华北克拉通的形成演化与成矿作用.矿床地质, 29(1): 24-36. doi: 10.3969/j.issn.0258-7106.2010.01.004 [62] 张振凯, 周瑶琪, 彭甜明, 等, 2017.山东灵山岛莱阳群粉砂岩地球化学特征及意义.地球科学, 42(3): 357-377. doi: 10.3969/j.issn.1672-6561.2017.03.005 [63] 郑宁, 宋天锐, 李廷栋, 等, 2012.华南造山带下寒武统和中奥陶统发现放射虫.中国地质, 39(1): 260-265. doi: 10.3969/j.issn.1000-3657.2012.01.026