Zircon U-Pb Geochronology and Geochemical Characteristics of the Kunlunguan A-Type Granite in Central Guangxi
-
摘要: 华南腹地燕山期岩浆活动、成因及其构造意义存在争议.本文选取桂中地区昆仑关花岗岩为研究对象,进行了系统的年代学、地球化学和Sm-Nd同位素研究.锆石LA-ICP-MS U-Pb定年结果为97.7±1.3 Ma(MSWD=1.6),表明昆仑关花岗岩是燕山晚期岩浆活动产物.地球化学分析显示,岩体富硅(SiO2=69.42%~72.52%),富碱(全碱=7.43%~8.43%),富钾(K2O=4.00%~5.02%,K2O/Na2O比值=1.17~1.62),富铝(Al2O3=13.65%~14.25%),低钙(CaO=1.20%~2.78%);富集Rb、Th、U、K、Pb,亏损Ba、Nb、Sr、P、Ti;轻稀土富集,重稀土亏损,具明显Eu负异常(δEu=0.45~0.61),稀土元素分配图呈典型的"右倾"型;里德曼指数(δ)为2.06~2.41,属高钾钙碱性系列,铝饱和指数(A/CNK)为0.93~1.16,属准铝质-过铝质岩石.岩体的εNd(t)介于-7.68~-10.31,二阶段Nd模式年龄(TDM2)为1.52~1.73 Ga,均值1.58 Ga.岩石学、地球化学和Sm-Nd同位素特征表明昆仑关花岗岩为A型花岗岩,是在伸展构造环境中及低压、高温条件下由古元古代华夏基底部分熔融形成,并伴有幔源岩浆的混合.结合邻区同期次的岩浆活动和成矿作用,表明100~90 Ma华南腹地经历了一次重要的岩石圈拉张事件.Abstract: For studying the Late Yanshan magmatism in South China hinterland, and analyzing its petrogenesis and tectonic significance, this paper carries out systematical geochronological, geochemical and Sm-Nd isotopic investigations on the Kunlunguan granitic pluton in central Guangxi. LA-ICP-MS zircon U-Pb dating yields a weighted mean 206Pb/238U age of 97.7±1.3 Ma (MSWD=1.6), implying its Late Yanshan intrusion time. Geochemical compositions show that it is enriched in Si (SiO2=69.42%-72.52%), alkali (total alkali=7.43%-8.43%), K(K2O=4.00%-5.02%, K2O/Na2O=1.17-1.62), Al(Al2O3=13.65%-14.25%), but depleted in Ca(CaO=1.20%-2.78%). Rb, Th, U, K, Pb elements are enriched in the intrusion while Ba, Nb, Sr, P, Ti elements are depleted. REE is characterized by obvious negative Eu anomalies (δEu=0.45-0.61), and exhibits right-dipping patterns with LREE enrichment. Its aluminum saturation index value (A/CNK) ranges from 0.93 to 1.16, while redman index value (δ) ranges from 2.06 to 2.41, indicating the intrusion belongs to high-K calc-alkaline series and metaluminous to peraluminous rocks. Its εNd(t) value varies between -7.68 to -10.31, and the correspondent two-stage Nd isotopic modal ages range from 1.52 to 1.73 Ga (average value is 1.58 Ga). Mineralogy and geochemical characteristics indicate that Kunlunguan pluton is A-type granite. It has formed by partial melting of the Cathaysia paleoproterozoic felsic crustal material, being mixed with some mantle drived mafic malts, under a low-pressure, high-temperature condition at an extensional tectonic setting. Taking the igneous and metallogenic events in central Guangxi and adjacent areas into consideration, this study suggests that the lithosphere of South China hinterland thinned in 100-90 Ma.
-
Key words:
- Kunlunguan pluton /
- A-type granite /
- South China /
- Late Yanshan /
- lithosphere extension /
- geochemistry
-
图 1 华南板块现今大地构造位置图(a);研究区大地构造位置(b);昆仑关岩体地质简图(c)
1.寒武系;2.泥盆系;3.石炭系;4.二叠系;5.三叠系;6.古近系;7.第四系;8.主体;9.补体;10.采样位置及编号.a据Li et al.(2014);b据乔龙(2016);c据广西地质局区域地质测量队(广西地质局区域地质测量队,1973;广西1:200 000南宁幅地质图及报告)
Fig. 1. Simplified tectonic position of South China map (a) and Simplified tectonic position of research region (b) and Simplified geologic map of Kunlunguan pluton (c)
图 5 昆仑关花岗岩SiO2-K2O图解(a)和A/NK-A/CNK图解(b)
图a据Collins et al.(1982);图b据Middlemost(1994)
Fig. 5. SiO2-K2O diagram (a) and A/NK-A/CNK diagram of the Kunlunguan granite (b)
图 6 昆仑关花岗岩稀土元素分配模式图及微量元素蛛网图
球粒陨石数据参考Sun and McDonough(1989)
Fig. 6. Chondrite normalized REE and primitive mantle normalized multi-element diagrams for the Kunlunguan granite
图 9 桂中及邻区花岗岩类及变沉积岩的t-εNd(t)
Fig. 9. t-εNd(t) diagram of granitiod rocks and meta-sedimentary rocks in Central Guangxi and adjacent aera
图 10 昆仑关花岗岩Nb-Y-Ce图解(a);R1-10 000 Ga/Al图解(b);Rb-(Y+Nb)图解(c)
A1.大陆裂谷、地幔柱或热点环境;A2.后碰撞、后造山环境;AA.非造山;PA.后造山;syn-COLG.同碰撞花岗岩;WPG.板内花岗岩;ORG.洋脊花岗岩;post-COLG.后碰撞花岗岩;VAG.火山弧花岗岩;图a据Eby(1992);图b据洪大卫等(1995);图c据Pearce et al.(1984)
Fig. 10. Nb-Y-Ce diagram (a) and R1 vs 10 000 Ga/Al diagram (b) and Rb vs (Y+Nb) diagram (c) of Kunlunguan granite
表 1 昆仑关岩体LA-ICP-MS锆石U-Pb同位素定年结果
Table 1. U-Pb isotopic ratios and apparent ages of zircons from the Kunlunguan granite
点号 Th(10-6) U(10-6) Th/U 同位素比值 表面年龄(Ma) 谐和度(%) 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 208Pb/232Th 1σ KLG10-1 68 372 0.18 0.070 13 0.002 58 1.345 72 0.045 71 0.136 50 0.002 11 931.5 75.9 865.7 19.8 824.8 11.9 908.8 42.5 95 KLG10-2 438 425 1.03 0.049 92 0.003 36 0.103 23 0.006 35 0.015 21 0.000 37 190.8 152.8 99.8 5.8 97.3 2.3 87.4 3.3 97 KLG10-3 106 191 0.55 0.061 76 0.004 48 0.124 13 0.008 79 0.014 77 0.000 39 664.8 155.5 118.8 7.9 94.5 2.5 92.6 4.9 77 KLG10-4 82 183 0.45 0.066 13 0.005 39 0.131 95 0.008 99 0.015 15 0.000 39 810.8 170.4 125.8 8.1 96.9 2.4 97.3 5.4 74 KLG10-5 415 892 0.47 0.046 34 0.001 89 0.096 21 0.003 60 0.015 00 0.000 21 16.8 92.6 93.3 3.3 96.0 1.3 85.3 2.8 97 KLG10-6 585 1 100 0.53 0.061 90 0.002 93 0.127 95 0.005 48 0.015 09 0.000 30 672.2 101.8 122.3 4.9 96.5 1.9 107.0 3.5 76 KLG10-7 604 848 0.71 0.050 63 0.002 29 0.112 27 0.005 25 0.015 95 0.000 30 233.4 103.7 108.0 4.8 102.0 1.9 79.3 3.1 94 KLG10-8 624 1 084 0.58 0.045 06 0.001 64 0.097 24 0.003 65 0.015 40 0.000 27 94.2 3.4 98.5 1.7 95.5 3.3 95 KLG10-9 118 179 0.66 0.070 71 0.005 24 0.138 32 0.008 90 0.014 95 0.000 46 950.0 151.9 131.5 7.9 95.7 2.9 103.7 6.0 68 KLG10-10 144 284 0.51 0.067 69 0.002 24 1.291 35 0.045 61 0.136 89 0.002 89 858.9 68.5 841.9 20.2 827.0 16.4 883.0 52.2 98 KLG10-11 75 421 0.18 0.051 56 0.003 89 0.105 09 0.006 98 0.015 61 0.000 36 264.9 174.1 101.5 6.4 99.9 2.3 111.2 8.1 98 KLG10-12 347 766 0.45 0.046 16 0.002 27 0.095 57 0.004 89 0.014 85 0.000 25 5.7 114.8 92.7 4.5 95.0 1.6 88.4 3.7 97 KLG10-13 395 882 0.45 0.048 21 0.002 47 0.098 53 0.004 85 0.014 89 0.000 25 109.4 124.1 95.4 4.5 95.3 1.6 87.5 3.6 99 KLG10-14 221 351 0.63 0.050 59 0.003 38 0.105 58 0.006 41 0.015 31 0.000 31 220.4 153.7 101.9 5.9 98.0 1.9 92.3 4.4 96 KLG10-16 223 161 1.39 0.080 50 0.006 54 0.158 88 0.012 67 0.015 34 0.000 51 1 209.3 160.3 149.7 11.1 98.1 3.2 94.3 5.4 58 KLG10-18 542 1 112 0.49 0.051 98 0.002 53 0.113 71 0.004 97 0.016 09 0.000 29 283.4 111.1 109.4 4.5 102.9 1.8 106.7 4.2 93 KLG10-19 125 261 0.48 0.053 85 0.004 61 0.109 23 0.008 93 0.015 27 0.000 44 364.9 189.8 105.3 8.2 97.7 2.8 108.1 7.1 92 KLG10-20 280 370 0.76 0.060 25 0.005 23 0.122 67 0.008 95 0.015 72 0.000 42 613.0 188.9 117.5 8.1 100.5 2.7 108.4 6.2 84 KLG10-21 644 1 191 0.54 0.052 42 0.002 44 0.112 08 0.004 79 0.015 54 0.000 28 305.6 105.5 107.9 4.4 99.4 1.8 96.8 4.2 91 表 2 昆仑关花岗岩全岩主量元素(%)和微量元素(10-6)组成
Table 2. Major (%) and trace element (10-6) compositions of the Kunlunguan granite
样品 KLG02 KLG03 KLG04 KLG05 KLG06 KLG07 KLG09 KLG10 KLG11 KLG12 SiO2 70.12 71.36 72.52 69.78 70.75 73.36 70.24 71.33 69.42 70.34 Al2O3 14.25 13.83 14.20 13.65 14.04 13.60 14.06 13.66 14.06 14.20 Fe2O3 1.30 0.57 0.02 0.97 0.41 0.40 0.72 0.92 1.01 0.54 FeO 1.76 1.97 1.47 2.08 2.18 1.37 2.12 1.76 1.99 2.20 FeOT 2.93 2.48 1.49 2.95 2.55 1.73 2.76 2.59 2.90 2.69 CaO 1.22 2.00 1.28 2.64 2.30 1.49 2.34 1.96 2.78 1.65 MgO 1.28 1.09 0.72 1.76 1.26 0.63 1.35 1.11 1.78 1.26 K2O 4.75 4.51 5.02 4.20 4.31 4.78 4.40 4.77 4.00 4.72 Na2O 3.00 3.23 3.41 3.23 3.30 3.40 3.24 2.94 3.43 3.18 TiO2 0.51 0.44 0.27 0.53 0.45 0.31 0.49 0.48 0.50 0.48 P2O5 0.18 0.16 0.19 0.21 0.16 0.11 0.18 0.19 0.21 0.18 MnO 0.04 0.05 0.03 0.05 0.05 0.04 0.05 0.05 0.07 0.05 LOI 1.18 0.37 0.56 0.48 0.35 0.18 0.36 0.42 0.38 0.73 Total 102.52 102.07 101.17 102.53 102.12 101.39 102.31 102.18 102.51 102.22 全碱 7.75 7.74 8.43 7.43 7.61 8.18 7.64 7.71 7.43 7.90 δ 2.21 2.11 2.41 2.06 2.09 2.20 2.14 2.10 2.09 2.28 A/NK 1.41 1.35 1.28 1.38 1.39 1.26 1.39 1.36 1.41 1.37 A/CNK 1.16 1.00 1.06 0.93 0.98 1.01 0.98 1.01 0.93 1.06 R1 2 399 2 470 2 397 2 422 2 449 2 504 2 409 2 507 2 376 2 364 Pb 25.10 23.70 40.30 22.50 29.10 41.40 27.40 36.50 28.00 22.30 Cr 21.80 16.10 8.18 34.30 21.60 2.27 22.90 14.80 39.00 22.10 Ni 15.60 12.00 10.10 22.30 12.70 4.75 15.30 11.90 21.50 17.60 Rb 259 251 278 217 240 245 218 233 220 266 Sr 298 293 187 418 305 197 357 309 424 322 Ba 1020 821 633 817 892 771 935 1260 727 963 V 53.20 51.40 24.70 63.00 52.40 26.70 56.30 49.40 64.70 51.60 Nb 19.80 18.90 16.00 23.60 17.80 16.80 18.70 22.50 20.50 18.30 Ta 2.50 1.96 2.06 2.31 1.46 1.65 1.55 2.12 1.88 1.65 Zr 227 117 99.20 148 144 131 171 190 119 122 Hf 5.30 3.03 2.82 3.54 3.50 3.37 3.39 4.39 3.12 3.26 Ga 30.50 28.30 28.60 27.90 30.70 27.50 31.40 34.80 28.20 30.10 U 6.25 24.30 9.17 6.15 6.82 6.24 4.81 4.60 11.10 5.68 Th 22.40 26.80 19.90 30.50 30.00 27.30 26.10 36.00 29.80 26.00 La 56.80 56.00 36.30 47.70 66.60 48.40 61.40 70.60 59.70 45.40 Ce 114.00 110.00 71.70 96.90 138.00 96.50 119.00 154.00 122.00 90.00 Pr 12.30 12.10 7.91 11.00 13.60 10.60 12.70 14.50 12.70 10.10 Nd 39.26 34.93 28.71 39.06 38.39 37.45 31.11 49.06 39.54 31.62 Sm 7.27 6.54 5.94 7.08 6.75 7.20 6.00 8.25 7.40 6.03 Eu 1.30 1.28 0.85 1.38 1.23 1.00 1.30 1.43 1.42 1.27 Gd 6.44 6.42 4.39 5.81 6.30 5.73 5.91 6.81 6.62 5.52 Tb 0.94 0.93 0.62 0.84 0.86 0.86 0.83 0.89 0.94 0.81 Dy 5.23 5.19 3.07 4.62 4.44 4.82 4.41 4.52 5.10 4.47 Ho 0.99 0.96 0.52 0.89 0.82 0.90 0.82 0.82 0.98 0.86 Er 2.70 2.65 1.32 2.49 2.24 2.40 2.27 2.28 2.66 2.32 Tm 0.43 0.41 0.20 0.40 0.34 0.37 0.34 0.36 0.42 0.36 Yb 2.96 2.67 1.32 2.71 2.26 2.51 2.24 2.55 2.82 2.45 Lu 0.41 0.36 0.17 0.38 0.31 0.35 0.31 0.36 0.40 0.34 Y 24.20 25.00 13.30 23.40 21.20 23.80 21.00 21.50 25.00 21.80 ∑REE 275.23 265.44 176.32 244.66 303.34 242.89 269.64 337.93 287.70 223.35 (La/Yb)N 12.61 13.83 18.11 11.56 19.38 12.67 18.00 18.33 13.98 12.20 δEu 0.53 0.53 0.51 0.62 0.51 0.45 0.58 0.55 0.57 0.61 注:FeOT=FeO+0.899 8×Fe2O3;全碱=K2O+Na2O;δ=(K2O+Na2O)2/(SiO2-43);A/NK=Al2O3/(K2O+Na2O);A/CNK=Al2O3/(CaO+K2O+Na2O);R1=4×Si+11×(Na+K)+2×(Fe+Ti). 表 3 昆仑关花岗岩全岩Sm-Nd同位素组成
Table 3. Whole-rock Sm-Nd isotopic composition of Kunlunguan granite
样号 Sm(10-6) Nd(10-6) 147Sm/144Nd 143Nd/144Nd δ TDM2(Ga) εNd(t) KLG02 7.27 39.26 0.112 1 0.512 156 0.000 002 1.57 -8.35 KLG03 6.54 34.93 0.113 2 0.512 170 0.000 003 1.55 -8.09 KLG04 5.94 28.71 0.125 2 0.512 064 0.000 003 1.73 -10.31 KLG05 7.08 39.06 0.109 6 0.512 184 0.000 002 1.53 -7.77 KLG06 6.75 38.39 0.106 3 0.512 130 0.000 004 1.61 -8.78 KLG07 7.20 37.45 0.116 4 0.512 193 0.000 005 1.52 -7.68 KLG09 6.00 31.11 0.116 7 0.512 158 0.000 002 1.57 -8.37 KLG10 8.25 49.06 0.101 7 0.512 114 0.000 002 1.63 -9.04 KLG11 7.40 39.54 0.113 2 0.512 162 0.000 001 1.56 -8.25 KLG12 6.03 31.62 0.115 4 0.512 165 0.000 003 1.56 -8.22 注:测试数据在热电离质谱仪Triton上分析,经校正后根据同位素稀释法公式计算获得;计算TDM2(Ga)、εNd(t)时,t采用谐和锆石加权平均年龄97.7 Ma;参数:(147Sm/144Nd)DM=0.213 7,(143Nd/144Nd)DM=0.513 15,(147Sm/144Nd)CC=0.118,(147Sm/144Nd)CHUR=0.196 7,(143Nd/144Nd)CHUR=0.512 638(DM、CC、CHUR分别代表亏损地幔、大陆地壳和球粒陨石均一库). 表 4 桂中及邻区花岗岩类及变沉积岩的Nd同位素特征统计结果
Table 4. Nd isotopic characteristics of granitiod rocks and meta-sedimentary rocks in Central Guangxi and adjacent aera
位置 岩性 年龄(Ma) TDM2(Ga) εNd(t) 参考文献 昆仑关岩体古民单元 斑状黑云母花岗岩 97.7±1.3 1.52~1.63 -7.68~-10.31 本文 龙头山 潜火山岩 96.1±3.0 1.45~1.49 -6.86~-7.39 段瑞春等,2011 平天山岩体 中酸性侵入岩 96.2±0.4 1.43~1.50 -6.64~-7.38 段瑞春等,2011 三叉冲岩体 黑云母花岗岩、二云母花岗岩 101~105 1.43~1.55 -6.50~-7.80 王炯辉等,2014 德庆、新华、调村、马鞍山岩体 二长花岗岩、花岗闪长岩、流纹英安岩 99~104 1.78~1.82 -9.18~-11.39 耿红燕等,2006 大容山岩体 S型花岗岩 233±5 2.06~2.09 -12.6~-13.0 祁昌实等,2007 高州杂岩和云开群 变沉积岩 440 1.91~2.17 -10.0~-13.4 Wan et al., 2010 云开地区 片麻状花岗岩 440 2.13~1.42 -1.2~-8.4 Wan et al., 2010 表 5 研究区及邻区100~90 Ma岩浆事件统计
Table 5. 100-90 Ma igneous events in research and adjacent aera
年龄(Ma) 矿物 方法 岩性 断裂 产状 矿产 地区 地点 来源 97.7±1.3 锆石 LA-ICP-MS 斑状黑云母花岗岩 南丹-昆仑关断裂 NW-SE 钨矿 大明山 昆仑关主体 本文 93±1 锆石 LA-ICP-MS 黑云母花岗岩 南丹-昆仑关断裂 NW-SE 钨矿 大明山 昆仑关主体 谭俊等,2008 97.6±0.5 锆石 LA-ICP-MS 黑云母花岗岩 南丹-昆仑关断裂 NW-SE 钨矿 大明山 昆仑关补体 乔龙,2016 93±1 锆石 SHRIMP 含斑黑云母花岗岩 南丹-昆仑关断裂 NW-SE 锡多金属矿 丹池成矿带 大厂矿田 蔡明海等,2006 91±1 锆石 SHRIMP 斑状花岗岩 南丹-昆仑关断裂 NW-SE 锡多金属矿 丹池成矿带 大厂矿田 蔡明海等,2006 91±1 锆石 SHRIMP 石英闪长玢岩脉 南丹-昆仑关断裂 NW-SE 锡多金属矿 丹池成矿带 大厂矿田 蔡明海等,2006 91±1 锆石 SHRIMP 花岗斑岩脉 南丹-昆仑关断裂 NW-SE 锡多金属矿 丹池成矿带 大厂矿田 蔡明海等,2006 103.3±2.4 锆石 SHRIMP 流纹斑岩 凭祥-大黎断裂 NE-SW 金矿 大瑶山 龙头山 陈富文等,2008 100.3±1.4 锆石 SHRIMP 花岗斑岩 凭祥-大黎断裂 NE-SW 金矿 大瑶山 龙头山 陈富文等,2008 96.1±3.0 锆石 LA-ICP-MS 潜火山岩 凭祥-大黎断裂 NE-SW 金矿 大瑶山 龙头山 段瑞春等,2011 96.2±0.4 锆石 LA-ICP-MS 中酸性侵入岩 凭祥-大黎断裂 NE-SW 金矿 大瑶山 平天山 段瑞春等,2011 98.3±0.6 锆石 LA-ICP-MS 中酸性侵入岩 凭祥-大黎断裂 NE-SW 金矿 大瑶山 平天山 乔龙,2016 102.8±0.9 锆石 LA-ICP-MS 石英二长岩 凭祥-大黎断裂 NE-SW 铜钼矿 大瑶山 大黎 胡升奇等,2012 101.7±1.2 锆石 LA-ICP-MS 石英二长斑岩 凭祥-大黎断裂 NE-SW 铜钼矿 大瑶山 大黎 胡升奇等,2012 95.3±1.5 锆石 LA-ICP-MS 花岗斑岩 凭祥-大黎断裂 NE-SW 铜钨矿 大瑶山 社山 秦亚等,2015 90~91 锆石 LA-ICP-MS 花岗斑岩 凭祥-大黎断裂 NE-SW 铜钨矿 大瑶山 社山 毕诗健等,2015 99±2 锆石 LA-ICP-MS 二长花岗岩 连县-郁南断裂 NE-SW 云开 德庆 耿红燕等,2006 101±7 锆石 LA-ICP-MS 花岗闪长岩 连县-郁南断裂 NE-SW 云开 杏花 耿红燕等,2006 104±3 锆石 LA-ICP-MS 花岗闪长岩 连县-郁南断裂 NE-SW 云开 调村 耿红燕等,2006 103.3±2.4 锆石 LA-ICP-MS 流纹英安岩 连县-郁南断裂 NE-SW 云开 马鞍山 耿红燕等,2006 100.7±0.5 锆石 LA-ICP-MS 白云母花岗岩 博白-梧州断裂 NE-SW 钨钼矿 云开 油麻坡补体 王炯辉等,2014 103±1 锆石 LA-ICP-MS 黑云母花岗岩 博白-梧州断裂 NE-SW 钨矿 云开 三叉冲 杨振等,2014 95.1±0.4 锆石 LA-ICP-MS 花岗岩 博白-梧州断裂 NE-SW 云开 陆川 乔龙,2016 90.2±1.5 锆石 LA-ICP-MS 石英二长斑岩 博白-梧州断裂 NE-SW 云开 马其岗 王晓地等,2017 -
[1] Andersen, T., 2002.Correction of Common Lead in U-Pb Analyses that do not Report 204Pb.Chemical Geology, 192(1-2):59-79. https://doi.org/10.1016/s0009-2541(02)00195-x [2] Bi, S.J., Yang, Z., Li, W., et al., 2015.Discovery of Late Cretaceous Baoshan Porphyry Copper Deposit in Dayaoshan, Qinhang Metallogenic Belt:Constraints from Zircon U-Pb Age and Hf Isotope.Earth Science, 40(9):1458-1479 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2015.132 [3] Cai, M.H., He, L.Q., Liu, G.Q., et al., 2006.SHRIMP Zircon U-Pb Dating of the Intrusive Rocks in the Dachang Tin-Polymetallic Ore Field, Guangxi and Their Geological Significance.Geological Review, 52(3):409-414 (in Chinese with English abstract). https://doi.org/10.16509/j.georeview.2006.03.019 [4] Cai, M.H., Liang, T., Wu, D.C., et al., 2004.Geochemical Characteristics of Granites and Their Tectonic Setting of Dachang Ore Field in Guangxi.Geotectonica et Metallogenia, 28(3):306-313 (in Chinese with English abstract). https://doi.org/10.16539/j.ddgzyckx.2004.03.011 [5] Charvet, J., Lapierre, H., Yu, Y.W., 1994.Geodynamic Significance of the Mesozoic Volcanism of Southeastern China.Journal of Southeast Asian Earth Sciences, 9(4):387-396. https://doi.org/10.1016/0743-9547(94)90050-7 [6] Chen, F.W., Li, H.Q., Mei, Y.P., 2008.Zircon SHRIMP U-Pb Chronology of Diagenetic Mineralization of the Longtoushan Porphyry Gold Orefield, Gui County, Guangxi.Acta Geologica Sinica, 82(7):921-926 (in Chinese with English abstract). https://doi.org/10.3321/j.issn:0001-5717.2008.07.009 [7] Chen, J.F., Jahn, B.M., 1998.Crustal Evolution of Southeastern China:Nd and Sr Isotopic Evidence.Tectonophysics, 284(1-2):101-133. https://doi.org/10.1016/s0040-1951(97)00186-8 [8] Chen, M.H., Li, Z.Y., Li, Q., et al., 2015.A Preliminary Study of multi-stage Granitoids and Related Metallogenic Series in Dataoshan Aera of Guangxi, China.Earth Science Frontiers, 22(2):41-53 (in Chinese with English abstract). https://doi.org/10.13745/j.esf.2015.02.004 [9] Chen, Y.C., Huang, M.Z., Xu, Y., et al., 1993.Tin Ore Geology in Dachang.Geology Publishing House, Beijing, 1-361 (in Chinese). [10] Cheng, Y.S., 2015.Geochemistry of Intrusive Rock in Dachang Tin-Polymetallic Ore Field, Guangxi, China:Implications for Petrogenesis and Geodynamics.Transactions of Nonferrous Metals Society of China, 25(1):284-292. https://doi.org/10.1016/s1003-6326(15)63603-2 [11] Collins, W.J., Beams, S.D., White, A.J.R., et al., 1982.Nature and Origin of A-Type Granites with Particular Reference to Southeastern Australia.Contributions to Mineralogy and Petrology, 80(2):189-200. https://doi.org/10.1007/bf00374895 [12] Creaser, R.A., Price, R.C., Wormald, R.J., 1991.A-Type Granites Revisited:Assessment of a Residual-Source Model.Geology, 19(2):163. https://doi.org/10.1130/0091-7613(1991)019 [13] Ding, X., Zhou, X.M., Sun, T., 2005.The Episodic Growth of the Continental Crustal Basement in South China:Single Zircon LA-ICPMS Dating of Guzhai Granodiorite in Guangdong.Geological Reviews, 51(4):382-392 (in Chinese with English abstract). https://doi.org/10.16509/j.georeview.2005.04.004 [14] Douce, P., Alberto, E., 1997.Generation of Metaluminous A-Type Granites by Low-Pressure Melting of Calc-Alkaline Granitoids.Geology, 25(8):743. https://doi.org/10.1130/0091-7613(1997)025 [15] Duan, R.C., Ling, W.L., Li, Q., et al., 2011.Correlations of the Late Yanshanian Tectonomagmatic Events with Metallogenesis in South China:Geochemical Constraints from the Longtoushan Gold Ore Deposit of the Dayaoshan Aera, Guangxi Province.Acta Geologica Sinica, 85(10):1644-1658 (in Chinese with English abstract).https://doi.org/11-1951/P.20110923.1427.005 http://www.ysxbcn.com/down/down_2437323.html [16] Eby, G.N., 1990.The A-Type Granitoids:A Review of their Occurrence and Chemical Characteristics and Speculations on Their Petrogenesis.Lithos, 26(1/2):115-134. https://doi.org/10.1016/0024-4937(90)90043-z [17] Eby, G.N., 1992.Chemical Subdivision of the A-Type Granitoids:Petrogenetic and Tectonic Implications.Geology, 20(7):641. https://doi.org/10.1130/0091-7613(1992)020 [18] Geng, H.Y., Xu, X.S., O'Reilly, S.Y., et al., 2006.Cretaceous Volcanic-Intrusive Magmatism in Western Guangdong and Its Geological Significance.Science in China (Series D), 36(7):601-617 (in Chinese). http://cn.bing.com/academic/profile?id=449220cfbf236af75f2107bfcd4e8e3c&encoded=0&v=paper_preview&mkt=zh-cn [19] Gilder, S.A., Gill, J., Coe, R.S., et al., 1996.Isotopic and Paleomagnetic Constraints on the Mesozoic Tectonic Evolution of South China.Journal of Geophysical Research:Solid Earth, 101(B7):16137-16154. https://doi.org/10.1029/96jb00662 [20] Griffin, W.L., Belousova, E.A., Shee, S.R., et al., 2004.Archean Crustal Evolution in the Northern Yilgarn Craton:U-Pb and Hf-Isotope Evidence from Detrital Zircons.Precambrian Research, 131(3-4):231-282. https://doi.org/10.1016/j.precamres.2003.12.011 [21] Hong, D.W., Wang, S.G., Han, B.F., et al., 1995.Tectonic Setting Classification and Discrimination Criteria for Alkaline Granites.Science in China (Series B), 25(4):418-426 (in Chinese with English abstract). [22] Hu, S.Q., Zhou, G.F., Peng, S.B., et al., 2012.Chronology and Geochemical Characteristics of Quartz Monzonite (Porphyry) in the Dali Copper-Molybdenum Deposit and Its Geological Significance.Acta Geoscientica Sinica, 33(1):23-37 (in Chinese with English abstract). https://doi.org/10.3975/cagsb.2012.01.04 [23] Jackson, S.E., Pearson, N.J., Griffin, W.L., et al., 2004.The Application of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry to in Situ U-Pb Zircon Geochronology.Chemical Geology, 211(1-2):47-69. https://doi.org/10.1016/j.chemgeo.2004.06.017 [24] Jia, X.H., Wang, Q., Tang, G.J., 2009.A-Type Granites:Research Progress and Implications.Geotectonica et Metallogenia, 33(3):465-480 (in Chinese with English abstract). https://doi.org/10.3969/j.issn.1001-1552.2009.03.017 [25] Kerr, A., Fryer, B.J., 1993.Nd Isotope Evidence for Crust-Mantle Interaction in the Generation of A-Type Granitoid Suites in Labrador, Canada.Chemical Geology, 104(1-4):39-60. https://doi.org/10.1016/0009-2541(93)90141-5 [26] Li, F.C., Hou, M.L., Luan, R.J., et al., 2016.Optimization of Analytical Conditions for LA-ICP-MS and Its Application to Zircon U-Pb Dating.Rock and Mineral Analysis, 35(1):17-23 (in Chinese with English abstract). https://doi.org/10.15898/j.cnki.11-2131/td.2016.01.004 [27] Li, J.H., Zhang, Y.Q., Dong, S.W., et al., 2014.Cretaceous Tectonic Evolution of South China:A Preliminary Synthesis.Earth-Science Reviews, 134:98-136. https://doi.org/10.1016/j.earscirev.2014.03.008 [28] Li, P., Li, J.K., Pei, R.F., et al., 2017.Multistage Magmatic Evolution and Cretaceous Peak Metallogenic Epochs of Mufushan Composite Granite Mass:Constrains from Geochronological Evidence.Earth Science, 42(10):1684-1696 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.114 [29] Li, Q., Duan, R.C., Ling, W.L., et al., 2009.Detrital Zircon U-Pb Geochronology of the Early Paleozoic Strata in Eastern Guangxi and Its Constraint on the Caledonian Tectonic Nature of the Cathaysian Continental Block.Earth Science, 34(1):189-202 (in Chinese with English abstract). https://doi.org/10.3321/j.issn:1000-2383.2009.01.017 [30] Li, S.R., Wang, D.H., Li, T., et al., 2008.Metallogenic Epochs of the Damingshan Tungsten Deposit in Guangxi and Its Prospecting Potential.Acta Geologica Sinica, 82(7):873-879 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=85aad2426ee1c0dd7c4d9bae5c8de88e&encoded=0&v=paper_preview&mkt=zh-cn [31] Li, X.H., 2000.Cretaceous Magmatism and Lithospheric Extension in Southeast China.Journal of Asian Earth Sciences, 18(3):293-305. https://doi.org/10.1016/s1367-9120(99)00060-7 [32] Li, Z.X., Li, X.H., 2007.Formation of the 1 300-km-Wide Intracontinental Orogen and Postorogenic Magmatic Province in Mesozoic South China:A Flat-Slab Subduction Model.Geology, 35(2):179. https://doi.org/10.1130/g23193a.1 [33] Liu, Y., Gao, S., Hu, Z.C., et al., 2010.Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths.Journal of Petrology, 51(1-2):537-571. https://doi.org/10.1093/petrology/egp082 [34] Loiselle, M.C., Wones, D.R., 1979.Characteristics and Origin of Anorogenic Granites.Geological Society of America, 11(7):468. http://cn.bing.com/academic/profile?id=7320ebb8516e6b0fa9f2fae891accefc&encoded=0&v=paper_preview&mkt=zh-cn [35] Ludwig, K. R., 2003. User's Manual for Isoplot 3. 0: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley. [36] Middlemost, E.A.K., 1994.Naming Materials in the Magma/Igneous Rock System.Earth-Science Reviews, 37(3-4):215-224. https://doi.org/10.1016/0012-8252(94)90029-9 [37] Pearce, J.A., Harris, N.B., Tindle, A.G., 1984.Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic rocks.Journal of Petrology, 25(4):956-983. https://doi.org/10.1093/petrology/25.4.956 [38] Qi, C.S, Deng, X.G., Li, W.X., et al., 2007.Origin of the Darongshan-Shiwandashan S-Type Granitoid Belt from Southeastern Guangxi:Geochemical and Sr-Nd-Hf Isotopic Constranints.Acta Petrologica Sinica, 23(2):403-412 (in Chinese with English abstract). https://doi.org/10.3969/j.issn.1000-0569.2007.02.019 [39] Qiao, L., 2016. Tectonic Evolution and Bauxite Metallogenesis in the Youjiang Basin and Adjacent Area (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract). [40] Qin, Y., Zhang, Q.W., Kang, Z.Q., et al., 2015.Geochronological Framework of Granitoids in Dayaoshan Metallogenic Belt, Eastern Guangxi Province.Journal of Jilin University (Earth Science Edition), 45(6):1735-1756 (in Chinese with English abstract). https://doi.org/10.13278/j.cnki.jjuese.201506115 [41] Qiu, X.F., Ling, W.L., Liu, X.M., et al., 2011.Recognition of Grenvillian Volcanic Suite in the Shennongjia Region and Its Tectonic Significance for the South China Craton.Precambrian Research, 191(3-4):101-119. https://doi.org/10.1016/j.precamres.2011.09.011 [42] Shen, W.Z., 2006.Sm-Nd Isotopic Study of Basement Metamorphic Rocks in South China and Its Constraint on Material Sources of Granitoids.Geological Journal of China Universities, 12(4):475-482 (in Chinese with English abstract). https://doi.org/10.3969/j.issn.1006-7493.2006.04.008 [43] Sláma, J., Kosler, J., Condon, D.J., et al., 2008.Plesovice Zircon-A New Natural Reference Material for U-Pb and Hf Isotopic Microanalysis.Chemical Geology, 249(1-2):1-35. https://doi.org/10.1016/j.chemgeo.2007.11.005 [44] Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19 [45] Sun, W.D., Ding, X., Hu, Y.H., et al., 2007.The Golden Transformation of the Cretaceous Plate Subduction in the West Pacific.Earth and Planetary Science Letters, 262(3-4):533-542. https://doi.org/10.1016/j.epsl.2007.08.021 [46] Sun, Y., Ma, C.Q., Liu, B., 2017.Record of Late Yanshanian Mafic Magmatic Activity in the Middle-Lower Yangtze River Metallogenic Belt.Earth Science, 42(6):891-908 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.077 [47] Tan, J., Wei, J.H., Li, S.R., et al., 2008.Geochemical Characteristics and Tectonic Significance of Kunlunguan A-Type Granite, Guangxi.Earth Science, 33(6):743-754 (in Chinese with English abstract). https://doi.org/10.3321/j.issn:1000-2383.2008.06.002 [48] Turner, S., Foden, J., Morrison, R., 1992.Derivation of Some A-Type Magmas by Fractionation of Basaltic Magma:An Example from the Padthaway Ridge, South Australia.Lithos, 28(2):151-179. https://doi.org/10.1016/0024-4937(92)90029-X [49] Wan, Y.S., Liu, D.Y., Wilde, S.A., et al., 2010.Evolution of the Yunkai Terrane, South China:Evidence from SHRIMP Zircon U-Pb Dating, Geochemistry and Nd Isotope.Journal of Asian Earth Sciences, 37:140-153. https://doi.org/10.1016/j.jseaes.2009.08.002 [50] Wang, D.H., Chen, Y.C., Chen, W., et al., 2004.Dating the Dachang Giant Tin-Polymetallic Deposit in Nandan, Guangxi.Acta Geologica Sinica, 78:132-138 (in Chinese with English abstract). https://doi.org/10.3321/j.issn:0001-5717.2004.01.015 [51] Wang, F, Y., Ling, M, X., Ding, X., et al., 2011.Mesozoic Large Magmatic Events and Mineralization in SE China:Oblique Subduction of the PacificPlate.International Geology Review, 52(5-6):704-726. https://doi.org/10.1016/S0098-3004(97)00037-X [52] Wang, J.H., Ma, X.H., Li, Y., et al, 2014.Petrogenesis of Granitic Complexes and Implications for the W-Mo Mineralization:A Case Study from the Youmapo Pluton, Guangxi Province.Acta Geologica Sinica, 88(7):1219-1235 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=c64eef73b1d74090ca7539ed65d0e435&encoded=0&v=paper_preview&mkt=zh-cn [53] Wang, Q., Zhao, Z.H., Jian, P., et al., 2005.Geochronology of Cretaceous A-type Granitoids or Alkaline Intrusive Rocks in the Hinterland, South China:Constrain for Late-Mesozoic Tectonic Evolution.Acta Petrologica Sinica, 21(3):795-808 (in Chinese with English abstract). https://doi.org/10.3969/j.issn.1000-0569.2005.03.019 [54] Wang, Q., Zhao, Z.H., Xiong, X.L., 2000.The Ascertainment of Late-Yanshanian A-Type Granite in Tongbai-Dabie Orogenic Belt.Acta Petrologica et Mineralogica, 19(4):297-306 (in Chinese with English abstract). https://www.researchgate.net/publication/292089217_The_ascertainment_of_Late-Yanshanian_A-type_granite_in_Tongbai-Dabie_Orogenic_Belt [55] Wang, X.D., Zhang, L.G., Jia, X.H., 2017.A Study of Geochronology, Geochemistry and Genesis of Maqigang Beschtauite Pluton, South Eastern Guangxi.Geological Bulletin of China, 36(5):761-771 (in Chinese with English abstract). https://doi.org/10.3969/j.issn.1671-2552.2017.05.008 [56] Watson, E, B., Harrison, T, M., 1983.Zircon Saturation Revisited:Temperature and Composition Effects in a Variety of Crustal Magma Types.Earth and Planetary Science Letters, 64(2):295-304. https://doi.org/10.1016/0012-821X(83)90211-X [57] Whalen, J.B., Currie K.L., Chappell B.W., 1987.A-Type Granites:Geochemical Charteristics, Discriminatuon and Petrogenesis.Contributions to Mineralogy and Petrology, 95:407-419. https://doi.org/10.1007/BF00402202 [58] Wu, F.Y., Li, X.H., Yang, J.H., et al., 2007.Discussions on the Petrogenesis of Granites.Acta Petrologica Sinica, 23(6):1217-1238 (in Chinese with English abstract). https://doi.org/10.3969/j.issn.1000-0569.2007.06.001 [59] Wu, F.Y., Liu, X.C., Ji, W.Q., et al., 2017.Highly Fractionated Granites:Recognition and Research.Science China Earth Sciences, 60:1201-1219. https://doi.org/10.1007/s11430-016-5139-1 [60] Wu, F.Y., Sun, D.Y., Li, H.M., et al., 2002.A-Type Granites in Northeastern China:Age and Geochemical Constraints on Their Petrogenesis.Chemical Geology, 187(1-2):143-173. https://doi.org/10.1016/S0009-2541(02)00018-9 [61] Xiang, H., 2008. Phanerozoic Metamorphism of Precambrian Metamorphic Basement in Southwestern Zhejiang (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract). [62] Yang, J.H., Wu, F.Y., Chung, S.L., et al., 2006.A Hybrid Origin for the Qianshan A-type Granite, Northeast China:Geochemical and Sr-Nd-Hf Isotopic Evidence.Lithos, 89(1-2):89-106. https://doi.org/10.1016/j.lithos.2005.10.002 [63] Yang, Z., Liu, R., Wang, X.N., et al., 2014.Petrogenesis and Tectonic Significance of Late Yanshanian Granites in Yunkai Area, Southeast China:Evidence from Zircon U-Pb Ages and Hf Isotopes.Earth Science, 39(9):1258-1276 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2014.108 [64] Yu, J.H., O'Reilly, S.Y., Zhou, M.F., 2012.U-Pb Geochronology and Hf-Nd Isotopic Geochemistry of the Badu Complex, Southeastern China:Implications for the Precambrian Crustal Evolution and Paleogeography of the Cathaysia Block.Precambrian Research, 222-223:424-449. https://doi.org/10.1016/j.precamres.2011.07.014 [65] Yuan, Z.X., Wu, L.S., Zhang, Z.Q., 1991.The Sm-Nd, Rb-Sr Isotopic Age-Dating of Mayuan Group in Northern Fujian.Acta Petrologica et Mineralogica, 10(2):127-132 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-yskw199102003.htm [66] Zhang, D., Wu, G.G., Di, Y.J., 2013.SHRIMP U-Pb Zircon Geochronology and Nd-Sr Isotopic Study of the Mamianshan Group:Implications for the Neoproterozoic Tectonic Development of Southeast China.International Geology Review, 55(6):730-748. https://doi.org/10.1080/00206814.2012.734454 [67] Zhang, Q., Wang, Y., Li, C.D., et al., 2006.Granite Classification on the Basis for Sr and Yb Contents and Its Implications.Acta Petrologica Sinica, 22(9):2249-2269 (in Chinese with English abstract). https://doi.org/10.3969/j.issn.1000-0569.2006.09.001 [68] Zhao, L., Zhou, X, W., Zhai, M, G., et al., 2014.Paleoproterozoic Tectonic Transition from Collision to Extension in the Eastern Cathaysia Block, South China:Evidence from Geochemistry, Zircon U-Pb Geochronology and Nd-Hf Isotopes of A Granite-Charnockite Suite in Southwestern Zhejiang.Lithos, 184-187:259-280. https://doi.org/10.1016/j.lithos.2013.11.005 [69] Zhou, X.M., Sun, T., Shen, W.Z., et al., 2006.Petrogenesis of Mesozoic Granitoids and Volcanic Rocks in South China:A Response to Tectonic Evolution.Episodes, 29(1):26-33. http://cn.bing.com/academic/profile?id=8265c4b55de950ade7768c2a1625f1f4&encoded=0&v=paper_preview&mkt=zh-cn [70] Zhou, Z. M., 2015. Late Mesozoic Polycyclic Tectono-Magmatic Evolution and Forming Mechanism of the Geothermal Systems in South China-New Constraints from Typical Plutons in Guangdong Province (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract). [71] Zhou, Z.M., Ma, C.Q., Wang, L.X., 2018.A Source-Depleted Early Jurassic Granitic Pluton from South China:Implication to the Mesozoic Juvenile Accretion of the South China Crust.Lithos, 300-301:278-290. https://doi.org/10.1016/j.lithos.2017.11.017 [72] Zou, H.P., Du, X.D., Lao, M.J., et al., 2014.Detrital Zircon U-Pb Geochronology of Cambrain Sandstones in Damingshan, Central Guangxi and Its Tectonic Implications.Acta Geologica Sinica, 88(10):1800-1819 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZXE201410003.htm [73] 毕诗健, 杨振, 李巍, 等, 2015.钦杭成矿带大瑶山地区晚白垩世斑岩型铜矿床:锆石U-Pb定年及Hf同位素制约.地球科学, 40(9):1458-1479. http://www.earth-science.net/WebPage/Article.aspx?id=3151 [74] 蔡明海, 何龙清, 刘国庆, 等, 2006.广西大厂锡矿田侵入岩SHRIMP锆石U-Pb年龄及其意义.地质论评, 52(3):409-414. http://www.oalib.com/paper/4876033 [75] 蔡明海, 梁婷, 吴德成, 等, 2004.桂西北丹池成矿带花岗岩地球化学特征及其构造意义.大地构造与成矿学, 28(3):306-313. http://www.oalib.com/paper/4326704 [76] 陈富文, 李华芹, 梅玉萍, 2008.广西龙头山斑岩型金矿成岩成矿锆石SHRIMP U-Pb年代学研究.地质学报, 82(7):921-926. https://www.wenkuxiazai.com/doc/812396825fbfc77da369b116.html [77] 陈懋弘, 李忠阳, 李青, 等, 2015.初论广西大瑶山地区多期次花岗质岩浆活动与成矿系列.地学前缘, 22(2):41-53. http://www.cqvip.com/QK/98600X/201502/663384307.html [78] 陈毓川, 黄民智, 徐钰, 等, 1993.大厂锡矿地质.北京:地质出版社. [79] 丁兴, 周新民, 孙涛, 2005.华南陆壳基底的幕式生长——来自广东古寨花岗闪长岩中锆石LA-ICPMS定年信息.地质论评, 51(4):382-392. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dzlp200504004&dbname=CJFD&dbcode=CJFQ [80] 段瑞春, 凌文黎, 李青, 等, 2011.华南燕山晚期构造-岩浆事件与成矿作用:来自广西大瑶山龙头山金矿床的地球化学约束.地质学报, 85(10):1644-1658. http://www.ysxbcn.com/down/down_2437323.html [81] 耿红燕, 徐夕生, O'Reilly, S.Y., 等, 2006.粤西白垩纪火山-侵入岩浆活动及其地质意义.中国科学(D辑), 36(7):601-617. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd200607002 [82] 洪大卫, 王式洸, 韩宝福, 等, 1995.碱性花岗岩的构造环境分类及其鉴别标志.中国科学(B辑), 25(4):418-426. https://www.wenkuxiazai.com/doc/d03dc42558fb770bf78a5571-3.html [83] 胡升奇, 周国发, 彭松柏, 等, 2012.广西大黎铜钼矿石英二长(斑)岩年代学、地球化学特征及其地质意义.地球学报, 33(1):23-37. http://www.oalib.com/paper/4773568 [84] 贾小辉, 王强, 唐功建, 2009.A型花岗岩的研究进展及意义.大地构造与成矿学, 33(3):465-480. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW200701008.htm [85] 李凤春, 侯明兰, 栾日坚, 等, 2016.电感耦合等离子体质谱仪与激光器联用测量条件优化及其在锆石U-Pb定年中的应用.岩矿测试, 35(1):17-23. https://www.wenkuxiazai.com/word/641d5ddf28ea81c758f578a1-1.doc [86] 李鹏, 李建康, 裴荣富, 等, 2017.幕阜山复式花岗岩体多期次演化与白垩纪稀有金属成矿高峰:年代学依据.地球科学, 42(10):1684-1696. http://www.earth-science.net/WebPage/Article.aspx?id=3668 [87] 李青, 段瑞春, 凌文黎, 等, 2009.桂东早古生代地层碎屑锆石U-Pb同位素年代学及其对华夏陆块加里东期构造事件性质的约束.地球科学, 34(1):189-202. http://www.earth-science.net/WebPage/Article.aspx?id=1816 [88] 李水如, 王登红, 梁婷, 等, 2008.广西大明山钨矿区成矿时代及其找矿前景分析.地质学报, 82(7):873-879. http://mall.cnki.net/magazine/Article/DZXE200807003.htm [89] 祁昌实, 邓希光, 李武显, 等, 2007.桂东南大容山-十万大山S型花岗岩带的成因:地球化学及Sr-Nd-Hf同位素制约.岩石学报, 23(2):403-412. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200702019 [90] 乔龙, 2016. 右江盆地及其周缘地区构造演化及铝土矿成矿作用(学位论文). 北京: 中国地质大学. http://cdmd.cnki.com.cn/Article/CDMD-11415-1016067924.htm [91] 秦亚, 张青伟, 康志强, 等, 2015.桂东大瑶山成矿带花岗岩类岩石年代学格架的厘定.吉林大学学报:地球科学版, 45(6):1735-1756. http://industry.wanfangdata.com.cn/dl/Magazine?magazineId=cckjdxxb&yearIssue=2015_6 [92] 沈渭洲, 2006.华夏地块基底变质岩同位素年龄数据评述.高校地质学报, 12(4):475-482. http://www.airitilibrary.com/Publication/alDetailPrint?DocID=10067493-200612-12-4-475-482-a [93] 孙洋, 马昌前, 刘彬, 2017.长江中下游地区燕山晚期基性岩浆活动的记录.地球科学, 42(6):891-908. http://www.earth-science.net/WebPage/Article.aspx?id=3586 [94] 谭俊, 魏俊浩, 李水如, 等, 2008.广西昆仑关A型花岗岩地球化学特征及构造意义.地球科学, 33(6):743-754. http://www.earth-science.net/WebPage/Article.aspx?id=1765 [95] 王登红, 陈毓川, 陈文, 等, 2004.广西南丹大厂超大型锡多金属矿床的成矿时代.地质学报, 78:132-138. doi: 10.3321/j.issn:0001-5717.2004.01.015 [96] 王炯辉, 马星华, 李毅, 等, 2014.花岗质复式岩体成因及其与W-Mo成矿的关系——以广西油麻坡岩体为例.地质学报, 88(7):1219-1235. https://www.wenkuxiazai.com/word/4e483f45e518964bcf847cb7-1.doc [97] 王强, 赵振华, 简平, 等, 2005.华南腹地白垩纪A型花岗岩类或碱性侵入岩年代学及其对华南晚中生代构造演化的制约.岩石学报, 21(3):795-808. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20050377&journal_id=ysxb [98] 王强, 赵振华, 熊小林, 2000.桐柏-大别造山带燕山晚期A型花岗岩的厘定.岩石矿物学杂志, 19(4):297-306. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW200004001.htm [99] 王晓地, 张利国, 贾小辉, 2017.桂东南马其岗石英二长斑岩年代学、地球化学特征及成因.地质通报, 36(5):761-771. http://cdmd.cnki.com.cn/Article/CDMD-10183-1016078919.htm [100] 吴福元, 李献华, 杨进辉, 等, 2007.花岗岩成因研究的若干问题.岩石学报, 23(6):1217-1238. http://www.cnki.com.cn/Article/CJFDTOTAL-HBDK199001002.htm [101] 向华, 2008. 浙西南前寒武纪变质基底岩系显生宙变质作用研究(硕士学位论文). 武汉: 中国地质大学. http://cdmd.cnki.com.cn/article/cdmd-10491-2008095764.htm [102] 杨振, 刘锐, 王新宇, 等, 2014.云开地区燕山晚期花岗岩的岩石成因及构造意义:锆石U-Pb年龄及Hf同位素证据.地球科学, 39(9):1258-1276. http://www.earth-science.net/WebPage/Article.aspx?id=2939 [103] 袁忠信, 吴良士, 张宗清, 等, 1991.闽北麻源群Sm-Nd, Rb-Sr同位素年龄研究.岩石矿物学杂志, 10(2):127-132. http://www.oalib.com/paper/4338142 [104] 张旗, 王焰, 李承东, 等, 2006.花岗岩的Sr-Yb分类及其地质意义.岩石学报, 22(9):2249-2269. http://www.cnki.com.cn/Article/CJFDTotal-YSXB200609000.htm [105] 周佐民, 2015. 华南晚中生代多旋回构造-岩浆演化及地热成因机制——来自广东典型岩体的制约(博士学位论文). 武汉: 中国地质大学. http://cdmd.cnki.com.cn/Article/CDMD-10491-1016061182.htm [106] 邹和平, 杜晓东, 劳妙姬, 等, 2014.广西大明山地块寒武系碎屑锆石U-Pb年龄及其构造意义.地质学报, 88(10):1800-1819. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_dizhixb201410003