The Discovery and Geological Significance of the Neoproterozoic A1-Type Granite in the Pailou Area, Wudang Uplift
-
摘要: 牌楼似斑状二长花岗岩出露于武当隆起的西部,是南秦岭地区新元古代岩浆活动的典型代表.锆石LA-ICP-MS年代学研究获得其成岩年龄为667.2±3.5 Ma.岩体Na2O+K2O含量和A/CNK分别介于8.31%~8.47%和0.89~0.94,显示出亚碱性、准铝质特征;同时样品富集大离子亲石元素Rb、K、U、Pb及高场强元素Nb、Ta,亏损Sr、P、Ti和重稀土元素,具有较高的Zr+Nb+Y+Ce含量以及10 000 Ga/Al、FeOT/(FeOT+MgO)比值,出现特征矿物铁韭闪石和富铁钠闪石,属于A1型花岗岩.牌楼岩体εHf(t)主要集中于-1.8~+1.5,来源于软流圈交代岩石圈地幔类似于OIB熔体,并伴随有一定的地壳混染作用.微量元素模拟显示,母岩浆在成岩之前发生了大规模的斜长石和辉石的分离结晶.综合区域研究资料、地质年代学、地球化学及同位素特征,结果表明武当隆起在新元古代成冰纪处于板片断裂的弧后伸展环境.Abstract: As a typical case of the Neoproterozoic magmatism in South Qinling, the Pailou porphyritic monzogranite exposed in the western margin of Wudang uplift. Zircon U-Pb dating on the granite yields an age of 667.2±3.5 Ma. The granite shows sub-alkaline and metaluminous affinities, with Na2O+K2O and A/CNK values ranging 8.31%-8.47% and 0.89-0.94, respectively. The monzogranite enriched in LILEs (i.e. Rb, K, U and Pb) and HFSEs (i.e. Nb and Ti), and depleted in Sr, P, Ti and HREE. Due to the high content of Zr+Nb+Y+Ce and ratios of 10 000 Ga/Al and FeOT/(FeOT+MgO), as well as characteristic minerals of hastingsite and ferropargasite, the Pailou monzogranite displaying A1-type geochemical features. The zircon εHf(t) values of the study rocks mainly vary from -1.8 to +1.5, indicating that the magma likely to have been sourced from mantle metasomatized by asthenosphere, OIB-like melts, with minor crustal assimilation. Based on modal calculations of trace elements, the fractional crystallization of plagioclase and pyroxene has been proposed during magmatic evolution. Integrating the data obtained from studies on geology, geochronology, geochemistry and isotopic compositions, we propose that the Pailou magmatism was the product of norogenic magmatism and formed in tectonic setting of a back-arc rift setting that probably developed in relation to slab tearing during continued slab rollback.
-
Key words:
- petrogenesis /
- A1-type granites /
- slab tearing /
- Neoproterozoic /
- Wudang uplift /
- geochemistry
-
图 1 (a) 秦岭-桐柏-大别构造简图;(b)武当隆起大地构造位置;(c)牌楼岩体出露位置
a据吴元保和郑永飞(2013);b据Ling et al.(2008)修编
Fig. 1. Geological sketch of the Qinling-Tongbai-Dabie orogenic belt (a); tectonic location of Wudang uplift (b); geographic location of Pailou granite (c)
图 3 侵入岩TAS分类图解(a);SiO2-(K2O+Na2O-CaO)图解(b);A/NK-A/CNK图解(c);SiO2-FeOT/(FeOT+MgO)图解(d)
图a据Wilson(2007);图b据Frost et al.(2001);图c据Maniar and Piccoli(1989);图d据Frost et al.(2001)
Fig. 3. Total alkalis vs. silica diagram (a); SiO2 vs. (K2O+Na2O) (b); A/NK vs. A/CNK diagram (c); the compositional range of the granitoids in the FeOT/(FeOT+MgO) vs. SiO2 diagram (d)
图 4 牌楼二长花岗岩球粒陨石标准化稀土元素配分模式(a)和原始地幔标准化微量元素蛛网图(b)
OIB、E-MORB、N-MORB数据来源于Sun and McDonough(1989)
Fig. 4. Chondrite-normalized REE patterns (a) and primitive mantle-normalized multi-element diagrams (b)
图 6 单颗粒锆石球粒陨石标准化稀土元素配分模式
岩浆锆石和热液锆石数据来源于Belousova et al.(2002)
Fig. 6. Chondrite-normalized REE patterns for the zircons
图 8 牌楼岩体中角闪石成分分类图解
Fig. 8. Composition of amphibole from the Pailou monzogranite
图 11 牌楼岩体锆石T-εHf(t)图解
武当群、耀岭河组数据来源于Wang et al.(2013);崆岭群、陡山沱组数据来源于Wang et al.(2016)
Fig. 11. T-εHf(t) diagram of the zircons from the Pailou monzogranite
图 12 矿物相分离结晶模拟(a)Sr-Ba;(b)Yb-Lu
分配系数来源于http://earthref.org/GERM/
Fig. 12. Modal calculations of trace elements (a) Sr-Ba, (b) Yb-Lu
图 13 花岗岩类构造环境判别图
据Pearce et al.(1984);Syn-COLG.同碰撞花岗岩;WPG.板内花岗岩;VAG.岛弧花岗岩;ORG.洋中脊花岗岩
Fig. 13. Diagram of tectonic setting of granite
表 1 牌楼似斑状二长花岗岩主微量元素特征
Table 1. Whole-rock major (%) and trace (10-6) elements compositions of the Pailou monzogranite
岩性 Pl-01 Pl-02 Pl-03 SiO2 74.48 74.46 74.41 TiO2 0.22 0.22 0.23 Al2O3 12.19 12.00 12.54 Fe2O3 0.93 0.78 0.91 FeO 1.82 2.13 1.72 MnO 0.08 0.08 0.06 MgO 0.03 0.02 0.07 CaO 1.18 0.91 0.78 Na2O 4.39 4.41 4.92 K2O 3.92 4.06 3.47 P2O5 0.01 0.01 0.03 Total 99.71 99.35 99.49 A/CNK 0.9 0.9 0.9 A/NK 1.1 1.0 1.1 Mg# 2.0 1.0 5.0 FeOT/(MgO+FeOT) 0.99 0.99 0.97 Fe3+/(Fe3++Fe2+) 0.32 0.25 0.32 Rb 82.04 88.16 88.33 Ba 624.2 654.7 662.2 Th 12.95 13.86 13.54 U 3.02 3.30 3.21 Nb 75.28 82.13 82.63 Ta 4.72 5.16 5.06 La 73.85 78.55 79.01 Ce 161.5 171.9 170.8 Pb 10.36 11.14 11.77 Pr 19.33 20.48 20.42 Sr 94.01 65.30 65.27 Nd 79.44 83.90 83.27 Sm 17.48 18.81 18.63 Zr 547.4 565.5 578.4 Hf 15.97 16.78 16.75 Eu 3.47 3.63 3.63 Gd 17.36 18.38 18.61 Tb 2.96 3.14 3.12 Dy 17.71 18.83 18.69 Y 95.78 102.81 103.47 Ho 3.46 3.66 3.65 Er 9.61 10.32 10.13 Tm 1.37 1.48 1.43 Yb 8.77 9.42 9.47 Lu 1.30 1.40 1.35 Cr 1.78 1.83 1.79 Co 0.18 0.16 0.17 Ni 0.26 0.22 0.20 Sc 1.81 1.87 1.86 Ga 31.67 29.48 29.80 LREE 355.04 377.23 375.81 HREE 62.54 66.63 66.44 Eu/Eu* 0.61 0.60 0.60 Zr+Nb+Ce+Y 880 922 935 10 000×Ga/Al 4.87 4.60 4.45 Nb/La 1.02 1.02 1.05 Y/Nb 1.27 1.25 1.25 Sc/Nb 0.02 0.02 0.02 Yb/Ta 1.86 1.82 1.87 Y+Nb 171.06 184.94 186.11 表 2 牌楼二长花岗岩锆石U-Pb年龄和Lu-Hf同位素特征
Table 2. LA-ICP-MS zircon U-Pb age and in-situ Hf isotope analysis data from the Pailou monzogranite
测试点 Th/
U比值 年龄(Ma) 谐和度
(%)比值 εHf(0) εHf(t) TDM1
(Ma)TDM2
(Ma)207Pb/206Pb σ 207Pb/235U σ 206Pb/238U σ 206Pb/238U σ 176Yb/177Hf σ 176Lu/177Hf σ 176Hf/177Hf σ Pl-1 0.49 0.062 4 0.002 9 0.929 5 0.038 6 0.108 5 0.001 6 663.9 9.5 99 Pl-3 0.84 0.060 9 0.003 9 0.931 5 0.052 1 0.109 1 0.001 4 667.6 8.1 99 0.023 50 0.000 14 0.000 84 0.000 00 0.282 33 0.000 01 -15.6 -1.3 1 295 1 675 Pl-4 0.53 0.060 7 0.003 4 0.896 4 0.045 6 0.108 2 0.001 7 662.3 10.0 98 Pl-5 0.51 0.062 0 0.003 5 0.919 0 0.047 4 0.109 1 0.001 7 667.3 10.1 99 0.025 73 0.000 11 0.000 93 0.000 00 0.282 32 0.000 01 -15.9 -1.6 1309 1 695 Pl-7 0.84 0.062 6 0.001 6 0.956 1 0.023 4 0.109 9 0.001 1 672.3 6.4 98 Pl-8 0.45 0.063 3 0.003 2 0.955 3 0.036 2 0.108 6 0.001 6 664.4 9.4 97 Pl-9 0.54 0.063 7 0.003 0 0.953 5 0.041 4 0.109 2 0.001 6 668.0 9.2 98 0.025 89 0.000 20 0.000 94 0.000 01 0.282 39 0.000 01 -13.4 +0.9 1 212 1 538 Pl-10 0.46 0.062 2 0.003 7 0.940 3 0.047 6 0.109 8 0.001 9 671.3 11.2 99 Pl-11 0.76 0.062 5 0.002 5 0.930 8 0.032 8 0.109 3 0.001 3 668.5 7.8 99 Pl-12 0.46 0.060 7 0.003 2 0.917 2 0.046 7 0.108 9 0.001 3 666.3 7.8 99 Pl-13 0.53 0.060 1 0.002 8 0.890 8 0.040 0 0.108 3 0.001 5 662.8 8.5 97 Pl-14 0.96 0.063 4 0.002 1 0.942 8 0.031 3 0.108 5 0.001 5 664.1 8.8 98 Pl-15 0.51 0.064 4 0.003 0 0.948 5 0.043 7 0.108 6 0.001 8 664.7 10.7 98 0.020 28 0.000 04 0.000 75 0.000 00 0.282 23 0.000 01 -19.2 -4.9 1 434 1 903 Pl-16 0.49 0.061 2 0.003 2 0.906 1 0.043 1 0.107 6 0.001 4 658.9 8.3 99 Pl-17 0.49 0.060 8 0.003 2 0.912 4 0.044 2 0.108 5 0.001 6 663.9 9.2 99 Pl-19 0.46 0.064 2 0.003 6 0.953 2 0.047 5 0.109 7 0.001 9 670.8 10.8 98 Pl-20 0.45 0.062 2 0.003 3 0.920 4 0.042 3 0.109 4 0.001 5 669.4 8.9 98 0.015 64 0.000 03 0.000 57 0.000 00 0.282 57 0.000 01 -7.0 +7.5 950 1 123 Pl-21 0.51 0.062 1 0.003 9 0.952 1 0.050 0 0.110 8 0.001 6 677.6 9.4 99 Pl-22 1.19 0.063 3 0.002 2 0.951 7 0.028 0 0.109 0 0.001 2 667.1 7.1 98 0.069 92 0.000 23 0.002 47 0.000 01 0.282 34 0.000 01 -15.4 -1.8 1 344 1 706 Pl-25 0.57 0.062 1 0.003 6 0.940 2 0.045 7 0.110 5 0.001 5 675.7 8.7 99 0.021 73 0.000 07 0.000 79 0.000 00 0.282 37 0.000 02 -14.1 +0.6 1 235 1 569 Pl-27 0.49 0.060 8 0.003 2 0.908 6 0.044 5 0.108 3 0.001 6 662.6 9.5 99 Pl-28 0.55 0.063 3 0.003 4 0.933 5 0.048 7 0.109 2 0.001 6 668.1 9.5 99 Pl-29 0.48 0.062 8 0.003 3 0.924 2 0.041 6 0.108 6 0.001 7 664.9 9.9 99 Pl-30 0.48 0.062 0 0.003 0 0.917 4 0.042 1 0.108 8 0.001 6 666.0 9.1 99 0.023 18 0.000 03 0.000 83 0.000 00 0.282 41 0.000 01 -12.8 +1.5 1 186 1 501 表 3 牌楼似斑状二长花岗岩角闪石主量元素(%)成分特征
Table 3. Representative chemical compositions (%) of hornblende from the Pailou monzogranite
岩性 Pl-01 Pl-02 SiO2 38.05 38.09 38.21 38.10 38.19 38.28 38.33 38.35 TiO2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Al2O3 11.38 11.09 11.05 11.38 11.41 11.12 11.39 10.87 FeOT 31.47 31.65 31.49 31.83 32.01 31.66 32.38 31.80 MnO 0.71 0.71 0.67 0.70 0.59 0.65 0.69 0.79 MgO 0.18 0.15 0.12 0.17 0.13 0.16 0.13 0.13 CaO 10.20 10.09 10.28 10.07 10.07 10.15 10.25 10.46 Na2O 1.66 1.63 1.60 1.55 1.64 1.62 1.49 1.53 K2O 2.89 2.86 2.82 3.04 2.93 2.90 2.88 2.75 P2O5 0.00 0.00 0.00 0.01 0.11 0.02 0.03 0.00 Total 96.54 96.27 96.24 96.85 97.08 96.55 97.55 96.68 以23个O原子为基准计算 Si 6.29 6.31 6.34 6.27 6.28 6.33 6.26 6.34 IVAl 1.71 1.69 1.66 1.73 1.72 1.67 1.74 1.66 VIAl 0.51 0.48 0.50 0.48 0.49 0.49 0.45 0.46 Ti 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Fe3+ 0.45 0.50 0.38 0.56 0.55 0.46 0.63 0.42 Fe2+ 3.90 3.88 3.99 3.82 3.85 3.92 3.79 3.98 Mn 0.10 0.10 0.09 0.10 0.08 0.09 0.09 0.11 Mg 0.04 0.04 0.03 0.04 0.03 0.04 0.03 0.03 Ca 1.81 1.79 1.83 1.78 1.77 1.80 1.79 1.85 Na 0.53 0.52 0.51 0.49 0.52 0.52 0.47 0.49 K 0.61 0.61 0.60 0.64 0.61 0.61 0.60 0.58 (Ca+Na)B 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 NaB 0.19 0.21 0.17 0.22 0.23 0.20 0.21 0.15 (Na+K)A 0.95 0.92 0.94 0.91 0.91 0.93 0.86 0.92 Mg/(Mg+Fe2+) 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 Fe3+/(Fe3++VIAl) 0.47 0.51 0.43 0.54 0.53 0.48 0.58 0.48 注:角闪石的化学式为A0-1B2VIC5IVT8O22;A.代表占据A位置的阳离子;B.代表占据B位置的阳离子. -
[1] Belousova, E., Griffin, W., O'Reilly, S.Y., et al., 2002.Igneous Zircon:Trace Element Composition as an Indicator of Source Rock Type.Contributions to Mineralogy and Petrology, 143(5):602-622. https://doi.org/10.1007/s00410-002-0364-7 [2] Blichert-Toft, J., Albarède, F., 1997.The Lu-Hf Isotope Geochemistry of Chondrites and the Evolution of the Mantle-Crust System.Earth and Planetary Science Letters, 148(1/2):243-258. https://doi.org/10.1016/s0012-821x(97)00040-x [3] Bonin, B., 2004.Do Coeval Mafic and Felsic Magmas in Post-Collisional to within-Plate Regimes Necessarily Imply Two Contrasting, Mantle and Crustal, Sources?A Review.Lithos, 78(1/2):1-24. https://doi.org/10.1016/j.lithos.2004.04.042 [4] Cawood, P.A., Wang, Y.J., Xu, Y.J., et al., 2013.Locating South China in Rodinia and Gondwana:A Fragment of Greater India Lithosphere?Geology, 41(8):903-906. https://doi.org/10.1130/g34395.1 [5] Chappell, B.W., White, A.J.R., 1992.I-and S-Type granites in the Lachlan Fold Belt.Geological Society of America Special Papers, 272:1-26. https://doi.org/10.1017/S0263593300007720 [6] Chen, Y.X., Li, H., Sun, W.D., et al., 2016.Generation of Late Mesozoic Qianlishan A2-Type Granite in Nanling Range, South China:Implications for Shizhuyuan W-Sn Mineralization and Tectonic Evolution.Lithos, 266-267:435-452. https://doi.org/10.13039/501100001809 [7] Chen, Z.H., Lu, S.N., Li, H.K., et al., 2006.Constraining the Role of the Qinling Orogen in the Assembly and Break-Up of Rodinia:Tectonic Implications for Neoproterozoic Granite Occurrences.Journal of Asian Earth Sciences, 28(1):99-115. https://doi.org/10.1016/j.jseaes.2005.03.011 [8] Collins, W.J., Beams, S.D., White, A.J.R., et al., 1982.Nature and Origin of A-Type Granites with Particular Reference to Southeastern Australia.Contributions to Mineralogy and Petrology, 80(2):189-200. https://doi.org/10.1007/bf00374895 [9] Douce, A.E.P., 1997.Generation of Metaluminous A-Type Granites by Low-Pressure Melting of Calc-Alkaline Granitoids.Geology, 25(8):743.https://doi.org/10.1130/0091-7613(1997)025<0743:gomatg>2.3.co;2 doi: 10.1130/0091-7613(1997)025<0743:gomatg>2.3.co;2 [10] Eby, G.N., 1990.The A-Type Granitoids:A Review of Their Occurrence and Chemical Characteristics and Speculations on Their Petrogenesis.Lithos, 26(1/2):115-134. https://doi.org/10.1016/0024-4937(90)90043-z [11] Eby, G.N., 1992.Chemical Subdivision of the A-Type Granitoids:Petrogenetic and Tectonic Implications.Geology, 20(7):641.https://doi.org/10.1130/0091-7613(1992)020<0641:csotat>2.3.co;2 doi: 10.1130/0091-7613(1992)020<0641:csotat>2.3.co;2 [12] Ferrari, L., 2004.Slab Detachment Control on Mafic Volcanic Pulse and Mantle Heterogeneity in Central Mexico.Geology, 32(1):77. https://doi.org/10.1130/g19887.1 [13] Frost, B.R., Barnes, C.G., Collins, W.J., et al., 2001.A Geochemical Classification for Granitic Rocks.Journal of Petrology, 42(11):2033-2048. https://doi.org/10.1093/petrology/42.11.2033 [14] Griffin, W.L., Wang, X., Jackson, S.E., et al., 2002.Zircon Chemistry and Magma Mixing, SE China:In-Situ Analysis of Hf Isotopes, Tonglu and Pingtan Igneous Complexes.Lithos, 61(3/4):237-269. https://doi.org/10.1016/s0024-4937(02)00082-8 [15] Jolivet, L., Menant, A., Sternai, P., et al., 2015.The Geological Signature of a Slab Tear below the Aegean.Tectonophysics, 659:166-182. https://doi.org/10.13039/501100000781 [16] King, P.L., White, A.J.R., Chappell, B.W., et al., 1997.Characterization and Origin of Aluminous A-Type Granites from the Lachlan Fold Belt, Southeastern Australia.Journal of Petrology, 38(3):371-391. https://doi.org/10.1093/petroj/38.3.371 [17] Leake, B.E., Woolley, A.R., Arps, C.E.S., et al., 1997.Nomenclature of Amphiboles Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names.European Journal of Mineralogy, 9(3):623-651. https://doi.org/10.1127/ejm/9/3/0623 [18] Ling, W.L., Duan, R.C., Liu, X.M., et al., 2010.U-Pb Dating of Detrital Zircons from the Wudangshan Group in the South Qinling and Its Geological Significance.Chinese Science Bulletin, 12:1153-1161 (in Chinese). http://cn.bing.com/academic/profile?id=cadd70455cb19bf4a5f9856355f39a7a&encoded=0&v=paper_preview&mkt=zh-cn [19] Ling, W.L., Ren, B.F., Duan, R.C., et al., 2008.Timing of the Wudangshan, Yaolinghe Volcanic Sequences and Mafic Sills in South Qinling:U-Pb Zircon Geochronology and Tectonic Implication.Chinese Science Bulletin, 53(14):2192-2199. https://doi.org/10.1007/s11434-008-0269-6 [20] Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008.In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard.Chemical Geology, 257(1/2):34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004 [21] Maniar, P.D., Piccoli, P.M., 1989.Tectonic Discrimination of Granitoids.Geological Society of America Bulletin, 101(5):635-643.https://doi.org/10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2 doi: 10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2 [22] Mingram, B., Trumbull, R.B., Littman, S., et al., 2000.A Petrogenetic Study of Anorogenic Felsic Magmatism in the Cretaceous Paresis Ring Complex, Namibia:Evidence for Mixing of Crust and Mantle-Derived Components.Lithos, 54(1/2):1-22. https://doi.org/10.1016/s0024-4937(00)00033-5 [23] Pearce, J.A., Cann, J.R., 1973.Tectonic Setting of Basic Volcanic Rocks Determined Using Trace Element Analyses.Earth and Planetary Science Letter, 19:290-300. https://doi.org/10.1016/0012-821X(73)90129-5 [24] Pearce, J.A., Harris, N.B.W., Tindle, A.G., 1984.Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks.Journal of Petrology, 25(4):956-983. https://doi.org/10.1093/petrology/25.4.956 [25] Pitcher, W. S., 1982. Granite Type and Tectonic Environment. In: Hsü, K., ed., Mountain Buiding Processes. Academic Press, London, 19-40. [26] Qorbani, E., Bianchi, I., Bokelmann, G., 2015.Slab Detachment under the Eastern Alps Seen by Seismic Anisotropy.Earth and Planetary Science Letters, 409:96-108. https://doi.org/10.13039/501100002428 [27] Rudnick, R. L., Gao, S., 2003. Composition of the Continental Crust. In: Rudnick, R. L. ed., Treatise on Geochemistry 3. Elsevier, Amsterdam, 1-64. [28] Söderlund, U., Patchett, P.J., Vervoort, J.D., et al., 2004.The 176Lu Decay Constant Determined by Lu-Hf and U-Pb Isotope Systematics of Precambrian Mafic Intrusions.Earth and Planetary Science Letters, 219(3/4):311-324. https://doi.org/10.1016/s0012-821x(04)00012-3 [29] Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [30] Turner, S., Sandiford, M., Foden, J., 1992.Some Geodynamic and Compositional Constraints on "Postorogenic" Magmatism.Geology, 20(10):931.https://doi.org/10.1130/0091-7613(1992)020<0931:sgacco>2.3.co;2 doi: 10.1130/0091-7613(1992)020<0931:sgacco>2.3.co;2 [31] Vervoort, J.D., Patchett, P.J., 1996.Behavior of Hafnium and Neodymium Isotopes in the Crust:Constraints from Precambrian Crustally Derived Granites.Geochimica et Cosmochimica Acta, 60(19):3717-3733. https://doi.org/10.1016/0016-7037(96)00201-3 [32] Wang, L.J., Griffin, W.L., Yu, J.H., et al., 2013.U-Pb and Lu-Hf Isotopes in Detrital Zircon from Neoproterozoic Sedimentary Rocks in the Northern Yangtze Block:Implications for Precambrian Crustal Evolution.Gondwana Research, 23(4):1261-1272. https://doi.org/10.13039/501100001809 [33] Wang, R.R., Xu, Z.Q., Santosh, M., et al., 2016.Late Neoproterozoic Magmatism in South Qinling, Central China:Geochemistry, Zircon U-Pb-Lu-Hf Isotopes and Tectonic Implications.Tectonophysics, 683:43-61. https://doi.org/10.1016/j.tecto.2016.05.050 [34] Whalen, J.B., Currie, K.L., Chappell, B.W., 1987.A-Type Granites:Geochemical Characteristics, Discrimination and Petrogenesis.Contributions to Mineralogy and Petrology, 95(4):407-419. https://doi.org/10.1007/bf00402202 [35] Wilson, B.M., 2007.Igneous Petrogenesis:A Global Tectonic Approach.Springer Science & Business Media, London. [36] Wu, F.Y., Li, X.H., Yang, J.H., et al., 2007.Discussion on the Petrogensis of Granites.Acta Petrologica Sinica, 23(6):1217-1238 (in Chinese with English abstract). https://doi.org/10.3969/j.issn.1000-0569.2007.06.001 [37] Wu, Y.B., Zheng, Y.F., 2013.Southward Accretion of the North China Block and the Tectonic Evolution of the Qinling-Tongbai-Hong'an Orogenic Belt.Chinese Science Bulletin, 58(23):2246-2250 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=4ae062082edcf514c52ba6b7b8aae368&encoded=0&v=paper_preview&mkt=zh-cn [38] Yang, B.H., Zhang, C.L., Li, L., 2011.Sr-Nd-Pb Isotopic Characteristics of the Granitoids in the Douling Complexes, Eastern Qinling, China and Its Geological Significance.Geological Bulletin of China, 30(2):439-447 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=71e8dbd95e76f65faedf806af348b4df&encoded=0&v=paper_preview&mkt=zh-cn [39] Zhang, Y.Q., Zhang, J., Li, H.K., et al., 2013.Zircon U-Pb Geochronology of the Meta-Acidic Volcanic Rocks from the Wudangshan Group, Southern Qinling Mountains, Central China.Acta Geologica Sinica, 87(7):922-930 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=2dcafcee7f4ca8ce85964a92230d689d&encoded=0&v=paper_preview&mkt=zh-cn [40] Zhu, X.Y., Chen, F.K., Nie, H., et al., 2014.Neoproterozoic Tectonic Evolution of South Qinling, China:Evidence from Zircon Ages and Geochemistry of the Yaolinghe Volcanic Rocks.Precambrian Research, 245:115-130. https://doi.org/10.1016/j.precamres.2014.02.005 [41] Zhu, X.Y., Chen, F.K., Liu, B.X., et al., 2015.Geochemistry and Zircon Ages of Mafic Dikes in the South Qinling, Central China:Evidence for Late Neoproterozoic Continental Rifting in the Northern Yangtze Block.International Journal of Earth Sciences, 104(1):27-44. https://doi.org/10.1007/s00531-014-1056-z [42] 凌文黎, 段瑞春, 柳小明, 等, 2010.南秦岭武当山群碎屑锆石U-Pb年代学及其地质意义.科学通报, 12:1153-1161. https://www.wenkuxiazai.com/doc/51938a3f0912a216147929fc-3.html [43] 吴福元, 李献华, 杨进辉, 等, 2007.花岗岩成因研究的若干问题.岩石学报, 23(6):1217-1238. http://www.cnki.com.cn/Article/CJFDTOTAL-HBDK199001002.htm [44] 吴元保, 郑永飞, 2013.华北陆块古生代南向增生与秦岭-桐柏-红安造山带构造演化.科学通报, 58(23):2246-2250. http://www.oalib.com/paper/4980990 [45] 杨斌虎, 张成立, 李雷, 2011.东秦岭陡岭杂岩花岗岩的Sr-Nd-Pb同位素特征及其地质意义.地质通报, 30(2):439-447. https://doi.org/10.3969/j.issn.1671-2552.2011.02.031 [46] 张永清, 张健, 李怀坤, 等, 2013.南秦岭武当山群变质酸性火山岩锆石U-Pb年代学.地质学报, 87(7):922-930. https://doi.org/10.3969/j.issn.0001-5717.2013.07.002