Zircon U-Pb Chronology, Geochemistry of the Indonesian Granitic Rocks from Northern Yuechengling Batholith in Guangxi-Hunan Junction
-
摘要: 湘桂边界越城岭岩基北部印支期花岗岩时空分布和岩石成因目前还不明确.以该时期花岗岩为研究对象,进行了岩石学、锆石U-Pb年代学、地球化学和Nd-Hf同位素组成研究.研究结果显示,印支期花岗岩主要分布在湘桂边界以北区域,形成时代236~222 Ma.岩性以含电气石的二长花岗岩为主,副矿物组合为锆石、(斜)黝帘石、磷灰石、石榴石,并具有高硅、富碱,贫钙、镁和磷,弱-强过铝质的地球化学特征.早阶段花岗岩源岩主要为变质杂砂岩,可能混入了少许新生地壳组分;晚阶段花岗岩源岩由不同比例的变质泥质岩石和变质杂砂岩组成.花岗岩具有负且稳定的锆石εNd(t)值(-9.3~-10.6)和εHf(t)值(-5.4~-11.9),反映源区平均地壳存留年龄为1.8 Ga左右.花岗质岩浆的形成受控于华南印支期后造山加厚地壳背景下变沉积岩中云母类矿物的脱水熔融过程,其运移和就位与岩基旁侧深大断裂的松弛调整密切相关.Abstract: The temporal and spatial distribution of Indonesian granitoid in northern Yuechengling batholith is still uncertained. In this paper, a compilation of petrology, zircon U-Pb chronology, geochemistry and Nd-Hf isotopes was used on the granitoid to solve this uncertainty. The result shows Indonesian granitoid spreads in north area of the border with the age of 236-222 Ma, and mainly consists of medium to fine grained tourmaline-bearing monzogranites, with accessory minerals assemblage of zircon, zoisite (and/or clinozoisite), apatite and garnet. The granitic samples have characteristics of high SiO2, alkaline, low CaO, MgO, P2O5 contents, and weak to strong peraluminous (A/CNK=1.07-1.17), with enrichment of Rb, Th, U and strong depletion of Ba, Sr, Eu, Nb, Ti elements. Source of early stage of Indonesian granitic rocks mainly consisting of metagreywackes, with small amount of new crustal component. Those of late stage are inhomogeneous mixing of metagreywackes and metapelites. Granitic rocks of both stage have stable high negative εNd(t)(-9.3——10.6) and εHf(t) (-5.4——11.9) ratios with source's average crustal residence age of ca 1.8 Ga. Integrated with Indonesian tectonic involvement of South China, formation of granitic magma is perhaps due to dehydration melting of mica-riched metasediments during post-orogenic thickened crust environment, migration and emplacement of the magma is controlled by relaxation of deep fault adjacent to the batholith.
-
Key words:
- zircon U-Pb chronology /
- geochemistry /
- Nd-Hf isotope /
- Indosinian /
- Guangxi-Hunan junction
-
图 1 越城岭-苗儿山岩基大地构造位置
Fig. 1. Tectonic location of Yuechengling-Miaoershan batholiths
图 2 越城岭-苗儿山岩基地质简图
1.地质界线;2.涟源-资源断裂;3.元古界;4.古生界;5.中生界;6.花岗岩;7.钨矿床(点);8.钨锡矿床(点);9.钨铜矿床(点);10.采样地点;11.花岗岩年代及方法;12.晋宁期花岗岩;13.加里东期第Ⅰ阶段花岗岩;14.加里东期第Ⅱ阶段花岗岩;15.印支期花岗岩;16.工作区.LA为LA-ICP-MS;SH为SHRIMP;TIMS为热电离质谱法;SIMS为二次离子质谱法.年代学数据据赵葵东等(2006)、谢晓华等(2008)、柏道远等(2010, 2014, 2015)、石少华等(2010)、伍静等(2012)、杨振(2012)、Chu et al.(2012)、程顺波等(2013, 2016)、Zhao et al.(2013)、寇晓虎等(2014)、张迪等(2015)、陈文迪等(2016)、杜云等(2017)
Fig. 2. Geological sketch of Yuechengling-Miaoershan batholiths
图 3 越城岭岩基北部印支期花岗岩岩石学和矿物学照片
a.晚阶段细粒二长花岗岩岩株侵入到早阶段中细粒少斑二长花岗岩中(14D504);b.晚阶段细粒二长花岗岩岩脉侵入到早阶段中粒斑状花岗岩中(14D686);c.早阶段中细粒含斑二长花岗岩中电气石石英钾长石伟晶岩团块(14D545);d.早阶段中粒斑状二长花岗岩显微照片(14D529)(+);e.晚阶段细粒正长花岗岩显微照片(14D561)(+);f.样品14D561副矿物含石榴石(-).Tou.电气石;Pl.斜长石;Kf.正长石;Ms.白云母;Q.石英;Gr.石榴子石;+为正交偏光,-为单偏光
Fig. 3. Photographs of Indosinian granitic rocks of northern Yuechengling batholiths, and their micrographs under microscope
图 6 越城岭岩基北部印支期花岗岩样品的微量元素蜘网图解(a)和稀土元素配分图解(b)
原始地幔和球粒陨石标准值据Sun and McDonough(1989)
Fig. 6. Primitive mantle-normalized spider diagram (a) and chondrite-normalized REE patterns (b) of Indosinian granitic samples of northern Yuechengling batholith
图 7 越城岭岩基北部印支期花岗岩样品的εNd(t)-t关系
底图据沈渭洲等(1994)
Fig. 7. εNd(t)-t diagram of various granitic rocks of Indonesian granitic samples from northern Yuechengling batholith
图 9 越城岭岩基北部印支期花岗岩样品C/MF-A/MF图解图解
Fig. 9. Diagram of C/MF vs A/MFof Indonesian granitic rocks of northern Yuechengling batholith
表 1 越城岭-苗儿山岩基成岩期次简表
Table 1. Diagenetic stage of Yuechenging-Miaoershan batholiths
成岩期次 位置 产出形式 岩性组合 形成时间 参考文献 晋宁期 苗儿山岩体西北部猫儿界、叶溪江和报木坪等地 小型岩株 片麻状花岗闪长岩、二长花岗岩和花岗斑岩 811~806 Ma 李福顺和周厚祥,2002;柏道远等,2010;刘伟等,2011 加里东期 越城岭、苗儿山岩体大部 大型岩基 花岗闪长岩、(含电气石)二长花岗岩 438~381 Ma Zhao et al., 2013;程顺波等,2016及其引用文献 印支期 越城岭北部,中部戈洞坪等.苗儿山南部油麻岭、杨桥岭,中部香草坪、豆榨山等地 岩基和中小型岩株 (含电气石)二长花岗岩、正长花岗岩 236~211 Ma 谢晓华等,2008;石少华等,2010;伍静等,2012;程顺波等,2013;寇晓虎等,2014以及本文 表 2 越城岭岩基北部印支期花岗岩样品锆石U-Th-Pb同位素分析结果
Table 2. U-Th-Pb isotopic analysis of zircons from Indonesian granites from northern Yuechengling batholith
分析点 Pb*(10-6) Th(10-6) U(10-6) Th/U比值 207Pb/206Pb比值 1σ(10-5) 207Pb/235U比值 1σ(10-5) 206Pb/238U比值 1σ(10-5) 207Pb/235U年龄(Ma) 1σ 206Pb/238U年龄(Ma) 1σ 中粒斑状二长花岗岩样品(14D529)(坐标110°54′52″E、26°27′11″N) 1 82.5 461 2 653 0.17 0.050 25 104 0.237 56 465 0.034 11 40 216 4 216 2 2 29.6 607 803 0.76 0.052 03 176 0.247 88 764 0.034 74 55 225 6 220 3 3 11.4 290 280 1.03 0.055 99 492 0.265 22 2 159 0.035 97 101 239 17 228 6 4 9.8 210 258 0.81 0.054 90 448 0.254 76 1 948 0.034 55 99 230 16 219 6 5 5.5 124 146 0.85 0.057 80 441 0.257 47 1 563 0.034 65 117 233 13 220 7 6 16.6 278 472 0.58 0.051 92 245 0.245 86 1 031 0.035 23 63 223 8 223 4 7 21.0 229 634 0.36 0.057 59 264 0.271 70 1 214 0.034 37 66 244 10 218 4 8 29.3 174 911 0.19 0.051 83 158 0.247 07 734 0.034 48 45 224 6 219 9 61.9 231 1 960 0.12 0.052 13 138 0.253 65 602 0.035 34 51 230 5 224 3 10 59.1 189 1 881 0.10 0.050 83 142 0.248 89 672 0.035 35 46 226 5 224 3 11 49.1 180 1 475 0.12 0.053 42 211 0.266 43 1 017 0.036 01 69 240 8 228 4 12 33.7 188 1 018 0.18 0.054 04 188 0.260 90 823 0.035 27 51 236 7 223 3 13 31.6 284 826 0.34 0.052 94 221 0.286 24 1 185 0.039 94 97 256 9 252 6 14 101.0 322 3 083 0.10 0.052 55 157 0.257 99 64 0.035 68 69 233 5 226 4 15 93.0 165 2 879 0.06 0.051 45 143 0.253 86 644 0.035 78 56 230 5 227 4 16 24.3 177 726 0.24 0.052 90 224 0.249 25 102 0.034 56 59 226 8 219 4 17 45.3 126 1 403 0.09 0.051 94 161 0.251 43 746 0.035 20 48 228 6 223 3 18 13.1 274 323 0.85 0.053 45 531 0.252 77 2 255 0.035 50 130 229 18 225 8 19 20.8 244 592 0.41 0.053 75 247 0.257 04 1 071 0.035 44 68 232 9 225 4 20 24.7 156 749 0.21 0.051 81 194 0.244 50 866 0.034 72 61 223 7 220 4 中粗粒斑状二长花岗岩样品(14D548)(坐标110°58′38″E、26°27′02″N) 1 18.3 97 537 0.18 0.052 60 215 0.255 85 962 0.035 77 63 231 8 227 4 2 32.5 390 936 0.42 0.051 44 168 0.243 57 741 0.034 64 50 221 6 219 3 3 27.4 158 789 0.20 0.053 07 247 0.262 24 987 0.036 26 77 236 8 230 5 4 18.6 174 517 0.34 0.054 89 249 0.266 25 1 040 0.036 10 94 240 8 229 6 5 22.8 92 708 0.13 0.052 24 159 0.251 79 771 0.035 18 56 228 6 223 4 6 23.0 122 712 0.17 0.051 35 152 0.242 50 703 0.034 44 45 220 6 218 3 7 33.6 240 1 008 0.24 0.050 99 188 0.242 93 802 0.034 78 57 221 7 220 4 8 17.8 149 528 0.28 0.051 97 193 0.248 44 904 0.035 08 54 225 7 222 3 9 54.5 248 1 659 0.15 0.052 62 128 0.255 98 609 0.035 25 44 231 5 223 3 10 20.7 157 612 0.26 0.052 45 205 0.253 27 945 0.035 29 62 229 8 223 4 11 53.3 258 1 551 0.17 0.052 16 158 0.254 10 691 0.035 48 45 230 6 225 3 12 26.9 463 669 0.69 0.054 52 440 0.260 58 1816 0.035 85 142 235 15 227 9 13 60.4 268 1 806 0.15 0.050 79 120 0.243 69 561 0.034 77 44 221 5 220 3 14 29.0 359 769 0.47 0.054 08 280 0.262 64 1 267 0.035 41 71 237 10 224 4 15 26.4 237 746 0.32 0.051 38 160 0.248 10 716 0.035 33 52 225 6 224 3 16 53.8 347 1 573 0.22 0.054 35 150 0.262 07 677 0.035 11 45 236 5 222 3 17 65.2 185 1 945 0.10 0.053 95 141 0.260 58 703 0.034 85 48 235 6 221 3 18 118.0 481 3 442 0.14 0.051 20 95 0.249 48 462 0.035 14 39 226 4 223 2 19 21.2 124 607 0.20 0.051 80 330 0.248 22 1 448 0.034 95 57 225 12 221 4 20 88.1 469 2 560 0.18 0.053 55 131 0.259 68 617 0.035 03 42 234 5 222 3 细粒少斑二长花岗岩样品(14D503)(坐标111°01′36″E、26°25′01″N) 1 36.3 1 160 809 1.43 0.051 28 346 0.242 36 1 577 0.034 26 69 220 13 217 4 2 134.0 378 3 623 0.10 0.069 97 174 0.364 46 1 048 0.037 43 53 316 8 237 3 3 129.0 493 3 721 0.13 0.051 17 119 0.258 10 5 799 0.036 57 54 233 5 231 3 4 27.2 378 749 0.50 0.053 86 247 0.252 85 1 120 0.034 32 68 229 9 218 4 5 99.3 499 2 088 0.24 0.131 60 378 0.692 11 2 092 0.037 92 54 534 13 240 3 6 87.8 478 2 454 0.19 0.054 55 143 0.272 29 6 633 0.036 19 53 245 5 229 3 7 22.7 289 622 0.46 0.050 00 200 0.238 08 921 0.035 09 59 217 7 222 4 8 42.3 303 606 0.50 0.055 75 192 0.498 50 1 606 0.065 16 86 411 11 407 5 9 131.0 358 3 738 0.10 0.053 44 127 0.268 52 593 0.036 48 44 242 5 231 3 10 40.5 445 1 036 0.43 0.053 34 393 0.265 10 1 871 0.036 38 100 239 15 230 6 11 45.0 368 1 261 0.29 0.054 26 207 0.257 43 886 0.035 25 58 233 7 223 4 12 448.0 469 8 667 0.05 0.120 23 513 0.781 75 3 871 0.045 61 86 586 22 288 5 13 23.3 369 559 0.66 0.053 82 456 0.272 99 2 535 0.036 48 128 245 20 231 8 14 43.6 232 1 187 0.20 0.052 60 281 0.264 39 1 234 0.036 81 95 238 10 233 6 15 137.0 551 3 994 0.14 0.053 27 100 0.265 75 581 0.035 94 52 239 5 228 3 16 73.4 404 2 066 0.20 0.050 91 177 0.260 35 951 0.036 75 57 235 8 233 4 17 80.0 642 2 300 0.28 0.053 42 143 0.258 87 704 0.034 96 52 234 6 221 3 18 68.1 458 1 947 0.23 0.052 47 166 0.261 80 792 0.036 10 61 236 6 229 4 19 28.7 265 817 0.32 0.053 37 196 0.263 95 962 0.036 16 68 238 8 229 4 20 49.8 1 162 1 189 0.98 0.053 21 152 0.270 09 733 0.036 92 59 243 6 234 4 细粒正长花岗岩样品(14D561)(坐标110°54′03″E、26°25′48″N) 1 128.0 994 3 717 0.27 0.066 46 167 0.325 66 735 0.035 58 43 286 6 225 3 2 12.8 206 357 0.58 0.053 08 226 0.251 45 1 105 0.034 72 68 228 9 220 4 3 20.0 198 590 0.34 0.051 20 189 0.244 89 881 0.034 87 51 222 7 221 3 4 100.0 328 3 106 0.11 0.052 17 174 0.252 28 882 0.034 94 58 228 7 221 4 5 167.0 321 5 253 0.06 0.051 81 87 0.255 11 442 0.035 61 38 231 4 226 2 6 26.9 224 815 0.27 0.051 87 170 0.244 55 786 0.034 22 53 222 6 217 3 7 31.5 201 960 0.21 0.053 29 231 0.254 10 1 099 0.034 56 63 230 9 219 4 8 20.1 161 629 0.26 0.044 04 243 0.200 20 994 0.033 52 68 185 8 212 4 9 39.1 397 528 0.75 0.055 86 183 0.525 79 1 711 0.068 73 112 429 11 429 7 10 26.8 253 794 0.32 0.054 27 190 0.262 79 1 047 0.034 84 51 237 8 221 3 11 57.9 201 1 681 0.12 0.051 09 150 0.247 23 754 0.035 06 53 224 6 222 3 12 57.4 460 1 563 0.29 0.053 29 137 0.259 57 617 0.035 53 48 234 5 225 3 13 25.8 287 677 0.42 0.051 43 259 0.242 95 1 157 0.034 69 82 221 9 220 5 14 63.0 405 1 737 0.23 0.050 80 177 0.239 40 832 0.034 07 48 218 7 216 3 15 37.2 190 1 010 0.19 0.051 48 277 0.245 77 1 426 0.034 39 70 223 12 218 4 16 21.9 210 536 0.39 0.051 45 224 0.255 28 1 106 0.036 07 60 231 9 228 4 17 104.0 68 747 0.09 0.065 75 162 1.163 47 2 599 0.128 00 152 784 12 776 9 18 38.8 268 1 063 0.25 0.051 28 265 0.225 41 1 082 0.032 13 58 206 9 204 4 19 35.9 355 839 0.42 0.050 96 229 0.249 88 1 145 0.035 59 77 226 9 225 5 20 123.0 290 3 161 0.09 0.051 36 130 0.247 24 594 0.034 92 40 224 56 221 3 注:Pb*代表放射性成因铅. 表 3 越城岭岩基北部印支期花岗岩样品的主量元素(%)和微量元素(10-6)分析结果
Table 3. Major elements (%) and trace elements (10-6) of Indosinian granitic samples from northern Yuechengling batholith
期次 早阶段 晚阶段 样品号 14D529 14D548 14D503 462* 464* 14D504 14D561-1 SiO2 74.71 74.46 72.98 74.66 73.66 75.63 74.52 TiO2 0.173 0.223 0.288 0.230 0.250 0.216 0.149 Al2O3 12.74 12.74 13.48 12.95 13.69 12.30 13.37 Fe2O3 0.356 0.217 0.966 0.330 0.600 0.602 0.645 FeO 2.55 2.64 2.10 1.45 1.23 2.23 1.68 MnO 0.078 0.071 0.064 0.050 0.040 0.081 0.064 MgO 0.360 0.472 0.546 0.450 0.490 0.420 0.332 CaO 0.914 1.150 1.490 0.960 0.900 0.788 0.939 K2O 4.54 4.72 4.62 5.17 5.08 4.34 4.90 Na2O 3.04 2.83 2.94 2.82 2.75 2.79 3.06 P2O5 0.082 0.100 0.098 0.070 0.120 0.092 0.085 灼失 0.118 0.037 0.103 0.730 1.060 0.234 0.037 ∑ 99.66 99.66 99.68 99.87 99.87 99.72 99.78 FeOT 2.87 2.84 2.97 1.75 1.77 2.77 2.26 A/CNK 1.10 1.07 1.07 1.08 1.17 1.15 1.11 CaO/Na2O 0.30 0.41 0.51 0.34 0.33 0.28 0.31 Al2O3/TiO2 73.64 57.13 46.81 56.30 54.76 56.94 89.73 Rb 558 497 364 501 416 484 500 Sr 29.9 44.6 71.8 39.9 50.6 22.1 37.4 Ba 95.3 171.0 266.0 171.0 221.00 58.7 155.0 U 21.4 14.7 25.6 12.9 5.0 Th 31.5 30.8 33.5 39.7 35.1 23.0 19.2 Nb 21.4 15.9 14.4 19.6 14.7 16.6 13.8 Ta 7.72 4.44 2.81 3.40 2.52 4.43 4.52 Zr 112.0 130.0 142.0 149.0 129.0 99.5 97.8 Hf 4.87 4.97 5.16 5.38 4.52 4.11 4.18 Y 29.7 21.7 32.8 35.7 30.0 26.9 18.0 Nb/Ta 2.77 3.58 5.12 5.76 5.83 3.75 3.05 Zr/Hf 23.00 26.16 27.52 27.70 28.54 24.21 23.40 La 28.9 30.2 45.5 40.8 44.4 27.0 25.5 Ce 71.9 73.8 103.0 95.6 100.0 64.2 61.9 Pr 7.22 7.29 10.00 10.60 11.10 6.61 6.06 Nd 24.6 25.2 33.2 37.4 39.1 22.5 20.7 Sm 5.50 5.19 6.60 8.23 8.02 4.96 4.39 Eu 0.260 0.370 0.660 0.432 0.538 0.190 0.31 Gd 4.76 4.37 5.82 6.84 6.52 4.30 3.61 Tb 0.92 0.78 1.04 1.08 1.00 0.82 0.64 Dy 5.82 4.48 6.50 6.43 5.55 5.21 3.74 Ho 1.19 0.89 1.35 1.19 1.04 1.05 0.74 Er 3.37 2.52 3.74 3.34 2.95 2.99 2.02 Tm 0.60 0.42 0.60 0.54 0.45 0.53 0.35 Yb 4.06 2.75 3.70 3.59 2.85 3.54 2.28 Lu 0.540 0.370 0.480 0.516 0.391 0.470 0.300 ∑REE 159.64 158.63 222.19 216.58 223.91 144.37 132.54 (La/Yb)N 5.11 7.88 8.82 8.15 11.17 5.47 8.02 δEu 0.15 0.23 0.32 0.17 0.22 0.12 0.23 注:*样品寇晓虎等(2014). 表 4 越城岭岩基北部印支期花岗岩样品的Sm-Nd同位素组成
Table 4. Sm-Nd isotopic compositions of Indonesian granitic samples from northern Yuechengling batholith
时代 样号 成岩期次 t(Ma) (147Sm/144Nd)m (143Nd/144Nd)m εNd(t) (143Nd/144Nd)i TDM(Ga) TDM2(Ga) fSm/Nd 印支期 14D529-1 早阶段 222 0.115 1 0.512 045 -9.3 0.511 878 1.71 1.75 -0.41 14D548 早阶段 222 0.133 5 0.512 026 -10.2 0.511 832 2.14 1.82 -0.32 14D503 早阶段 227 0.136 4 0.512 038 -10.0 0.511 835 2.19 1.81 -0.31 14D504 晚阶段 222 0.133 1 0.512 017 -10.3 0.511 824 2.14 1.84 -0.32 14D561-1 晚阶段 222 0.130 7 0.512 000 -10.6 0.511 810 2.11 1.86 -0.34 表 5 越城岭岩基北部印支期花岗岩样品锆石Hf同位素分析结果
Table 5. MC-ICP-MS Hf isotopic analysis of zircons from Indonesian granitic rocks of northern Yuechengling batholith
176Hf/177Hf比值 2σ(10-6) 176Lu/177Hf比值 176Yb/177Hf比值 t(Ma) εHf(t) 2σ TDM2(Ma) 2σ fLu/Hf 14D529中粒斑状二长花岗岩 1 0.282 345 10 0.001 047 0.039 851 216 -10.5 0.4 1 913 46 -0.97 2 0.282 385 8 0.001 312 0.056 730 220 -9.1 0.3 1 824 37 -0.96 3 0.282 417 9 0.000 691 0.028 108 228 -7.7 0.3 1 742 40 -0.98 4 0.282 465 8 0.000 594 0.027 083 219 -6.1 0.3 1 639 37 -0.98 5 0.282 444 9 0.000 747 0.032 394 220 -6.9 0.3 1 686 39 -0.98 6 0.282 337 9 0.001 057 0.040 007 223 -10.7 0.3 1 927 42 -0.97 7 0.282 329 7 0.001 325 0.052 851 218 -11.1 0.2 1 949 30 -0.96 8 0.282 446 8 0.000 786 0.037 774 219 -6.8 0.3 1 684 34 -0.98 9 0.282 374 9 0.001 470 0.060 459 224 -9.4 0.3 1 848 40 -0.96 10 0.282 341 8 0.001 622 0.057 732 224 -10.6 0.3 1 923 36 -0.95 11 0.282 366 8 0.001 370 0.049 643 228 -9.6 0.3 1 862 37 -0.96 12 0.282 356 8 0.001 212 0.055 329 223 -10.0 0.3 1 885 37 -0.96 13 0.282 368 7 0.001 552 0.070 197 252 -9.0 0.3 1 845 33 -0.95 14 0.282 409 8 0.000 876 0.039 117 226 -8.0 0.3 1 762 38 -0.97 15 0.282 391 7 0.001 379 0.055 278 227 -8.7 0.3 1 806 32 -0.96 16 0.282 451 8 0.000 697 0.027 186 219 -6.7 0.3 1 673 36 -0.98 17 0.282 463 8 0.000 913 0.035 409 223 -6.2 0.3 1 645 36 -0.97 18 0.282 396 9 0.001 369 0.047 421 225 -8.6 0.3 1 796 39 -0.96 19 0.282 146 10 0.004 480 0.154 253 225 -17.9 0.3 2 379 43 -0.87 20 0.282 390 7 0.001 137 0.052 076 220 -8.9 0.3 1 811 32 -0.97 14D503细粒少斑二长花岗岩 1 0.282 307 10 0.001 531 0.075 226 217 -11.9 0.3 2 001 44 -0.95 2 0.282 350 10 0.001 286 0.057 883 237 -9.9 0.3 1 892 42 -0.96 3 0.282 351 8 0.001 587 0.062 218 231 -10.1 0.3 1895 38 -0.95 4 0.282 487 10 0.000 547 0.026 019 218 -5.4 0.3 1 591 43 -0.98 5 0.282 298 8 0.000 964 0.040 256 240 -11.7 0.3 2 003 33 -0.97 6 0.282 373 8 0.001 491 0.054 791 229 -9.3 0.3 1 846 37 -0.96 7 0.282 438 11 0.000 602 0.028 837 222 -7.0 0.4 1 699 48 -0.98 8 0.282 363 9 0.000 429 0.018 505 407 -5.6 0.3 1 750 39 -0.99 9 0.282 298 8 0.001 450 0.061 492 231 -11.9 0.3 2 013 37 -0.96 10 0.282 426 9 0.000 700 0.032 060 230 -7.3 0.3 1 721 41 -0.98 11 0.282 430 8 0.001 230 0.046 437 223 -7.4 0.3 1 721 37 -0.96 13 0.282 391 8 0.001 056 0.038 332 231 -8.6 0.3 1 801 38 -0.97 14 0.282 403 9 0.000 675 0.026 493 233 -8.1 0.3 1 771 38 -0.98 15 0.282 372 8 0.001 802 0.063 456 228 -9.4 0.3 1 853 36 -0.95 17 0.282 332 8 0.001 369 0.050 538 221 -10.9 0.3 1 942 34 -0.96 18 0.282 304 8 0.001 314 0.052 672 229 -11.7 0.3 1 998 37 -0.96 19 0.282 434 8 0.000 933 0.038 990 229 -7.1 0.3 1 706 35 -0.97 20 0.282 315 9 0.001 635 0.072 530 234 -11.3 0.3 1 974 41 -0.95 -
[1] Altherr, R., Holl, A., Hegner, E., et al., 2000.High-Potassium, Calc-Alkaline Ⅰ-Type Plutonism in the European Variscides:Northern Vosges (France) and Northern Schwarzwald (Germany).Lithos, 50(1-3):51-73. https://doi.org/10.1016/s0024-4937(99)00052-3 [2] Bai, D.Y., Jia, B.H., Liu, W., et al., 2010.Zircon SHRIMP U-Pb Dating of the Igneous Rocks from Chengbu, Hunan:Constraint on the Neoproterozoic Tectonic Evolution of the Jiangnan Orogenic Belt.Acta Geologica Sinica, 84(12):1715-1726 (in Chinese with English abstract). [3] Bai, D.Y., Zhong, X., Jia, P.Y., et al., 2014.Zircon SHRIMP U-Pb Dating and Geochemistry of Caledonian Miao' Ershan Pluton in the Western Part of the Nanling Mountains and their Tectonic Significance.Acta Petrologica et Mineralogica, 33(3):407-423 (in Chinese with English abstract). https://doi.org/10.3969/j.issn.1000-6524.2014.03.001 [4] Bai, D.Y., Zhong, X., Jia, P.Y., et al., 2015.The Zircon SHRIMP U-Pb Dating, Geochemical Characteristics and Tectonic Setting of Caledonian Yuechengling Pluton in the Western Segment of the Nanling Mountains.Geochimica, 44(1):27-42 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX199705000.htm [5] Blichert-Toft, J., Albarède, F., 1997.The Lu-Hf Isotope Geochemistry of Chondrites and the Evolution of the Mantle-Crust System.Earth and Planetary Science Letters, 148(1-2):243-258. https://doi.org/10.1016/s0012-821x(97)00040-x [6] Carter, A., Roques, D., Bristow, C., et al., 2001.Understanding Mesozoic Accretion in Southeast Asia:Significance of Triassic Thermotectonism (Indosinian Orogeny) in Vietnam.Geology, 29(3):211-214. https://doi.org/10.1130/0091-7613(2001)029-0211 [7] Carter, N. L., Anderson, D. A., Hansen, F. D., 1981. Creep and Creep Rupture of Granitic Rocks. In: Carter, N. L. ed., Mechanical Behavior of Crustal Rocks. Geophysical Monograph, 24: 61-102. [8] Chen, A., 1999.Mirror-Image Thrusting in the South China Orogenic Belt:Tectonic Evidence from Western Fujian, Southeastern China.Tectonophysics, 305(4):497-519. https://doi.org/10.1016/s0040-1951(99)00036-0 [9] Chen, J.F., Jahn, B.M., 1998.Crustal Evolution of Southeastern China:Nd and Sr Isotopic Evidence.Tectonophysics, 284(1-2):101-133. https://doi.org/10.1016/s0040-1951(97)00186-8 [10] Chen, W.D., Zhang, W.L., Wang, R.C., et al., 2016.A Study on the Dushiling Tungsten-Copper Deposit in the Miao'ershan-Yuechengling Area, Northern Guangxi, China:Implications for Variations in the Mineralization of Multi-Aged Composite Granite Plutons.Science China Earth Sciences, 46(12):1602-1625 (in Chinese with English abstract). https://doi.org/10.1007/s11430-015-5360-3 [11] Cheng, S.B., Fu, J.M., Ma, L.Y., et al., 2013.Indosinian Metallogentic Activity in Yuechengling-Miaoershan Area, Northeastern Guangxi:Implications from Zircon U-Pb Ages and Hf Isotopic Constraint on Ore-Forming Granites in Youmaling and Jiepai Deposits.Geology in China, 40(4):1189-1201 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=2c073693ae47935831df78a28881719a&encoded=0&v=paper_preview&mkt=zh-cn [12] Cheng, S.B., Fu, J.M., Ma, L.Y., et al., 2016.Origin of the Yuechengling Caledonian Granitic Batholith, Northeastern Guangxi:Constraint from Zircon U-Pb Geochronology, Geochemistry and Nd-Hf Isotopes.Geotectonica et Metallogenia, 40(4):868-887 (in Chinese with English abstract). https://doi.org/10.16539/j.ddgzyckx.2016.04.017 [13] Chu, Y., Lin, W., Faure, M., et al., 2012.Phanerozoic Tectonothermal Events of the Xuefengshan Belt, Central South China:Implications from U-Pb Age and Lu-Hf Determinations of Granites.Lithos, 150:243-255. https://doi.org/10.1016/j.lithos.2012.04.005 [14] Corfu, F., John, M. H., et al., 2003. Atlas of Zircon Textures. In: Hanachar, J. M., Hoskin, P. W. O., eds., Zircon Reviews in Mineralogy and Geochemistry, 53(1): 469-500. [15] Deng, X.G., Chen, Z.G., Li, X.H., et al., 2004.SHRIMP Zircon U-Pb Dating of the Darongshan-Shiwangdashan Granitoid Belt in Southeast Guangxi, China.Geological Review, 50(4):426-432 (in Chinese with English abstract). [16] Dostal, J., Chatterjee, A.K., 2000.Contrasting Behaviour of Nb/Ta and Zr/Hf Ratios in a Peraluminous Granitic Pluton (Nova Scotia, Canada).Chemical Geology, 163(1-4):207-218. https://doi.org/10.1016/s0009-2541(99)00113-8 [17] Du, Y., Luo, X.Y., Huang, G.F., 2017.Petrological, Geochemical Characteristics and Formation Tectonic Setting of Neoproterozoic Jinning Granite in the Northern Section of Miaoershan Pluton in Southwestern Hunan.Geological Science and Technology Information, 36(6):136-147 (in Chinese with English abstract). https://doi.org/10.19509/j.cnki.dzkq.2017.0614 [18] Ellis, D.J., Thompson, A.B., 1986.Subsolidus and Partial Melting Reactions in the Quartz-Excess CaO+MgO+Al2O3+SiO2+H2O System under Water-Excess and Water-Deficient Conditions to 10 kb:Some Implications for the Origin of Peraluminous Melts from Mafic Rocks.Journal of Petrology, 27(1):91-121. https://doi.org/10.1093/petrology/27.1.91 [19] Fromaget, J., 1932.Surla Structure des Indosinides.Comptes Rendus de l' Acade'mie des Sciences, 195:538. https://www.researchgate.net/publication/272864835_Sur_la_Structure_des_Dihalogenures_du_Mercure_et_du_Plomb [20] Gilder, S.A., Gill, J., Coe, R.S., et al., 1996.Isotopic and Paleomagnetic Constraints on the Mesozoic Tectonic Evolution of South China.Journal of Geophysical Research:Solid Earth, 101(B7):16137-16154. https://doi.org/10.1029/96jb00662 [21] Green, T.H., 1995.Significance of Nb/Ta as an Indicator of Geochemical Processes in the Crust-Mantle System.Chemical Geology, 120(3-4):347-359. https://doi.org/10.1016/0009-2541(94)00145-x [22] Griffin, W.L., Wang, X., Jackson, S.E., et al., 2002.Zircon Chemistry and Magma Mixing, SE China:In-Situ Analysis of Hf Isotopes, Tonglu and Pingtan Igneous Complexes.Lithos, 61(3-4):237-269. https://doi.org/10.1016/s0024-4937(02)00082-8 [23] Guangxi Bureau of Geology and Mineral Resources, 1985.Regional Geology of the Guangxi Zhuang Autonomous Region.Geological Publishing House, Beijing, 409 (in Chinese). [24] Guo, F., Fan, W.M., Lin, G., 1998.Nature of the Precambrian Crust and Underplating of Early Mesozoic Basaltic Magmas in South Hunan Province.Geotectonica et Metallogenia, 22(Suppl.):19-22 (in Chinese with English abstract). https://doi.org/10.16539/j.ddgzyckx.1998.s1.004 [25] Guo, F.X., 1998.On the Indosinian Movement of Southeast China.Journal of Guilin Institute of Technology, 18(4):313-322 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GLGX804.002.htm [26] Hsü, K.J., Li, J.L., Chen, H.H., et al., 1990.Tectonics of South China:Key to Understanding West Pacific Geology.Tectonophysics, 183(1-4):9-39. https://doi.org/10.1016/0040-1951(90)90186-c [27] Hunan Bureau of Geology and Mineral Resources, 1988.Regional Geology of Hunan.Geological Publishing House, Beijing, 385 (in Chinese). [28] Jahn, B.M., Condie, K.C., 1995.Evolution of the Kaapvaal Craton as Viewed from Geochemical and Sm-Nd Isotopic Analyses of Intracratonic Pelites.Geochimica et Cosmochimica Acta, 59(11):2239-2258. https://doi.org/10.1016/0016-7037(95)00103-7 [29] Jiangxi Bureau of Geology and Mineral Resources, 1984.Regional Geology of Jiangxi.Geological Publishing House, Beijing (in Chinese). [30] Kinny, P. D., Maas, R., 2003. Lu-Hf and Sm-Nd Isotope Systems in Zircon. In: Hanachar, J. M., Hoskin, P. W. O., eds., Zircon Reviews in Mineralogy and Geochemistry, 53: 327-341. [31] Kou, X. H., Luo, M. S., Ji, J. L., et al., 2014. Program Report of 1: 50 000 Regional Geological Survey in Meixi, Yaoshi, Jiangtoucun, Ziyuanxian, Longshui, Huangshahe Area, Guangxi, 208 (in Chinese with English abstract). [32] Li, F.S., Zhou, H.X., 2002.The Characteristics and Its Fixed Mechanism of Granite Unit and Super-Unit of Miaoershan Mountain.Hunan Geology, 21(1):20-25 (in Chinese with English abstract). [33] Li, J.L., 1993.Lithospheric Texture and Geological Envolvement of South China.Metallurgical Industry Press, Beijing, 47-123 (in Chinese). [34] Li, S.Z., Wang, T., Jin, C., et al., 2011.Features and Causes of Indosinian Intracontinental Structures in the Xuefengshan Precambrian Basement and its Neighboring Regions.Journal of Jilin University (Earth Science Edition), 41(1):93-105 (in Chinese with English abstract). https://doi.org/10.13278/j.cnki.jjuese.2011.01.003 [35] Li, W.X., Zhou, X.M., 2000.Genesis of Coastal Igneous Rock Province of Fujian and Zhejiang, China:Constraint from Geochemistry.Advance in Earth Science, 10(7):630-641 (in Chinese). https://www.researchgate.net/publication/268192031_Genesis_and_dynamic_setting_of_mafic_dikes_in_southeastern_Fujian_Evidence_from_Sr-Nd_isotopic_and_major_and_trace_element_geochemistry [36] Li, Z.X., Li, X.H., 2007.Formation of the 1 300-km-Wide Intracontinental Orogen and Postorogenic Magmatic Province in Mesozoic South China:A Flat-Slab Subduction Model.Geology, 35(2):179. https://doi.org/10.1130/g23193a.1 [37] Linnen, R.L., Keppler, H., 2002.Melt Composition Control of Zr/Hf Fractionation in Magmatic Processes.Geochimica et Cosmochimica Acta, 66(18):3293-3301. https://doi.org/10.1016/s0016-7037(02)00924-9 [38] Liu, F.L., Xue, H.M., Xu, Z.Q., et al., 2006.SHRIMP U-Pb Zircon Dating from Eclogite Lens in Marble, Shuanghe Area, Dabie UHP Terrane:Restriction on the Prograde, UHP and Retrograde Metamorphic Ages.Acta Petrologica Sinica, 22(7):1761-1778 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=5174360006852d3d67d7f397016e8726&encoded=0&v=paper_preview&mkt=zh-cn [39] Liu, W., Liu, Y.R., Zhang, X.Y., et al., 2011.New Progresses in 1:50 000 Regional Geological Survey in Chengbu Area, Hunan Province.Geology and Mineral Resources of South China, 27(4):307-313 (in Chinese with English abstract). https://es.scribd.com/doc/111169746/Places-to-Volunteer-Before-You-Die [40] Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008.In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard.Chemical Geology, 257(1-2):34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004 [41] Liu, Y.S., Gao, S., Hu, Z.C., 2010.Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons of Mantle Xenoliths.Journal of Petrology, 51(1-2):537-571 https://doi.org/10.1093/petrology/egp082 [42] Lu, Y.F., 2004.Geokit:A Geochemical Toolkit for Microsft Excel.Geochemica, 33(5):459-464 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dqhx200405003.htm [43] Ludwig, K. R., 2003. ISOPLOT 3. 00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley, 39. [44] Meng, Q.R., Zhang, G.W., 2000.Geologic Framework and Tectonic Evolution of the Qinling Orogen, Central China.Tectonophysics, 323(3-4):183-196. https://doi.org/10.1016/s0040-1951(00)00106-2 [45] Miller, C.F., 1985.Are Strongly Peraluminous Magmas Derived from Pelitic Sedimentary Sources?The Journal of Geology, 93(6):673-689. https://doi.org/10.1086/628995 [46] Patino, D.A.E., Humphreys, E.D., Johnston, D.A., 1990.Anatexis and Metamorphism in Tectonically Thickened Continental Crust Exemplified by the Sevier Hinterland, Western North America.Earth and Planetary Science Letters, 97(3-4):290-315. https://doi.org/10.1016/0012-821x(90)90048-3 [47] Peng, S.M., Fu, L.F., Zhou, G.Q., 1995.Tectonic Envolvement and Genesis of Gneissic Granitoids.China University of Geosciences Press, Wuhan (in Chinese with English abstract). [48] Qian, H.L., 1993.Syntectonic Migmatization in the Ductile-Shear Zone at Western Margin of Yuechengling Uplift.Hunan Geology, 12(1):11-14 (in Chinese with English abstract). https://www.researchgate.net/publication/257685327_Emplacement_and_deformation_of_Shigujian_syntectonic_granite_in_central_part_of_the_Dabie_orogen_Implications_for_tectonic_regime_transformation [49] Rowley, D.B., Ziegler, A.M., Gyou, N., et al., 1989.Comment and Reply on "Mesozoic Overthrust Tectonics in South China".Geology, 17(4):384. https://doi.org/10.1130/0091-7613(1989)017-0384 [50] Rudnick, R. L., Gao S., 2003. Composition of the Continental Crust. In: Rudnick, R. C., ed., The Crust, Elsevier Pergamon, Oxford, 1-56. [51] Rutter, M.J., Wyllie, P.J., 1988.Melting of Vapour-Absent Tonalite at 10 kbar to Simulate Dehydration-Melting in the Deep Crust.Nature, 331(6152):159-160. https://doi.org/10.1038/331159a0 [52] Shen, W.Z., Xu, S.J., Wang, Y.X., et al., 1994.Nd-Sr Isotopes of Xihuashan Granites, Southern Jiangxi.Chinese Science Bulletin, 39(2):154-156 (in Chinese). [53] Shi, S.H., Hu, R.Z., Wen, H.J., 2010.Geochronology of the Shazijiang Uranium Ore Deposit, Northern Guangxi, China:U-Pb Ages of Pitchblende and Their Geological Significance.Acta Geologica Sinica, 84(8):1175-1182 (in Chinese with English abstract). [54] Shu, L.S., 2012.An Analysis of Principal Features of Tectonic Evolution in South China Block.Geological Bulletin of China, 31(7):1035-1053 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=99dffdbcf312161a16b61301da28d9ad&encoded=0&v=paper_preview&mkt=zh-cn [55] Söderlund, U., Patchett, P.J., Vervoort, J.D., et al., 2004.The 176Lu Decay Constant Determined by Lu-Hf and U-Pb Isotope Systematics of Precambrian Mafic Intrusions.Earth and Planetary Science Letters, 219(3-4):311-324. https://doi.org/10.1016/s0012-821x(04)00012-3 [56] Sun, T., 2003.Petrogenesis and Tectonic Significance of Mesozoic Strong Peraluminous Granites in Eastern Nanling Range.Science in China (Series D), 33(12):1209-1218 (in Chinese). [57] Sun, W.D., Ling, M.X., Wang, F.Y., 2008.Pacific Plate Subduction and Mesozoic Geological Event in Eastern China.Bulletin of Mineralogy, Petrology and Geochemistry, 27(3):218-225 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=4350d8a159ef25dbb3fbee3b4cdf5e1d&encoded=0&v=paper_preview&mkt=zh-cn [58] Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [59] Sylvester, P.J., 1998.Post-Collisional Strongly Peraluminous Granites.Lithos, 45(1-4):29-44. https://doi.org/10.1016/s0024-4937(98)00024-3 [60] Wang, Y.J., Fan, W.M., Cawood, P.A., et al., 2007a.Indosinian High-Strain Deformation for the Yunkaidashan Tectonic Belt, South China:Kinematics and 40Ar/39Ar Geochronological Constraints.Tectonics, 26(6):229-247. https://doi.org/10.1029/2007tc002099 [61] Wang, Y.J., Fan, W.M., Sun, M., et al., 2007b.Geochronological, Geochemical and Geothermal Constraints on Petrogenesis of the Indosinian Peraluminous Granites in the South China Block:A Case Study in the Hunan Province.Lithos, 96(3-4):475-502. https://doi.org/10.1016/j.lithos.2006.11.010 [62] Wang, Y.J., Fan, W.M., Zhang, G.W., et al., 2013.Phanerozoic Tectonics of the South China Block:Key Observations and Controversies.Gondwana Research, 23(4):1273-1305. https://doi.org/10.13039/501100002367 [63] Wang, Y.J., Zhang, Y.H., Fan, W.M., et al., 2005.Structural Signatures and 40Ar/39Ar Geochronology of the Indosinian Xuefengshan Tectonic Belt, South China Block.Journal of Structural Geology, 27(6):985-998. https://doi.org/10.1016/j.jsg.2005.04.004 [64] Wang, Y.J., Zhang, Y.H., Fan, W.M., et al., 2002.Numerical Modeling of the Formation of Indo-Sinian Peraluminous Granitoids in Hunan Province:Basaltic Underplating Versus Tectonic Thickening.Science in China (Series D), 32(6):491-499 (in Chinese). https://doi.org/10.1007/bf02911241 [65] Wu, F.Y., Li, X.H., Zheng, Y.F., 2007.Lu-Hf Isotopic Systematics and Their Applications in Petrology.Acta Petrological Sinica, 23(2):185-220 (in Chinese with English abstract).https://doi.org/1000-0569/2007/023(02)-0185-20 http://cn.bing.com/academic/profile?id=8b030b4b4ae03d8ed141c535b1585344&encoded=0&v=paper_preview&mkt=zh-cn [66] Wu, J., Liang, H.Y., Huang, W.T., et al., 2012.Indosinian Isotope Ages of Plutons and Deposits in Southwestern Miaoershan-Yuechengling, Northeastern Guangxi and Implications on Indosinian Mineralization in South China.Chinese Science Bulletin, 57(13):1126-1136 (in Chinese). https://doi.org/10.1007/s11434-011-4968-z [67] Wu, Y.B., Zheng, Y.F., 2004.Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age.Chinese Science Bulletin, 49(16):1589-1604 (in Chinese with English abstract). https://doi.org/10.1007/bf03184122 [68] Xiang, H., Zhang, L., Zhou, H.W., et al., 2008.U-Pb Zircon Geochronology and Hf Isotope Study of Metamorphosed Basic-Ultrabasic Rocks from Metamorphic Basement in Southwestern Zhejiang:The Response of the Cathaysia Block to Indosinian Orogenic Event.Science in China (Series D), 38(4):401-413 (in Chinese). https://doi.org/10.1007/s11430-008-0053-0 [69] Xie, X.H., Chen, W.F., Zhao, K.D., et al., 2008.Geochemical Characteristics and Geochronology of the Douzhashan Granite, Northeastern Guangxi Province, China.Acta Petrological Sinica, 24(6):1302-1312 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=3d11b9188960312cb110fd1920fdf52e&encoded=0&v=paper_preview&mkt=zh-cn [70] Yang, Z., 2012. Pre-Yanshanian Magmatism and Its Mineralization in the Miaoershan-Yuechengling Area, Northern Guangxi Province (Dissertation). Nanjing University, Nanjing. 1-54 (in Chinese with English abstract). [71] Zen, E.A., 1986.Aluminum Enrichment in Silicate Melts by Fractional Crystallization:Some Mineralogic and Petrographic Constraints.Journal of Petrology, 27(5):1095-1117. https://doi.org/10.1093/petrology/27.5.1095 [72] Zhang, D., Zhang, W.L., Wang, R.C., et al., 2015.Quartz-Vein Type Tungsten Mineralization Associated with the Indosinian (Triassic) Gaoling Granite, Miao'ershan Area, Northern Guangxi.Geological Review, 61(4):817-834 (in Chinese with English abstract). https://doi.org/10.16509/j.georeview.2015.04.009 [73] Zhang, G.L., Liang, J.C., Feng, Z.H., et al., 2002.Discovery of Detached Ductile Shear Zone and Its Structural Mechanism in the West of Yuechengling Granite Pluton.Geotectonic et Metallogenic, 26(2):131-137 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=c4ec0d5485bff95b216117711b95ee38&encoded=0&v=paper_preview&mkt=zh-cn [74] Zhang, Y.Q., Xu, X.B., Jia, D., et al., 2009.Deformation Record of the Change from Indosinian Collision-Related Tectonic System to Yanshanian Subduction-Related Tectonic System in South China during the Early Mesozoic.Earth Science Frontiers, 16 (1):234-247 (in Chinese with English abstract). [75] Zhao, K. D., Jiang, S. Y., Sun, T., et al., 2006. The Phenomenon of Hf-Nd Isotopic Decoupling of Indosinian Granites in the Western Nanling Range and Its Petrogenesis. National Conference Collection of Petrology and Geodynamics, Beijing, 435 (in Chinese with English abstract). [76] Zhao, K.D., Jiang, S.Y., Sun, T., et al., 2013.Zircon U-Pb Dating, Trace Element and Sr-Nd-Hf Isotope Geochemistry of Paleozoic Granites in the Miao'ershan-Yuechengling Batholith, South China:Implication for Petrogenesis and Tectonic-Magmatic Evolution.Journal of Asian Earth Sciences, 74:244-264. https://doi.org/10.1016/j.jseaes.2012.12.026 [77] Zhao, L., Guo, F., Fan, W.M., et al., 2010.Crustal Evolution of the Shiwandashan Area in South China:Zircon U-Pb-Hf Isotopic Records from Granulite Enclaves in Indo-Sinian Granites.Chinese Science Bulletin, 55(19):2028-2038. https://doi.org/10.1007/s11434-010-3225-1 [78] Zhong, Y.X., Liu, Y.C., Cai, X.L., 1993.Study of the Granulite Xenoliths from the Lower Crust in Basalt, Hunan, China.Journal of Chengdu Colloge of Geology, 20(1):56-61 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CDLG199301008.htm [79] Zhou, X.M., 2003.My Thinking about Granite Geneses of South China.Geological Journal of China Universities, 9(4):556-565 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=700d68bfc9e89bc8dcbf47a2077bf452&encoded=0&v=paper_preview&mkt=zh-cn [80] Zhou, X.M., Sun, T., Shen, W.Z., et al., 2006.Petrogenesis of Mesozoic Granitoids and Volcanic Rocks in South China:A Response to Tectonic Evolution.Episodes, 29:26-33. https://doi.org/10.18814/epigsi/2006/v29i1/62224 [81] 柏道远, 贾宝华, 刘伟, 等, 2010.湖南城步火成岩锆石SHRIMP U-Pb年龄及其对江南造山带新元古代构造演化的约束.地质学报, 84(12):1715-1726. http://cdmd.cnki.com.cn/Article/CDMD-82501-2007213484.htm [82] 柏道远, 钟响, 贾朋远, 等, 2014.南岭西段加里东期苗儿山岩体锆石SHRIMP U-Pb年龄、地球化学特征及其构造意义.岩石矿物学杂志, 33(3):407-423. https://doi.org/10.3969/j.issn.1000-6524.2014.03.001 [83] 柏道远, 钟响, 贾朋远, 等, 2015.南岭西段加里东期越城岭岩体锆石SHRIMP U-Pb年龄、地质地球化学特征及其形成构造背景.地球化学, 44(1):27-42. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201501003.htm [84] 陈文迪, 张文兰, 王汝成, 等, 2016.桂北苗儿山-越城岭地区独石岭钨(铜)矿床研究:对复式岩体多时代差异性成矿的启示.中国科学:地球科学, 46(12):1602-1625. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jdxk201612004&dbname=CJFD&dbcode=CJFQ [85] 程顺波, 付建明, 马丽艳, 等, 2013.桂东北越城岭-苗儿山地区印支期成矿作用:油麻岭和界牌矿区成矿花岗岩锆石U-Pb年龄和Hf同位素制约.中国地质, 40(4):1189-1201. http://www.cqvip.com/qk/90050X/201304 [86] 程顺波, 付建明, 马丽艳, 等, 2016.桂东北越城岭岩体加里东期成岩作用:锆石U-Pb年代学、地球化学和Nd-Hf同位素制约.大地构造与成矿学, 40(4):868-887. https://doi.org/10.16539/j.ddgzyckx.2016.04.017 [87] 邓希光, 陈志刚, 李献华, 等, 2004.桂东南地区大容山-十万大山花岗岩带SHRIMP锆石U-Pb定年.地质论评, 50(4):426-432. https://doi.org/10.16509/j.georeview.2004.04.017 [88] 杜云, 罗小亚, 黄革非, 2017.湘西南苗儿山岩体北段新元古代晋宁期花岗岩岩石学、地球化学特征及其形成构造背景.地质科技情报, 36(6):136-147. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dzkq201706015&dbname=CJFD&dbcode=CJFQ [89] 广西壮族自治区地质矿产局, 1985.广西壮族自治区区域地质志.北京:地质出版社, 409. [90] 郭锋, 范蔚, 林舸, 1998.湘南前寒武纪地壳性质与早中生代玄武岩浆底侵作用.大地构造与成矿学, 22(S1):19-22. https://doi.org/10.16539/j.ddgzyckx.1998.s1.004 [91] 郭福祥, 1998.关于华南东部的印支运动.桂林工学院学报, 18(4):313-322. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB198402003.htm [92] 湖南省地质矿产局, 1988.湖南省区域地质志.北京:地质出版社, 385. [93] 江西省地质矿产局, 1984.江西省区域地质志.北京:地质出版社. [94] 寇晓虎, 骆满生, 季军良, 等, 2014. 广西1: 5万梅溪、窑市、江头村、资源县、龙水、黄沙河幅区域地质调查成果报告, 208. [95] 李福顺, 周厚祥, 2002.苗儿山花岗岩体单元-超单元特征及其定位机制.湖南地质, 21(1):20-25. http://www.cqvip.com/QK/95938X/200201/6194191.html [96] 李继亮, 1993.东南大陆岩石圈结构与地质演化.北京:冶金工业出版社, 47-123. [97] 李三忠, 王涛, 金宠, 等, 2011.雪峰山基底隆升带及其邻区印支期陆内构造特征与成因.吉林大学学报(地球科学版), 41(1):93-105. https://doi.org/10.3969/j.issn.1671-5888.2011.01.012 [98] 李武显, 周新民, 2000.浙闽沿海晚中生代火成岩成因的地球化学制约.自然科学进展, 10(7):630-641. https://doi.org/10.3321/j.issn:1002-008X.2000.07.007 [99] 刘福来, 薛怀民, 许志琴, 等, 2006.大别超高压变质带的进变质、超高压和退变质时代的准确限定:以双河大理岩中榴辉岩锆石SHRIMP U-Pb定年为例.岩石学报, 22(7):1761-1778. https://doi.org/10.3969/j.issn.1000-0569.2006.07.002 [100] 刘伟, 刘耀荣, 张晓阳, 等, 2011.湖南城步地区1:5万区调主要成果与进展.华南地质与矿产, 27(4):307-313. http://www.docin.com/p-516823246.html [101] 路远发, 2004.GeoKit:一个用VBA构建的地球化学工具软件包.地球化学, 33(5):459-464. http://mall.cnki.net/magazine/Article/DQHX200405003.htm [102] 彭少梅, 符力奋, 周国强, 1995.云开陆块构造演化及片麻状花岗质岩石的剪切深熔成因.武汉:中国地质大学出版社. [103] 钱惠林, 1993.论越城岭隆起西缘同构造混合岩化韧性剪切带.湖南地质, 12(1):11-14. http://www.cnki.com.cn/Article/CJFDTOTAL-KWXB2011S1203.htm [104] 沈渭洲, 徐士进, 王银喜, 等, 1994.西华山花岗岩的Nd-Sr同位素研究.科学通报, 39(2):154-156. http://www.oalib.com/paper/1681758 [105] 石少华, 胡瑞忠, 温汉捷, 等, 2010.桂北沙子江铀矿床成矿年代学研究:沥青铀矿U-Pb同位素年龄及其地质意义.地质学报, 84(8):1175-1182. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201008010 [106] 舒良树, 2012.华南构造演化的基本特征.地质通报, 31(7):1035-1053. https://doi.org/10.3969/j.issn.1671-2552.2012.07.003 [107] 孙涛, 2003.南岭东段中生代强过铝花岗岩成因及其大地构造意义.中国科学(D辑), 33(12):1209-1218. http://www.cqvip.com/QK/98491X/2003012/8859028.html [108] 孙卫东, 凌明星, 汪方跃, 等, 2008.太平洋板块俯冲与中国东部中生代地质事件.矿物岩石地球化学通报, 27(3):218-225. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwxb2007z1019 [109] 王岳军, Zhang, Y.H., 范蔚茗, 等, 2002.湖南印支期过铝质花岗岩的形成-岩浆底侵与地壳加厚热效应的数值模拟.中国科学(D辑), 32(6):491-499. http://www.oalib.com/paper/4203045 [110] 吴福元, 李献华, 郑永飞, 2007.Lu-Hf同位素体系及其岩石学应用.岩石学报, 23(2):185-220. https://www.researchgate.net/profile/Yong-Fei_Zheng/publication/279910636_Lu-Hf_isotopic_systematics_and_their_application_in_petrology/links/55cead3708aee19936fc5d6b.pdf [111] 伍静, 梁华英, 黄文婷, 等, 2012.桂东苗儿山-越城岭西部岩体和矿床同位素年龄及华南印支期成矿分析.科学通报, 57(13):1126-1136. http://www.cnki.com.cn/Article/CJFDTotal-DXQY201502003.htm [112] 吴元保, 郑永飞, 2004.锆石成因矿物学和微量元素地球化学.科学通报, 49(16):1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002 [113] 向华, 张利, 周汉文, 等, 2008.浙西南变质基底基性-超基性变质岩锆石U-Pb年龄、Hf同位素研究:华夏地块变质基底对华南印支期造山的响应.中国科学(D辑), 38(4):401-413. https://www.wenkuxiazai.com/doc/15fa6c60561252d380eb6e1b-3.html [114] 谢晓华, 陈卫锋, 赵葵东, 等, 2008.桂东北豆乍山花岗岩年代学与地球化学特征.岩石学报, 24(6):1302-1312. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200806014.htm [115] 杨振, 2012. 桂北苗儿山-越城岭地区前燕山期岩浆活动及其成矿作用的研究(硕士学位论文). 南京: 南京大学, 1-54. [116] 张迪, 张文兰, 王汝成, 等, 2015.桂北苗儿山地区高岭印支期花岗岩及石英脉型钨成矿作用.地质论评, 61(4):817-834. https://doi.org/10.16509/j.georeview.2015.04.009 [117] 张桂林, 梁金城, 冯佐海, 等, 2002.越城岭花岗岩体西侧滑脱型韧性剪切带的发现及其形成的构造体制.大地构造与成矿学, 26(2):131-137. https://doi.org/10.3969/j.issn.1001-1552.2002.02.004 [118] 张岳桥, 徐先兵, 贾东, 等, 2009.华南早中生代从印支期碰撞构造体系向燕山期俯冲构造体系转换的形变记录.地质学报, 16(1):234-247. https://www.wenkuxiazai.com/doc/038c95707fd5360cba1adb2b.html [119] 赵葵东, 蒋少涌, 孙涛, 等, 2006. 南岭西段印支期花岗岩Hf-Nd同位素解耦现象及岩石成因意义. 全国岩石学与地球动力学会议论文集, 北京, 435. [120] 钟应先, 刘援朝, 蔡学林, 1993.湖南道县玄武岩中壳源麻粒岩包体初步研究.成都地质学院学报, 20(1):56-61. http://www.cnki.com.cn/Article/CJFDTotal-GTDK201503002.htm [121] 周新民, 2003.对华南花岗岩研究的若干思考.高校地质学报, 9(4):556-565. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200304008.htm