High-Resolution Distribution and Biogeochemical Behavior of Phosphorus and Iron at Sediment-Water Interface of Tidal Flat
-
摘要: 为了解潮间带微环境中磷、铁元素的分布和耦合规律及对磷释放的影响,借助薄膜扩散梯度技术(ZrO-Chelex DGT)原位高分辨率获取九龙江口红树林潮滩孔隙水剖面的溶解活性磷(DRP)、Fe2+浓度,并测定沉积物相应的理化参数.研究结果表明:(1)在表层孔隙水中,DRP、Fe2+浓度呈现显著的正相关性,证实了磷、铁元素的耦合关系以及沉积物铁氧化物对磷吸附/解吸附的控制作用;(2)在深部还原带,DRP浓度相对Fe2+浓度具有较大的波动,主要受到沉积物异质性以及红树植物吸收等的影响;(3)根据表层孔隙水中DRP的浓度梯度计算获得磷的分子扩散通量为0.000 64~0.006 00 μg·cm-2·d-1,结果远低于一般湖泊沉积物内源磷的扩散通量,原因是富铁且具较深氧化带的潮滩沉积物中的磷-铁耦合关系有效地抑制了磷的释放.Abstract: To find out distribution and coupling pattern of iron and phosphorus, as well as impact on phosphorus release in microenvironment of intertidal region. with the help of diffusive gradients in thin films technique (ZrO-Chelex DGT), we obtained in-situ high-resolution DRP and Fe2+ concentrations in porewater profiles of mangrove tidal flat in Jiulong River estuary, as well as the corresponding sediment properties in this study. The results show:(1) In surface porewater, the remarkable positive correlation between DRP and Fe2+ verified the coupling relationship of these two elements and the crucial effects of sediment iron (Ⅲ) (oxyhydr) oxides on the absorption/desorption of phosphorus; (2) in deep anoxic porewater, on account of sediment heterogeneity and absorption by mangrove plants, DRP concentrations presented obvious fluctuations compared with Fe2+; (3) the molecular diffusion flux was estimated ranging from 0.000 64 to 0.006 00 μg·cm-2·d-1 based on DRP concentrations gradient in surface porewater, which are much lower than results of general lake research. The main reason is P-Fe coupling in this iron-rich tidal flat sediment with deep oxidation zone which effectively restrains phosphorus release.
-
Key words:
- sediments /
- phosphorus /
- iron /
- biogeochemistry /
- ZrO-Chelex DGT /
- mangrove tidal flat
-
表 1 林缘、光滩、水下沉积物理化特征
Table 1. Statistical data of properties in sediments at mangrove edge, bare flat and underwater
深度(cm) TP(mg/kg) 盐度(g/kg) θg(%) TFe(g/kg) TOC(g/kg) 砂(%) 粉砂(%) 粘土(%) 林缘 0~2 781 9.0 47.81 15.29 12.98 3.4 75.3 21.3 2~4 750 8.5 47.52 14.71 13.83 3.8 67.7 28.5 4~6 971 9.5 48.27 16.20 11.71 2.5 72.0 25.5 6~8 856 8.5 48.65 15.71 21.11 3.3 74.3 22.4 8~10 809 9.5 47.24 15.22 18.15 3.9 73.1 23.0 10~15 781 9.0 44.74 15.65 18.74 4.5 66.3 29.2 15~20 581 8.5 42.26 15.57 13.41 4.8 73.1 22.1 20~25 629 8.5 41.77 15.80 17.56 4.9 70.7 24.4 25~30 650 7.5 41.56 15.78 20.35 3.8 74.0 22.2 30~35 676 8.0 43.99 16.35 14.00 1.6 73.0 25.4 平均值 712 8.5 44.30 15.71 16.45 3.9 71.6 24.5 光滩 0~2 886 8.5 48.97 15.91 6.80 18.9 65.2 16.1 2~4 989 6.0 48.29 16.44 8.07 5.4 73.3 21.3 4~6 1 047 7.5 49.73 16.50 7.14 1.3 73.4 25.3 6~8 1 046 8.5 49.47 16.67 5.87 1.4 71.2 27.4 8~10 986 10 47.64 12.85 9.09 2.9 71.5 25.6 10~15 1 035 8.5 47.04 16.07 12.39 2.0 74.0 24.0 15~20 797 7.0 43.93 14.36 8.75 5.8 65.4 28.8 20~25 894 7.0 44.82 15.99 10.95 2.7 73.2 24.1 25~30 570 5.5 39.91 16.37 11.71 1.1 71.1 27.8 30~35 565 6.0 44.80 15.85 15.78 1.5 64.6 33.9 平均值 835 7.2 45.45 15.71 10.62 3.7 70.3 26.0 水下 0~2 1 080 6.0 57.13 15.85 15.78 7.1 70.7 22.2 2~4 859 11.0 50.09 16.19 28.74 7.3 72.4 20.3 4~6 803 7.5 50.23 16.27 26.87 2.3 77.5 20.2 6~8 1 036 7.5 50.90 16.40 22.81 8.9 67.0 24.1 8~10 947 10.0 51.75 15.99 20.10 0.9 75.8 23.3 10~15 1 132 12.0 51.10 16.35 25.43 0.6 78.4 21.0 15~20 935 13.0 49.59 16.44 19.17 1.2 76.6 22.2 20~25 1 044 11.5 47.80 16.19 31.36 3.4 76.5 20.1 25~30 686 10.5 44.62 16.44 24.33 6.5 67.6 25.9 30~35 908 8.0 44.00 16.44 20.01 6.6 70.7 22.7 平均值 942 10.0 48.74 16.31 23.08 4.0 73.8 22.2 表 2 与湖泊沉积物磷扩散通量的对比
Table 2. Comparison of P diffusion flux with other areas
研究地点 扩散通量(μg·cm-2·d-1) 文献来源 九龙江口 0.00064~0.00600 本研究 红枫湖 0.032~0.251 罗婧等,2015 巢湖 0.004~0.079 Han et al., 2015 洪泽湖 0.017~0.079 Yao et al., 2016 洞庭湖 -0.003~0.020 Gao et al., 2016 太湖 -0.021~0.065 Ding et al., 2015 -
[1] Babu, K.N., Ouseph, P.P., Padmalal, D., 2000.Interstitial Water-Sediment Geochemistry of N, P and Fe and Its Response to Overlying Waters of Tropical Estuaries:A Case from the Southwest Coast of India.Environmental Geology, 39(6):633-640. https://doi.org/10.1007/s002540050475 [2] Bao, S.D., 2000.Soil Agricultural Chemistry Analysis (The Third Edition).China Agriculture Press, Beijing, 21 (in Chinese). [3] Cai, P.H., Shi, X.M., Moore, W.S., et al., 2014.224Ra:228Th Disequilibrium in Coastal Sediments:Implications for Solute Transfer across the Sediment-Water Interface.Geochimica et Cosmochimica Acta, 125:68-84. https://doi.org/10.1016/j.gca.2013.09.029 [4] Chen, M.S., Ding, S.M., Liu, L., et al., 2015.Iron-Coupled Inactivation of Phosphorus in Sediments by Macrozoobenthos (Chironomid Larvae) Bioturbation:Evidences from High-Resolution Dynamic Measurements.Environmental Pollution, 204:241-247. https://doi.org/10.1016/j.envpol.2015.04.031 [5] Ding, S., Wan, G.Y., Xu, D., et al., 2013.Gel-Based Coloration Technique for the Submillimeter-Scale Imaging of Labile Phosphorus in Sediments and Soils with Diffusive Gradients in Thin Films.Environmental Science & Technology, 47(14):7821-7829. https://doi.org/10.1021/es400192j [6] Ding, S.M., Xu, D., Sun, Q., et al., 2010.Measurement of Dissolved Reactive Phosphorus Using the Diffusive Gradients in Thin Films Technique with a High-Capacity Binding Phase.Environmental Science & Technology, 44(21):8169-8174. https://doi.org/10.1021/es1020873 [7] Ding, S.M., Han, C., Wang, Y.P., et al., 2015.In Situ, High-Resolution Imaging of Labile Phosphorus in Sediments of a Large Eutrophic Lake.Water Research, 74:100-109. https://doi.org/10.1016/j.watres.2015.02.008 [8] Fan, C.X., Zhou, Y.Y., Wu, Q.L., et al., 2013.The Sediment-Water Interface of Lakes:Processes and Effects.Science Press, Beijing, 71 (in Chinese). [9] Gao, C.M., Zhu, Z., Wang, G.Q., et al., 2015.The Distribution of Phosphorus Forms and Its Environmental Significance in the Marine Ranching Demonstration Area of Haizhou Bay Sediment.China Environmental Science, 35(11):3437-3444 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zghjkx201511031 [10] Gao, J., Zheng, T.L., Deng, Y.M., et al., 2017.Indigenous Iron-Reducing Bacteria and Their Impacts on Arsenic Release in Arsenic-Affected Aquifer in Jianghan Plain.Earth Science, 42(5):716-726 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201705007 [11] Gao, Y.L., Liang, T., Tian, S.H., et al., 2016.High-Resolution Imaging of Labile Phosphorus and Its Relationship with Iron Redox State in Lake Sediments.Environmental Pollution, 219:466-474. https://doi.org/10.1016/j.envpol.2016.05.053 [12] Han, C., Ding, S.M., Yao, L., et al., 2015.Dynamics of Phosphorus-Iron-Sulfur at the Sediment-Water Interface Influenced by Algae Blooms Decomposition.Journal of Hazardous Materials, 300:329-337. https://doi.org/10.1016/j.jhazmat.2015.07.009 [13] Hou, Z.Y., Guo, C.S., Wang, J.Q., et al., 2016.Using Gassmann Equation Predict Marine Sediment Porosity.Earth Science, 41(7):1198-1205 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201607010 [14] Jiang, X., Jin, X.C., Yao, Y., et al., 2008.Effects of Biological Activity, Light, Temperature and Oxygen on Phosphorus Release Processes at the Sediment and Water Interface of Taihu Lake, China.Water Research, 42(8):2251-2259. https://doi.org/10.1016/j.watres.2007.12.003 [15] Jiao, N.Z., 1989.On the Problem of Phosphorus-Release from the Sediment.Transactions of Oceanology and Limnology, (2):80-84 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-HYFB198902015.htm [16] Karamanev, D.G., Nikolov, L.N., Mamatarkova, V., 2002.Rapid Simultaneous Quantitative Determination of Ferric and Ferrous Ions in Drainage Waters and Similar Solutions.Minerals Engineering, 15(5):341-346. https://doi.org/10.1016/s0892-6875(02)00026-2 [17] Kristensen, E., Alongi, D.M., 2006.Control by Fiddler Crabs (Uca Vocans) and Plant Roots (Avicennia Marina) on Carbon, Iron, and Sulfur Biogeochemistry in Mangrove Sediment.Limnology and Oceanography, 51(4):1557-1571. https://doi.org/10.4319/lo.2006.51.4.1557 [18] Lee, E.Y., Cho, K.S., Ryu, H.W., 2002.Microbial Refinement of Kaolin by Iron-Reducing Bacteria.Applied Clay Science, 22(1):47-53. https://doi.org/10.1016/s0169-1317(02)00111-4 [19] Liang, J., Lu, C.Y., Ye, Y., et al., 2013.Soil Respiration in a Subtropical Mangrove Wetland in the Jiulong River Estuary, China.Pedosphere, 23(5):678-685. https://doi.org/10.1016/s1002-0160(13)60060-0 [20] Li, B., Jia, F., Zhang, Y.L., et al., 2011.High-Resolution and Synchronous Analyses of Dissoloved Reactive Phosphorus (DRP) and Dissolved Ferrous Iron in Pore Waters of Sediments.Ecology and Environmental Sciences, 20(3):485-489 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tryhj201103017 [21] Li, R., Ye, Y., Chen, G.C., et al., 2007.Effect of Aegiceras Corniculata Mangrove Rehabilitation on Macro-Benthic Animals in Jiulongjiang River Estuary.Journal of Xiamen University (Natural Science), 46(1):109-114 (in Chinese with English abstract). doi: 10.1017-S1047951109990680/ [22] Li, Y.H., Gregory, S., 1974.Diffusion of Ions in Sea Water and in Deep-Sea Sediments.Geochimica et Cosmochimica Acta, 38(5):703-714. https://doi.org/10.1016/0016-7037(74)90145-8 [23] Lukkari, K., Leivuori, M., Vallius, H., et al., 2009.The Chemical Character and Burial of Phosphorus in Shallow Coastal Sediments in the Northeastern Baltic Sea.Biogeochemistry, 94(2):141-162. https://doi.org/10.1007/s10533-009-9315-y [24] Luo, J., Chen, J.A., Wang, J.F., et al., 2015.Estimation of the Phosphorus Flux from the Sediments in Hongfeng Lake Using the Zr-Oxide Diffusive Gradients in Thin Films (Zr-Oxide DGT) Technique.Bulletin of Mineralogy, Petrology and Geochemistry, 34(5):1014-1020 (in Chinese with English abstract). doi: 10.1007/s12665-015-4612-3 [25] McGowan, K.T., Martin, J.B., 2007.Chemical Composition of Mangrove-Generated Brines in Bishop Harbor, Florida:Interactions with Submarine Groundwater Discharge.Marine Chemistry, 104(1):58-68. https://doi.org/10.1016/j.marchem.2006.12.006 [26] Pagès, A., Teasdale, P.R., Robertson, D., et al., 2011.Representative Measurement of Two-Dimensional Reactive Phosphate Distributions and Co-Distributed Iron (Ⅱ) and Sulfide in Seagrass Sediment Porewaters.Chemosphere, 85(8):1256-1261. https://doi.org/10.1016/j.chemosphere.2011.07.020 [27] Qian, B., Liu, L., Xiao, X., et al., 2014.The Process of Phosphorus Release from Lake Sediments on the Micro-Interface.Journal of Hydraulic Engineering, 45(4):482-489 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=slxb201404014 [28] Ruban, V., López-Sánchez, J.F., Pardo, P., et al., 2001.Harmonized Protocol and Certified Reference Material for the Determination of Extractable Contents of Phosphorus in Freshwater Sediments-A Synthesis of Recent Works.Fresenius' Journal of Analytical Chemistry, 370(2-3):224-228. https://doi.org/10.1007/s002160100753 [29] Shen, S., Ma, T., Du, Y., et al., 2017.Dynamic Variations of Nitrogenin Groundwater under Influence of Seasonal Hydrological Condition in Typical Area of Jianghan Plain.Earth Science, 42(5):674-684 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201705002.htm [30] Skoog, A.C., Arias-Esquivel, V.A., 2009.The Effect of Induced Anoxia and Reoxygenation on Benthic Fluxes of Organic Carbon, Phosphate, Iron, and Manganese.Science of the Total Environment, 407(23):6085-6092. https://doi.org/10.1016/j.scitotenv.2009.08.030 [31] State Administration for Quality Supervision and Inspection and Quarantine, National Standardization Administration Committee, 2007.GB 17378-2007, The Specification for Marine Monitoring China.Ocean Press, Beijing, 54 (in Chinese). [32] Stockdale, A., Davison, W., Zhang, H., 2009.Micro-Scale Biogeochemical Heterogeneity in Sediments:A Review of Available Technology and Observed Evidence.Earth-Science Reviews, 92(1):81-97. https://doi.org/10.1016/j.earscirev.2008.11.003 [33] Sun, Q., Zhang, L., Ding, S., et al., 2015.Evaluation of the Diffusive Gradients in Thin Films Technique Using a Mixed Binding Gel for Measuring Iron, Phosphorus and Arsenic in the Environment.Environmental Science:Processes & Impacts, 17(3):570-577. https://doi.org/10.1039/C4EM00629A [34] Tipping, E., 1981.The Adsorption of Aquatic Humic Substances by Iron Oxides.Geochimica et Cosmochimica Acta, 45(2):191-199. https://doi.org/10.1016/0016-7037(81)90162-9 [35] Toggweiler, J.R., 1999.Oceanography:An Ultimate Limiting Nutrient.Nature, 400(6744):511-512. https://doi.org/10.1038/22892 [36] Ullman, W.J., Aller, R.C., 1982.Diffusion Coefficients in Nearshore Marine Sediments.Limnology and Oceanography, 27(3):552-556. https://doi.org/10.4319/lo.1982.27.3.0552 [37] Wang, Y.Y., Huang, S.B., Zhao, L., et al., 2017.Evolution of Quaternary Sedimentary Environment in Shallow Aquifers, at Shahu Area, Jianghan Plain.Earth Science, 42(5):751-760 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201705011 [38] Xu, D., Chen, Y.F., Ding, S.M., et al., 2013.Diffusive Gradients in Thin Films Technique Equipped with a Mixed Binding Gel for Simultaneous Measurements of Dissolved Reactive Phosphorus and Dissolved Iron.Environmental Science & Technology, 47(18):10477-10484. https://doi.org/10.1021/es401822x [39] Yao, Y., Wang, P.F., Wang, C., et al., 2016.Assessment of Mobilization of Labile Phosphorus and Iron across Sediment-Water Interface in a Shallow Lake (Hongze) Based on In Situ High-Resolution Measurement.Environmental Pollution, 219:873-882. https://doi.org/10.1016/j.envpol.2016.08.054 [40] Zhang, H., Davison, W., Gadi, R., et al., 1998.In Situ Measurement of Dissolved Phosphorus in Natural Waters Using DGT.Analytica Chimica Acta, 370(1):29-38. https://doi.org/10.1016/s0003-2670(98)00250-5 [41] Zhang, X.Y., Yang, Q., Sun, Y., et al., 2013.The Distribution of Phosphorus Forms and Bioavailability in Sediments from Huang Dong Hai Continental Shelf.Acta Ecologica Sinica, 33(11):3509-3519 (in Chinese with English abstract). doi: 10.5846/stxb [42] Zhong, S., Wu, Y.P., Xu, J.M., 2009.Phosphorus Utilization and Microbial Community in Response to Lead/Iron Addition to a Waterlogged Soil.Journal of Environmental Sciences, 21(10):1415-1423. https://doi.org/10.1016/s1001-0742(08)62434-1 [43] Zhou, W., Wang, Q., Zhao, Q.Y., et al., 1990.Color Variation of Surface Sediment in South Bohai Sea.Marine Sciences, 14(3):31-35 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000005268235 [44] Zhu, G.W., Gao, G., Qin, B.Q., et al., 2003.Geochemical Characteristics of Phosphorus in Sediments of a Large Shallow Lake.Advances in Water Science, 14(6):714-719 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=skxjz200306008 [45] 鲍士旦, 2000.土壤农化分析(第三版).北京:中国农业出版社, 21. [46] 范成新, 周易勇, 吴庆龙, 等, 2013.湖泊沉积物界面过程与效应.北京:科学出版社, 71. [47] 高春梅, 朱珠, 王功芹, 等, 2015.海州湾海洋牧场海域表层沉积物磷的形态与环境意义.中国环境科学, 35(11):3437-3444. doi: 10.3969/j.issn.1000-6923.2015.11.031 [48] 高杰, 郑天亮, 邓娅敏, 等, 2017.江汉平原高砷地下水原位微生物的铁还原及其对砷释放的影响.地球科学, 42(5):716-726. http://www.earth-science.net/WebPage/Article.aspx?id=3576 [49] 侯正瑜, 郭常升, 王景强, 等, 2016.利用Gassmann方程预测海底沉积物孔隙度.地球科学, 41(7):1198-1205. http://www.earth-science.net/WebPage/Article.aspx?id=3328 [50] 焦念志, 1989.关于沉积物释磷问题的研究.海洋湖沼通报, (2):80-84. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000001531828 [51] 李斌, 贾飞, 张银龙, 等, 2011.沉积物间隙水溶解态磷和铁(Ⅱ)高分辨同步分析方法的研究.生态环境学报, 20(3):485-489. doi: 10.3969/j.issn.1674-5906.2011.03.017 [52] 李蓉, 叶勇, 陈光程, 等, 2007.九龙江口桐花树红树林恢复对大型底栖动物的影响.厦门大学学报(自然科学版), 46(1):109-114. doi: 10.3321/j.issn:0438-0479.2007.01.025 [53] 罗婧, 陈敬安, 王敬富, 等, 2015.利用薄膜扩散梯度技术估算红枫湖沉积物磷释放通量.矿物岩石地球化学通报, 34(5):1014-1020. doi: 10.3969/j.issn.1007-2802.2015.05.017 [54] 钱宝, 刘凌, 肖潇, 等, 2014.湖泊沉积物-水微界面上磷的释放过程研究.水利学报, 45(4):482-489. http://d.old.wanfangdata.com.cn/Periodical/slxb201404014 [55] 沈帅, 马腾, 杜尧, 等, 2017.江汉平原典型地区季节性水文条件影响下氮的动态变化规律.地球科学, 42(5):674-684. http://www.earth-science.net/WebPage/Article.aspx?id=3580 [56] 王妍妍, 黄爽兵, 赵龙, 等, 2017.江汉平原沙湖地区浅层含水层第四纪沉积环境演化.地球科学, 42(5):751-760. http://www.earth-science.net/WebPage/Article.aspx?id=3573 [57] 张小勇, 杨茜, 孙耀, 等, 2013.黄东海陆架区沉积物中磷的形态分布及生物可利用性.生态学报, 33(11):3509-3519. http://d.old.wanfangdata.com.cn/Periodical/stxb201311028 [58] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会, 2007.GB17378-2007, 海洋监测规范.北京:海洋出版社, 54. [59] 周伟, 王琦, 赵其渊, 等, 1990.渤海南部海底沉积物颜色的研究.海洋科学, 14(3):31-35. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000005268235 [60] 朱广伟, 高光, 秦伯强, 等, 2003.浅水湖泊沉积物中磷的地球化学特征.水科学进展, 14(6):714-719. doi: 10.3321/j.issn:1001-6791.2003.06.008