• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    潮滩沉积物-水界面磷、铁的高分辨率分布特征及生物地球化学行为

    潘峰 郭占荣 刘花台 王博 李志伟 庄振杰

    潘峰, 郭占荣, 刘花台, 王博, 李志伟, 庄振杰, 2018. 潮滩沉积物-水界面磷、铁的高分辨率分布特征及生物地球化学行为. 地球科学, 43(11): 4109-4119. doi: 10.3799/dqkx.2018.177
    引用本文: 潘峰, 郭占荣, 刘花台, 王博, 李志伟, 庄振杰, 2018. 潮滩沉积物-水界面磷、铁的高分辨率分布特征及生物地球化学行为. 地球科学, 43(11): 4109-4119. doi: 10.3799/dqkx.2018.177
    Pan Feng, Guo Zhanrong, Liu Huatai, Wang Bo, Li Zhiwei, Zhuang Zhenjie, 2018. High-Resolution Distribution and Biogeochemical Behavior of Phosphorus and Iron at Sediment-Water Interface of Tidal Flat. Earth Science, 43(11): 4109-4119. doi: 10.3799/dqkx.2018.177
    Citation: Pan Feng, Guo Zhanrong, Liu Huatai, Wang Bo, Li Zhiwei, Zhuang Zhenjie, 2018. High-Resolution Distribution and Biogeochemical Behavior of Phosphorus and Iron at Sediment-Water Interface of Tidal Flat. Earth Science, 43(11): 4109-4119. doi: 10.3799/dqkx.2018.177

    潮滩沉积物-水界面磷、铁的高分辨率分布特征及生物地球化学行为

    doi: 10.3799/dqkx.2018.177
    基金项目: 

    国家自然科学基金项目 41672226

    国家自然科学基金项目 41372242

    详细信息
      作者简介:

      潘峰(1990-), 男, 博士研究生, 研究方向为海岸带水文地质

      通讯作者:

      郭占荣

    • 中图分类号: P736.4

    High-Resolution Distribution and Biogeochemical Behavior of Phosphorus and Iron at Sediment-Water Interface of Tidal Flat

    • 摘要: 为了解潮间带微环境中磷、铁元素的分布和耦合规律及对磷释放的影响,借助薄膜扩散梯度技术(ZrO-Chelex DGT)原位高分辨率获取九龙江口红树林潮滩孔隙水剖面的溶解活性磷(DRP)、Fe2+浓度,并测定沉积物相应的理化参数.研究结果表明:(1)在表层孔隙水中,DRP、Fe2+浓度呈现显著的正相关性,证实了磷、铁元素的耦合关系以及沉积物铁氧化物对磷吸附/解吸附的控制作用;(2)在深部还原带,DRP浓度相对Fe2+浓度具有较大的波动,主要受到沉积物异质性以及红树植物吸收等的影响;(3)根据表层孔隙水中DRP的浓度梯度计算获得磷的分子扩散通量为0.000 64~0.006 00 μg·cm-2·d-1,结果远低于一般湖泊沉积物内源磷的扩散通量,原因是富铁且具较深氧化带的潮滩沉积物中的磷-铁耦合关系有效地抑制了磷的释放.

       

    • 图  1  研究区位置及低潮时采样点分布

      Fig.  1.  Sampling sites in the study area of low tide

      图  2  沉积物磷形态垂向分布

      Fig.  2.  Vertical distributions of P fractions in sediments

      图  3  孔隙水中磷、铁浓度垂直分布

      Fig.  3.  Vertical distributions of P and Fe concentrations in porewater

      图  4  林缘沉积物柱样剖面

      Fig.  4.  Profile of sediment core at mangrove edge

      图  5  ABC三处不同深度段DRP与Fe2+浓度的线性相关

      Fig.  5.  Linear correlation between DRP and Fe2+ concentrations at diverse depth ranges at three stations

      图  6  ABC表层5cm深度范围DRP的浓度变化

      Fig.  6.  Linear correlation between uppermost 5cm depth and DRP concentrations

      表  1  林缘、光滩、水下沉积物理化特征

      Table  1.   Statistical data of properties in sediments at mangrove edge, bare flat and underwater

      深度(cm) TP(mg/kg) 盐度(g/kg) θg(%) TFe(g/kg) TOC(g/kg) 砂(%) 粉砂(%) 粘土(%)
      林缘
      0~2 781 9.0 47.81 15.29 12.98 3.4 75.3 21.3
      2~4 750 8.5 47.52 14.71 13.83 3.8 67.7 28.5
      4~6 971 9.5 48.27 16.20 11.71 2.5 72.0 25.5
      6~8 856 8.5 48.65 15.71 21.11 3.3 74.3 22.4
      8~10 809 9.5 47.24 15.22 18.15 3.9 73.1 23.0
      10~15 781 9.0 44.74 15.65 18.74 4.5 66.3 29.2
      15~20 581 8.5 42.26 15.57 13.41 4.8 73.1 22.1
      20~25 629 8.5 41.77 15.80 17.56 4.9 70.7 24.4
      25~30 650 7.5 41.56 15.78 20.35 3.8 74.0 22.2
      30~35 676 8.0 43.99 16.35 14.00 1.6 73.0 25.4
      平均值 712 8.5 44.30 15.71 16.45 3.9 71.6 24.5
      光滩
      0~2 886 8.5 48.97 15.91 6.80 18.9 65.2 16.1
      2~4 989 6.0 48.29 16.44 8.07 5.4 73.3 21.3
      4~6 1 047 7.5 49.73 16.50 7.14 1.3 73.4 25.3
      6~8 1 046 8.5 49.47 16.67 5.87 1.4 71.2 27.4
      8~10 986 10 47.64 12.85 9.09 2.9 71.5 25.6
      10~15 1 035 8.5 47.04 16.07 12.39 2.0 74.0 24.0
      15~20 797 7.0 43.93 14.36 8.75 5.8 65.4 28.8
      20~25 894 7.0 44.82 15.99 10.95 2.7 73.2 24.1
      25~30 570 5.5 39.91 16.37 11.71 1.1 71.1 27.8
      30~35 565 6.0 44.80 15.85 15.78 1.5 64.6 33.9
      平均值 835 7.2 45.45 15.71 10.62 3.7 70.3 26.0
      水下
      0~2 1 080 6.0 57.13 15.85 15.78 7.1 70.7 22.2
      2~4 859 11.0 50.09 16.19 28.74 7.3 72.4 20.3
      4~6 803 7.5 50.23 16.27 26.87 2.3 77.5 20.2
      6~8 1 036 7.5 50.90 16.40 22.81 8.9 67.0 24.1
      8~10 947 10.0 51.75 15.99 20.10 0.9 75.8 23.3
      10~15 1 132 12.0 51.10 16.35 25.43 0.6 78.4 21.0
      15~20 935 13.0 49.59 16.44 19.17 1.2 76.6 22.2
      20~25 1 044 11.5 47.80 16.19 31.36 3.4 76.5 20.1
      25~30 686 10.5 44.62 16.44 24.33 6.5 67.6 25.9
      30~35 908 8.0 44.00 16.44 20.01 6.6 70.7 22.7
      平均值 942 10.0 48.74 16.31 23.08 4.0 73.8 22.2
      下载: 导出CSV

      表  2  与湖泊沉积物磷扩散通量的对比

      Table  2.   Comparison of P diffusion flux with other areas

      研究地点 扩散通量(μg·cm-2·d-1) 文献来源
      九龙江口 0.00064~0.00600 本研究
      红枫湖 0.032~0.251 罗婧等,2015
      巢湖 0.004~0.079 Han et al., 2015
      洪泽湖 0.017~0.079 Yao et al., 2016
      洞庭湖 -0.003~0.020 Gao et al., 2016
      太湖 -0.021~0.065 Ding et al., 2015
      下载: 导出CSV
    • [1] Babu, K.N., Ouseph, P.P., Padmalal, D., 2000.Interstitial Water-Sediment Geochemistry of N, P and Fe and Its Response to Overlying Waters of Tropical Estuaries:A Case from the Southwest Coast of India.Environmental Geology, 39(6):633-640. https://doi.org/10.1007/s002540050475
      [2] Bao, S.D., 2000.Soil Agricultural Chemistry Analysis (The Third Edition).China Agriculture Press, Beijing, 21 (in Chinese).
      [3] Cai, P.H., Shi, X.M., Moore, W.S., et al., 2014.224Ra:228Th Disequilibrium in Coastal Sediments:Implications for Solute Transfer across the Sediment-Water Interface.Geochimica et Cosmochimica Acta, 125:68-84. https://doi.org/10.1016/j.gca.2013.09.029
      [4] Chen, M.S., Ding, S.M., Liu, L., et al., 2015.Iron-Coupled Inactivation of Phosphorus in Sediments by Macrozoobenthos (Chironomid Larvae) Bioturbation:Evidences from High-Resolution Dynamic Measurements.Environmental Pollution, 204:241-247. https://doi.org/10.1016/j.envpol.2015.04.031
      [5] Ding, S., Wan, G.Y., Xu, D., et al., 2013.Gel-Based Coloration Technique for the Submillimeter-Scale Imaging of Labile Phosphorus in Sediments and Soils with Diffusive Gradients in Thin Films.Environmental Science & Technology, 47(14):7821-7829. https://doi.org/10.1021/es400192j
      [6] Ding, S.M., Xu, D., Sun, Q., et al., 2010.Measurement of Dissolved Reactive Phosphorus Using the Diffusive Gradients in Thin Films Technique with a High-Capacity Binding Phase.Environmental Science & Technology, 44(21):8169-8174. https://doi.org/10.1021/es1020873
      [7] Ding, S.M., Han, C., Wang, Y.P., et al., 2015.In Situ, High-Resolution Imaging of Labile Phosphorus in Sediments of a Large Eutrophic Lake.Water Research, 74:100-109. https://doi.org/10.1016/j.watres.2015.02.008
      [8] Fan, C.X., Zhou, Y.Y., Wu, Q.L., et al., 2013.The Sediment-Water Interface of Lakes:Processes and Effects.Science Press, Beijing, 71 (in Chinese).
      [9] Gao, C.M., Zhu, Z., Wang, G.Q., et al., 2015.The Distribution of Phosphorus Forms and Its Environmental Significance in the Marine Ranching Demonstration Area of Haizhou Bay Sediment.China Environmental Science, 35(11):3437-3444 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zghjkx201511031
      [10] Gao, J., Zheng, T.L., Deng, Y.M., et al., 2017.Indigenous Iron-Reducing Bacteria and Their Impacts on Arsenic Release in Arsenic-Affected Aquifer in Jianghan Plain.Earth Science, 42(5):716-726 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201705007
      [11] Gao, Y.L., Liang, T., Tian, S.H., et al., 2016.High-Resolution Imaging of Labile Phosphorus and Its Relationship with Iron Redox State in Lake Sediments.Environmental Pollution, 219:466-474. https://doi.org/10.1016/j.envpol.2016.05.053
      [12] Han, C., Ding, S.M., Yao, L., et al., 2015.Dynamics of Phosphorus-Iron-Sulfur at the Sediment-Water Interface Influenced by Algae Blooms Decomposition.Journal of Hazardous Materials, 300:329-337. https://doi.org/10.1016/j.jhazmat.2015.07.009
      [13] Hou, Z.Y., Guo, C.S., Wang, J.Q., et al., 2016.Using Gassmann Equation Predict Marine Sediment Porosity.Earth Science, 41(7):1198-1205 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201607010
      [14] Jiang, X., Jin, X.C., Yao, Y., et al., 2008.Effects of Biological Activity, Light, Temperature and Oxygen on Phosphorus Release Processes at the Sediment and Water Interface of Taihu Lake, China.Water Research, 42(8):2251-2259. https://doi.org/10.1016/j.watres.2007.12.003
      [15] Jiao, N.Z., 1989.On the Problem of Phosphorus-Release from the Sediment.Transactions of Oceanology and Limnology, (2):80-84 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-HYFB198902015.htm
      [16] Karamanev, D.G., Nikolov, L.N., Mamatarkova, V., 2002.Rapid Simultaneous Quantitative Determination of Ferric and Ferrous Ions in Drainage Waters and Similar Solutions.Minerals Engineering, 15(5):341-346. https://doi.org/10.1016/s0892-6875(02)00026-2
      [17] Kristensen, E., Alongi, D.M., 2006.Control by Fiddler Crabs (Uca Vocans) and Plant Roots (Avicennia Marina) on Carbon, Iron, and Sulfur Biogeochemistry in Mangrove Sediment.Limnology and Oceanography, 51(4):1557-1571. https://doi.org/10.4319/lo.2006.51.4.1557
      [18] Lee, E.Y., Cho, K.S., Ryu, H.W., 2002.Microbial Refinement of Kaolin by Iron-Reducing Bacteria.Applied Clay Science, 22(1):47-53. https://doi.org/10.1016/s0169-1317(02)00111-4
      [19] Liang, J., Lu, C.Y., Ye, Y., et al., 2013.Soil Respiration in a Subtropical Mangrove Wetland in the Jiulong River Estuary, China.Pedosphere, 23(5):678-685. https://doi.org/10.1016/s1002-0160(13)60060-0
      [20] Li, B., Jia, F., Zhang, Y.L., et al., 2011.High-Resolution and Synchronous Analyses of Dissoloved Reactive Phosphorus (DRP) and Dissolved Ferrous Iron in Pore Waters of Sediments.Ecology and Environmental Sciences, 20(3):485-489 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tryhj201103017
      [21] Li, R., Ye, Y., Chen, G.C., et al., 2007.Effect of Aegiceras Corniculata Mangrove Rehabilitation on Macro-Benthic Animals in Jiulongjiang River Estuary.Journal of Xiamen University (Natural Science), 46(1):109-114 (in Chinese with English abstract). doi: 10.1017-S1047951109990680/
      [22] Li, Y.H., Gregory, S., 1974.Diffusion of Ions in Sea Water and in Deep-Sea Sediments.Geochimica et Cosmochimica Acta, 38(5):703-714. https://doi.org/10.1016/0016-7037(74)90145-8
      [23] Lukkari, K., Leivuori, M., Vallius, H., et al., 2009.The Chemical Character and Burial of Phosphorus in Shallow Coastal Sediments in the Northeastern Baltic Sea.Biogeochemistry, 94(2):141-162. https://doi.org/10.1007/s10533-009-9315-y
      [24] Luo, J., Chen, J.A., Wang, J.F., et al., 2015.Estimation of the Phosphorus Flux from the Sediments in Hongfeng Lake Using the Zr-Oxide Diffusive Gradients in Thin Films (Zr-Oxide DGT) Technique.Bulletin of Mineralogy, Petrology and Geochemistry, 34(5):1014-1020 (in Chinese with English abstract). doi: 10.1007/s12665-015-4612-3
      [25] McGowan, K.T., Martin, J.B., 2007.Chemical Composition of Mangrove-Generated Brines in Bishop Harbor, Florida:Interactions with Submarine Groundwater Discharge.Marine Chemistry, 104(1):58-68. https://doi.org/10.1016/j.marchem.2006.12.006
      [26] Pagès, A., Teasdale, P.R., Robertson, D., et al., 2011.Representative Measurement of Two-Dimensional Reactive Phosphate Distributions and Co-Distributed Iron (Ⅱ) and Sulfide in Seagrass Sediment Porewaters.Chemosphere, 85(8):1256-1261. https://doi.org/10.1016/j.chemosphere.2011.07.020
      [27] Qian, B., Liu, L., Xiao, X., et al., 2014.The Process of Phosphorus Release from Lake Sediments on the Micro-Interface.Journal of Hydraulic Engineering, 45(4):482-489 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=slxb201404014
      [28] Ruban, V., López-Sánchez, J.F., Pardo, P., et al., 2001.Harmonized Protocol and Certified Reference Material for the Determination of Extractable Contents of Phosphorus in Freshwater Sediments-A Synthesis of Recent Works.Fresenius' Journal of Analytical Chemistry, 370(2-3):224-228. https://doi.org/10.1007/s002160100753
      [29] Shen, S., Ma, T., Du, Y., et al., 2017.Dynamic Variations of Nitrogenin Groundwater under Influence of Seasonal Hydrological Condition in Typical Area of Jianghan Plain.Earth Science, 42(5):674-684 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201705002.htm
      [30] Skoog, A.C., Arias-Esquivel, V.A., 2009.The Effect of Induced Anoxia and Reoxygenation on Benthic Fluxes of Organic Carbon, Phosphate, Iron, and Manganese.Science of the Total Environment, 407(23):6085-6092. https://doi.org/10.1016/j.scitotenv.2009.08.030
      [31] State Administration for Quality Supervision and Inspection and Quarantine, National Standardization Administration Committee, 2007.GB 17378-2007, The Specification for Marine Monitoring China.Ocean Press, Beijing, 54 (in Chinese).
      [32] Stockdale, A., Davison, W., Zhang, H., 2009.Micro-Scale Biogeochemical Heterogeneity in Sediments:A Review of Available Technology and Observed Evidence.Earth-Science Reviews, 92(1):81-97. https://doi.org/10.1016/j.earscirev.2008.11.003
      [33] Sun, Q., Zhang, L., Ding, S., et al., 2015.Evaluation of the Diffusive Gradients in Thin Films Technique Using a Mixed Binding Gel for Measuring Iron, Phosphorus and Arsenic in the Environment.Environmental Science:Processes & Impacts, 17(3):570-577. https://doi.org/10.1039/C4EM00629A
      [34] Tipping, E., 1981.The Adsorption of Aquatic Humic Substances by Iron Oxides.Geochimica et Cosmochimica Acta, 45(2):191-199. https://doi.org/10.1016/0016-7037(81)90162-9
      [35] Toggweiler, J.R., 1999.Oceanography:An Ultimate Limiting Nutrient.Nature, 400(6744):511-512. https://doi.org/10.1038/22892
      [36] Ullman, W.J., Aller, R.C., 1982.Diffusion Coefficients in Nearshore Marine Sediments.Limnology and Oceanography, 27(3):552-556. https://doi.org/10.4319/lo.1982.27.3.0552
      [37] Wang, Y.Y., Huang, S.B., Zhao, L., et al., 2017.Evolution of Quaternary Sedimentary Environment in Shallow Aquifers, at Shahu Area, Jianghan Plain.Earth Science, 42(5):751-760 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201705011
      [38] Xu, D., Chen, Y.F., Ding, S.M., et al., 2013.Diffusive Gradients in Thin Films Technique Equipped with a Mixed Binding Gel for Simultaneous Measurements of Dissolved Reactive Phosphorus and Dissolved Iron.Environmental Science & Technology, 47(18):10477-10484. https://doi.org/10.1021/es401822x
      [39] Yao, Y., Wang, P.F., Wang, C., et al., 2016.Assessment of Mobilization of Labile Phosphorus and Iron across Sediment-Water Interface in a Shallow Lake (Hongze) Based on In Situ High-Resolution Measurement.Environmental Pollution, 219:873-882. https://doi.org/10.1016/j.envpol.2016.08.054
      [40] Zhang, H., Davison, W., Gadi, R., et al., 1998.In Situ Measurement of Dissolved Phosphorus in Natural Waters Using DGT.Analytica Chimica Acta, 370(1):29-38. https://doi.org/10.1016/s0003-2670(98)00250-5
      [41] Zhang, X.Y., Yang, Q., Sun, Y., et al., 2013.The Distribution of Phosphorus Forms and Bioavailability in Sediments from Huang Dong Hai Continental Shelf.Acta Ecologica Sinica, 33(11):3509-3519 (in Chinese with English abstract). doi: 10.5846/stxb
      [42] Zhong, S., Wu, Y.P., Xu, J.M., 2009.Phosphorus Utilization and Microbial Community in Response to Lead/Iron Addition to a Waterlogged Soil.Journal of Environmental Sciences, 21(10):1415-1423. https://doi.org/10.1016/s1001-0742(08)62434-1
      [43] Zhou, W., Wang, Q., Zhao, Q.Y., et al., 1990.Color Variation of Surface Sediment in South Bohai Sea.Marine Sciences, 14(3):31-35 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000005268235
      [44] Zhu, G.W., Gao, G., Qin, B.Q., et al., 2003.Geochemical Characteristics of Phosphorus in Sediments of a Large Shallow Lake.Advances in Water Science, 14(6):714-719 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=skxjz200306008
      [45] 鲍士旦, 2000.土壤农化分析(第三版).北京:中国农业出版社, 21.
      [46] 范成新, 周易勇, 吴庆龙, 等, 2013.湖泊沉积物界面过程与效应.北京:科学出版社, 71.
      [47] 高春梅, 朱珠, 王功芹, 等, 2015.海州湾海洋牧场海域表层沉积物磷的形态与环境意义.中国环境科学, 35(11):3437-3444. doi: 10.3969/j.issn.1000-6923.2015.11.031
      [48] 高杰, 郑天亮, 邓娅敏, 等, 2017.江汉平原高砷地下水原位微生物的铁还原及其对砷释放的影响.地球科学, 42(5):716-726. http://www.earth-science.net/WebPage/Article.aspx?id=3576
      [49] 侯正瑜, 郭常升, 王景强, 等, 2016.利用Gassmann方程预测海底沉积物孔隙度.地球科学, 41(7):1198-1205. http://www.earth-science.net/WebPage/Article.aspx?id=3328
      [50] 焦念志, 1989.关于沉积物释磷问题的研究.海洋湖沼通报, (2):80-84. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000001531828
      [51] 李斌, 贾飞, 张银龙, 等, 2011.沉积物间隙水溶解态磷和铁(Ⅱ)高分辨同步分析方法的研究.生态环境学报, 20(3):485-489. doi: 10.3969/j.issn.1674-5906.2011.03.017
      [52] 李蓉, 叶勇, 陈光程, 等, 2007.九龙江口桐花树红树林恢复对大型底栖动物的影响.厦门大学学报(自然科学版), 46(1):109-114. doi: 10.3321/j.issn:0438-0479.2007.01.025
      [53] 罗婧, 陈敬安, 王敬富, 等, 2015.利用薄膜扩散梯度技术估算红枫湖沉积物磷释放通量.矿物岩石地球化学通报, 34(5):1014-1020. doi: 10.3969/j.issn.1007-2802.2015.05.017
      [54] 钱宝, 刘凌, 肖潇, 等, 2014.湖泊沉积物-水微界面上磷的释放过程研究.水利学报, 45(4):482-489. http://d.old.wanfangdata.com.cn/Periodical/slxb201404014
      [55] 沈帅, 马腾, 杜尧, 等, 2017.江汉平原典型地区季节性水文条件影响下氮的动态变化规律.地球科学, 42(5):674-684. http://www.earth-science.net/WebPage/Article.aspx?id=3580
      [56] 王妍妍, 黄爽兵, 赵龙, 等, 2017.江汉平原沙湖地区浅层含水层第四纪沉积环境演化.地球科学, 42(5):751-760. http://www.earth-science.net/WebPage/Article.aspx?id=3573
      [57] 张小勇, 杨茜, 孙耀, 等, 2013.黄东海陆架区沉积物中磷的形态分布及生物可利用性.生态学报, 33(11):3509-3519. http://d.old.wanfangdata.com.cn/Periodical/stxb201311028
      [58] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会, 2007.GB17378-2007, 海洋监测规范.北京:海洋出版社, 54.
      [59] 周伟, 王琦, 赵其渊, 等, 1990.渤海南部海底沉积物颜色的研究.海洋科学, 14(3):31-35. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000005268235
      [60] 朱广伟, 高光, 秦伯强, 等, 2003.浅水湖泊沉积物中磷的地球化学特征.水科学进展, 14(6):714-719. doi: 10.3321/j.issn:1001-6791.2003.06.008
    • 加载中
    图(6) / 表(2)
    计量
    • 文章访问数:  3365
    • HTML全文浏览量:  1282
    • PDF下载量:  37
    • 被引次数: 0
    出版历程
    • 收稿日期:  2018-03-19
    • 刊出日期:  2018-11-15

    目录

      /

      返回文章
      返回