• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    基于灰色关联度模型的区域滑坡敏感性评价

    黄发明 汪洋 董志良 吴礼舟 郭子正 张泰丽

    黄发明, 汪洋, 董志良, 吴礼舟, 郭子正, 张泰丽, 2019. 基于灰色关联度模型的区域滑坡敏感性评价. 地球科学, 44(2): 664-676. doi: 10.3799/dqkx.2018.175
    引用本文: 黄发明, 汪洋, 董志良, 吴礼舟, 郭子正, 张泰丽, 2019. 基于灰色关联度模型的区域滑坡敏感性评价. 地球科学, 44(2): 664-676. doi: 10.3799/dqkx.2018.175
    Huang Faming, Wang Yang, Dong Zhiliang, Wu Lizhou, Guo Zizheng, Zhang Taili, 2019. Regional Landslide Susceptibility Mapping Based on Grey Relational Degree Model. Earth Science, 44(2): 664-676. doi: 10.3799/dqkx.2018.175
    Citation: Huang Faming, Wang Yang, Dong Zhiliang, Wu Lizhou, Guo Zizheng, Zhang Taili, 2019. Regional Landslide Susceptibility Mapping Based on Grey Relational Degree Model. Earth Science, 44(2): 664-676. doi: 10.3799/dqkx.2018.175

    基于灰色关联度模型的区域滑坡敏感性评价

    doi: 10.3799/dqkx.2018.175
    基金项目: 

    国家自然科学基金项目 41807285

    国家自然科学基金项目 41572289

    国家自然科学基金项目 41572292

    中国地质调查局项目(浙江飞云江流域地质灾害调查) DD201602082

    详细信息
      作者简介:

      黄发明(1988-), 男, 博士研究生, 研究方向为滑坡灾害预测预报

      通讯作者:

      汪洋

    • 中图分类号: P642

    Regional Landslide Susceptibility Mapping Based on Grey Relational Degree Model

    • 摘要: 数理统计和机器学习模型如支持向量机(support vector machine,SVM)等,在区域滑坡敏感性评价中得到广泛的应用.但这些模型的建模过程往往较复杂,如在对机器学习进行训练和测试时难以选取合理的非滑坡栅格单元,而且有较多的模型参数需要确定.为提高滑坡敏感性评价建模的效率和精度,提出基于灰色关联度的敏感性评价模型.灰色关联度模型能有效计算各比较样本与参考样本之间的定量的关联度,具有建模过程简洁和评价精度高的优点,该模型目前在区域滑坡敏感性评价中的应用还没有引起研究人员的足够关注且有待进一步拓展.拟将灰色关联度模型用于浙江省飞云江流域南田-雅梅图幅(南田地区)的滑坡敏感性评价,并将得到的评价结果与SVM模型的敏感性评价结果作对比分析.结果显示,灰色关联度模型在高和极高敏感区的滑坡预测精度优于SVM模型,而在中等敏感区的滑坡预测精度略低于SVM模型;整体而言,灰色关联度模型对整个南田地区滑坡敏感性分布的预测精度略高于SVM模型.对两个模型建模过程的对比结果显示,灰色关联度模型建模较简单,具有比SVM模型更高的建模效率,为滑坡敏感性评价提供了一种新思路.

       

    • 图  1  南田地区高程及滑坡编录

      Fig.  1.  Elevation and landslide inventory of Nantian area

      图  2  南田地区地形地貌因子

      Fig.  2.  Geographic and geomorphic conditions of Nantian area

      图  3  南田地区距离水系的距离(a),岩土类型(b)

      Fig.  3.  Distance to river (a) and Lithology map (b) in Nantian area

      图  4  南田地区建筑物指数(a)和植被覆盖度(b)

      Fig.  4.  NDBI (a) and NDVI (b) maps in Nantian area

      图  5  基于灰色关联度(a)和SVM (b)模型的南田地区滑坡敏感性分布图

      Fig.  5.  Landslide susceptibility maps produced by GRD (a) and SVM (b) models

      图  6  灰色关联度和SVM模型计算的滑坡敏感性预测率曲线

      Fig.  6.  Prediction rate curves of landslide susceptibility indexes calculated respectively using GRD and SVM models

      表  1  各基础环境因子频率比值

      Table  1.   Frequency ratios of all environmental factors

      基础环境因子 变量值 类型 全区栅格数 栅格(%) 滑坡内栅格数 坡内栅格比例(%) 频率比
      高程(m) 135.827~276.951 连续型 106 014 10.464 13 1.641 0.157
      276.951~428.184 159 816 15.775 232 29.293 1.857
      428.184~569.335 176 959 17.467 191 24.116 1.381
      569.335~695.363 217 641 21.482 244 30.808 1.434
      695.363~816.350 143 389 14.153 77 9.722 0.687
      816.350~947.419 105 862 10.449 24 3.030 0.290
      947.419~1 098.652 71 959 7.103 11 1.389 0.196
      1 098.652~1 421.283 31 473 3.107 0 0 0
      坡度(°) 0~7.680 0 连续型 97 058 9.580 25 3.157 0.329
      7.680 0~15.360 5 148 727 14.680 152 19.192 1.307
      15.360 5~22.187 4 165 790 16.364 205 25.884 1.582
      22.187 4~28.445 4 169 427 16.723 179 22.601 1.351
      28.445 4~34.703 4 172 848 17.061 151 19.066 1.117
      34.703 4~40.961 4 137 680 13.590 66 8.333 0.613
      40.961 4~48.357 2 87 069 8.594 13 1.641 0.191
      48.357 2~72.535 8 34 514 3.407 1 0.126 0.037
      坡向(°) -1 连续型 15 700 1.550 0 0 0
      0~22.5, 337.5~360.0 118 694 11.716 32 4.040 0.345
      22.5~67.5 123 105 12.152 35 4.419 0.364
      67.5~112.5 131 161 12.946 61 7.702 0.595
      112.5~157.5 130 196 12.851 107 13.510 1.051
      157.5~202.5 137 048 13.527 222 28.030 2.072
      202.5~247.5 130 046 12.836 181 22.854 1.780
      247.5~292.5 119 843 11.829 94 11.869 1.003
      292.5~337.5 107 320 10.593 60 7.576 0.715
      剖面曲率(m-1) 0~4.067 连续型 174 629 17.237 130 16.414 0.952
      4.067~7.579 242 442 23.930 235 29.672 1.240
      7.579~10.906 206 702 20.403 194 24.495 1.201
      10.906~14.418 160 004 15.793 112 14.141 0.895
      14.418~18.115 107 668 10.627 73 9.217 0.867
      18.115~22.552 70 726 6.981 33 4.167 0.597
      22.552~28.467 37 984 3.749 14 1.768 0.471
      28.467~47.136 12 958 1.279 1 0.126 0.099
      平面曲率(m-1) 0~11.182 连续型 83 192 8.212 103 13.005 1.584
      11.182~21.086 133 628 13.190 126 15.909 1.206
      21.086~30.67 136 335 13.457 161 20.328 1.511
      30.670~40.574 134 844 13.310 139 17.551 1.319
      40.574~50.478 126 936 12.529 107 13.510 1.078
      50.478~60.702 126 433 12.480 59 7.449 0.597
      60.702~70.925 120 128 11.857 54 6.818 0.575
      70.925~81.468 151 617 14.965 43 5.429 0.363
      地形起伏度(m) 0~93.107 连续型 108 223 10.682 58 7.323 0.686
      93.107~152.791 149 609 14.767 146 18.434 1.248
      152.791~202.926 180 942 17.860 188 23.737 1.329
      202.926~250.673 198 057 19.549 214 27.020 1.382
      250.673~296.033 166 547 16.439 128 16.162 0.983
      296.033~343.780 120 824 11.926 48 6.060 0.508
      343.780 0~408.238 8 68 576 6.769 10 1.262 0.187
      408.238 8~608.777 2 20 335 2.007 0 0 0
      距离水系的距离(m) 450~ 离散型 244 402 24.124 69 8.712 0.361
      300~450 175 748 17.347 90 11.363 0.655
      150~300 255 541 25.223 244 30.808 1.221
      0~150 337 422 33.305 389 49.116 1.475
      地层岩性 火山沉积岩 离散型 413 637 40.828 496 62.626 1.534
      火山碎屑岩,火山熔岩 505 243 49.870 238 30.051 0.603
      侵入岩,潜火山岩 94 233 9.301 58 7.323 0.787
      建筑物指数 0~31 连续型 118 670 11.713 35 4.419 0.377
      31~60 193 816 19.131 63 7.955 0.416
      60~86 217 602 21.479 71 8.965 0.417
      86~113 183 300 18.093 115 14.520 0.803
      113~145 114 893 11.341 142 17.929 1.581
      145~182 72 815 7.187 153 19.318 2.688
      182~224 59 704 5.893 111 14.015 2.378
      224~255 52 313 5.164 102 12.879 2.494
      植被覆盖度 0~30 连续型 26 080 2.574 0 0 0
      30~70 108 691 10.728 42 5.303 0.494
      70~102 122 355 12.077 104 13.131 1.087
      102~132 148 526 14.660 156 19.697 1.344
      132~162 163 354 16.124 188 23.737 1.472
      162~192 165 830 16.368 163 20.581 1.257
      192~224 160 443 15.837 102 12.879 0.813
      224~255 117 834 11.631 37 4.672 0.402
      下载: 导出CSV

      表  2  灰色关联度模型评价滑坡敏感性等级的频率比值

      Table  2.   Frequency ratios of the five susceptibility classes assessed by GRD model

      敏感性等级 研究区栅格 栅格比例(%) 滑坡内栅格数 滑坡内栅格比例(%) 频率比值
      极高 81 829 8.077 308 38.889 4.815
      207 359 20.468 258 32.576 1.592
      中等 300 839 29.695 164 20.707 0.697
      284 925 28.124 56 7.071 0.251
      极低 138 161 13.637 6 0.758 0.056
      下载: 导出CSV

      表  3  南田地区SVM模型评价滑坡敏感性等级的频率比值

      Table  3.   Frequency ratios of the five susceptibility classes assessed by SVM model in Nantian area

      敏感性等级 研究区栅格 栅格比例(%) 滑坡内栅格数 滑坡内栅格比例(%) 频率比值
      极高 107 736 10.634 310 39.141 3.681
      234 520 23.149 303 38.258 1.653
      中等 293 221 28.943 127 16.035 0.554
      252 450 24.918 47 5.934 0.238
      极低 125 186 12.357 5 0.631 0.051
      下载: 导出CSV
    • [1] Bui D., Pradhan B., Lofman O., et al.2012a.Landslide Susceptibility Assessment in the Hoa Binh Province of Vietnam:A Comparison of the Levenberg-Marquardt and Bayesian Regularized Neural Networks.Geomorphology, 171-172:12-29. https://doi.org/10.1016/j.geomorph.2012.04.023
      [2] Bui D., Pradhan B., Lofman O., et al.2012b.Spatial Prediction of Landslide Hazards in Hoa Binh Province (Vietnam):A Comparative Assessment of the Efficacy of Evidential Belief Functions and Fuzzy Logic Models.Catena, 96:28-40. https://doi.org/10.1016/j.catena.2012.04.001
      [3] Chung C.J., Fabbri A.G..2008.Predicting Landslides for Risk Analysis-Spatial Models Tested by a Cross-Validation Technique.Geomorphology, 94(3-4):438-452. https://doi.org/10.1016/j.geomorph.2006.12.036
      [4] Deng J.L..1989.Introduction to Grey System Theory.Journal of Grey System, 1(1):1-24. doi: 10.1017-S1727719100002847/
      [5] Feng H.J., Zhou A.G., Yu J.J., et al.2016.A Comparative Study on Plum-Rain-Triggered Landslide Susceptibility Assessment Models in West Zhejiang Province.Earth Science, 41(3):403-415(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201603007
      [6] Hong H.Y., Pradhan B., Xu C., et al.2015.Spatial Prediction of Landslide Hazard at the Yihuang Area (China) Using Two-Class Kernel Logistic Regression, Alternating Decision Tree and Support Vector Machines.Catena, 133:266-281. https://doi.org/10.1016/j.catena.2015.05.019
      [7] Huang F.M., Huang J.S., Jiang S.H., et al.2017a.Landslide Displacement Prediction Based on Multivariate Chaotic Model and Extreme Learning Machine.Engineering Geology, 218:173-186. https://doi.org/10.1016/j.enggeo.2017.01.016
      [8] Huang F.M., Yin K.L., Huang J.S., et al.2017b.Landslide Susceptibility Mapping Based on Self-Organizing-Map Network and Extreme Learning Machine.Engineering Geology, 223:11-22. https://doi.org/10.1016/j.enggeo.2017.04.013
      [9] Huang F.M., Yin K.L., Tao H., et al.2016a.Influencing Factor Analysis and Displacement Prediction in Reservoir Landslides-A Case Study of Three Gorges Reservoir (China).Tehnickivjesnik-Technical Gazette, 23(2):617-626. https://doi.org/10.17559/tv-20150314105216
      [10] Huang F.M., Yin K.L., Zhang G.R., et al.2016b.Landslide Displacement Prediction Using Discrete Wavelet Transform and Extreme Learning Machine Based on Chaos Theory.Environmental Earth Sciences, 75(20):1376. https://doi.org/10.1007/s12665-016-6133-0
      [11] Huang F.M., Yin K.L., Zhang G.R., et al.2015.Landslide Groundwater Level Time Series Prediction Based on Phase Space Reconstruction and Wavelet Analysis-Support Vector Machine Optimized by PSO Algorithm.Earth Science, 40(7):1254-1265(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201507013
      [12] Huang W.D., Yang J.S., Chen J.C., et al.2010.Grey Relational Analysis of Physico-Chemical Variables and Water Body Reflectance of a Chi-Chi Earthquake Landslide-Dammed Lake Monitored by Spot Satellite.Journal of Grey System, 22(4):297-308.
      [13] Kavzoglu T., Sahin E.K., Colkesen I..2014.Landslide Susceptibility Mapping Using GIS-Based Multi-Criteria Decision Analysis, Support Vector Machines, and Logistic Regression.Landslides, 11(3):425-439. https://doi.org/10.1007/s10346-013-0391-7
      [14] Lee S., Ryu J.H., Kim I.S..2007.Landslide Susceptibility Analysis and Its Verification Using Likelihood Ratio, Logistic Regression, and Artificial Neural Network Models:Case Study of Youngin, Korea.Landslides, 4(4):327-338. https://doi.org/10.1007/s10346-007-0088-x
      [15] Li J.L., Ma D.H., Wang W..2016.Assessment of Potential Seismic Landslide Hazard Based on Evidence Theory and Entropy Weight Grey Incidence.Journal of Central South University(Science and Technology), 47(5):1730-1736(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zngydxxb201605036
      [16] Li X.Z., Wang C.H., Deng H.Y..2010.Application of Grey Relation Analysis and Distance Discrimination Analysis Methods in Discriminating Potential Landslides of Xiluodu Reservoir Area.The Chinese Journal of Geological Hazard and Control, 21(4):77-81(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGDH201004016.htm
      [17] Li Y.Y., Huang J.S., Jiang S.H., et al.2017.A Web-Based GPS System for Displacement Monitoring and Failure Mechanism Analysis of Reservoir Landslide.Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-17507-7
      [18] Liu Y.L., Huang X.L., Duan J., et al.2017.The Assessment of Traffic Accident Risk Based on Grey Relational Analysis and Fuzzy Comprehensive Evaluation Method.Natural Hazards, 88(3):1409-1422. https://doi.org/10.1007/s11069-017-2923-2
      [19] Liu S.F., Cai H., Yang Y.J., et al.2013.Advance in Grey Incidence Analysis Modelling.Systems Engineering-Theory & Practice, 33(8):2041-2046(in Chinese with English abstract). http://ieeeexplore.com/xpl/articleDetails.jsp?tp=&arnumber=6083947
      [20] Lu X.C., Gong M., Tang L.S., et al.2006.Improved Grey Association Analysis Method Based on T-S Fuzzy Neural Network Model-Application in Evaluating of Landslide Hazards in Guangdong Province.The Chinese Journal of Geological Hazard and Control, 17(3):143-146(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdzzhyfzxb200603034
      [21] MarjanovićM., Kovaevi M., Bajat B., et al.2011.Landslide Susceptibility Assessment Using SVM Machine Learning Algorithm.Engineering Geology, 123(3):225-234. https://doi.org/10.1016/j.enggeo.2011.09.006
      [22] Peng L., Niu R.Q., Huang B., et al.2014.Landslide Susceptibility Mapping Based on Rough Set Theory and Support Vector Machines:A Case of the Three Gorges Area, China.Geomorphology, 204:287-301. https://doi.org/10.1016/j.geomorph.2013.08.013
      [23] Pham B.T., Tien Bui D., Prakash I., et al.2017.Hybrid Integration of Multilayer Perceptron Neural Networks and Machine Learning Ensembles for Landslide Susceptibility Assessment at Himalayan Area (India) Using GIS.Catena, 149:52-63. https://doi.org/10.1016/j.catena.2016.09.007
      [24] Pradhan B..2013.A Comparative Study on the Predictive Ability of the Decision Tree, Support Vector Machine and Neuro-Fuzzy Models in Landslide Susceptibility Mapping Using GIS.Computers & Geosciences, 51:350-365. https://doi.org/10.1016/j.cageo.2012.08.023
      [25] Yao X., Tham L.G., Dai F.C..2008.Landslide Susceptibility Mapping Based on Support Vector Machine:A Case Study on Natural Slopes of Hong Kong, China.Geomorphology, 101(4):572-582. https://doi.org/10.1016/j.geomorph.2008.02.011
      [26] Tsangaratos P., Benardos A..2014.Estimating Landslide Susceptibility through a Artificial Neural Network Classifier.Natural Hazards, 74(3):1489-1516. https://doi.org/10.1007/s11069-014-1245-x
      [27] Wang J., Guo J., Wang W.D., et al.2012.Application and Comparison of Weighted Linear Combination Model and Logistic Regression Model in Landslide Susceptibility Mapping.Journal of Central South University(Science and Technology), 43(5):1932-1939(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zngydxxb201205050
      [28] Wang J.J., Yin K.L., Xiao L.L..2014.Landslide Susceptibility Assessment Based on GIS and Weighted Information Value:A Case Study of Wanzhou District, three Gorges Reservoir.Chinese Journal of Rock Mechanics and Engineering, 33(4):797-808(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSLX201404018.htm
      [29] Wu Y.P., Chen L.X., Cheng C., et al.2017.GIS-Based Landslide Hazard Predicting System and Its Real-Time Test during a Typhoon, Zhejiang Province, Southeast China.Engineering Geology, 175:9-21. https://doi.org/10.1016/j.enggeo.2014.03.005
      [30] Wu Y.P., Zhang Q.X., Tang H.M., et al.2014.Landslide Hazard Warning Based on Effective Rainfall Intensity.Earth Science, 39(7):889-895(in Chinese with English abstract).
      [31] Xu X.H., Shang Y.Q..2009.Integrated Zonation of Landslide Stability.Chinese Journal of Geotechnical Engineering, 31(5):669-674(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201405016
      [32] Yu J.M., Zhang X.N., Xiong C.L..2017.A Methodology for Evaluating Micro-Surfacing Treatment on Asphalt Pavement Based on Grey System Models and Grey Rational Degree Theory.Construction and Building Materials, 150:214-226. https://doi.org/10.13039/501100005015
      [33] Zhu L., Lu Y.M., Luo J.P..2013.Regional Landslide Susceptibility Model Based on Gray and Elman Neural Networks.Journal of Natural Disasters, 22(5):120-126(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZRZH201305017.htm
      [34] Zhu X.X., Wang Y.M., Gong X.F..2013.Assessment of the Landslide Hazards in Wencheng County of Zhejiang Province.The Chinese Journal of Geological Hazard and Control, 24(3):13-18(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/zgdzzhyfzxb201303003
      [35] 冯杭建, 周爱国, 俞剑君, 等.2016.浙西梅雨滑坡易发性评价模型对比.地球科学, 41(3):403-415. http://earth-science.net/WebPage/Article.aspx?id=3259
      [36] 黄发明, 殷坤龙, 张桂荣, 等.2015.基于相空间重构和小波分析-粒子群向量机的滑坡地下水位预测.地球科学, 40(7):1254-1265. http://earth-science.net/WebPage/Article.aspx?id=3113
      [37] 李嘉良, 马东辉, 王威.2016.基于证据理论和熵权灰色关联的潜在地震滑坡危险性评价.中南大学学报(自然科学版), 47(5):1730-1736. http://d.old.wanfangdata.com.cn/Periodical/zngydxxb201605036
      [38] 李秀珍, 王成华, 邓宏艳.2010.灰色关联度法和距离判别分析法在溪洛渡库区潜在滑坡判识中的应用.中国地质灾害与防治学报, 21(4):77-81. doi: 10.3969/j.issn.1003-8035.2010.04.014
      [39] 刘思峰, 蔡华, 杨英杰, 等.2013.灰色关联分析模型研究进展.系统工程理论与实践, 33(8):2041-2046. doi: 10.3969/j.issn.1000-6788.2013.08.018
      [40] 陆显超, 龚民, 汤连生, 等.2006.基于T-S模糊神经系统的灰色关联分析方法——以广东省滑坡危险性评价为例.中国地质灾害与防治学报, 17(3):143-146. doi: 10.3969/j.issn.1003-8035.2006.03.034
      [41] 王佳佳, 殷坤龙, 肖莉丽.2014.基于GIS和信息量的滑坡灾害易发性评价——以三峡库区万州区为例.岩石力学与工程学报, 33(4):797-808. http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb201404018
      [42] 王进, 郭靖, 王卫东, 等.2012.权重线性组合与逻辑回归模型在滑坡易发性区划中的应用与比较.中南大学学报(自然科学版), 43(5):1932-1939. http://d.old.wanfangdata.com.cn/Periodical/zngydxxb201205050
      [43] 吴益平, 张秋霞, 唐辉明, 等.2014.基于有效降雨强度的滑坡灾害危险性预警.地球科学, 39(7):889-895. http://earth-science.net/WebPage/Article.aspx?id=2892
      [44] 徐兴华, 尚岳全.2009.滑坡稳定性综合区划研究.岩土工程学报, 31(5):669-674. doi: 10.3321/j.issn:1000-4548.2009.05.004
      [45] 朱莉, 卢毅敏, 罗建平.2013.基于灰色-Elman神经网络的区域滑坡易发性模型.自然灾害学报, 22(5):120-126. http://www.cnki.com.cn/Article/CJFDTotal-ZRZH201305017.htm
      [46] 朱晓曦, 王一鸣, 龚新法.2013.浙江省文成县滑坡灾害危险性评价.中国地质灾害与防治学报, 24(3):13-18. http://d.old.wanfangdata.com.cn/Periodical/zgdzzhyfzxb201303003
    • 加载中
    图(6) / 表(3)
    计量
    • 文章访问数:  3879
    • HTML全文浏览量:  1581
    • PDF下载量:  36
    • 被引次数: 0
    出版历程
    • 收稿日期:  2018-12-20
    • 刊出日期:  2019-02-15

    目录

      /

      返回文章
      返回