• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    东天山大白石头南新元古代片麻状花岗岩锆石U-Pb年代学、岩石地球化学及地质意义

    孟勇 唐淑兰 王凯 李艳广

    孟勇, 唐淑兰, 王凯, 李艳广, 2018. 东天山大白石头南新元古代片麻状花岗岩锆石U-Pb年代学、岩石地球化学及地质意义. 地球科学, 43(12): 4427-4442. doi: 10.3799/dqkx.2018.174
    引用本文: 孟勇, 唐淑兰, 王凯, 李艳广, 2018. 东天山大白石头南新元古代片麻状花岗岩锆石U-Pb年代学、岩石地球化学及地质意义. 地球科学, 43(12): 4427-4442. doi: 10.3799/dqkx.2018.174
    Meng Yong, Tang Shulan, Wang Kai, Li Yanguang, 2018. Zircon U-Pb Age, Geochemistry and Tectonic Implications of Neoproterozoic Granite from South of Dabaishitou, East Tianshan. Earth Science, 43(12): 4427-4442. doi: 10.3799/dqkx.2018.174
    Citation: Meng Yong, Tang Shulan, Wang Kai, Li Yanguang, 2018. Zircon U-Pb Age, Geochemistry and Tectonic Implications of Neoproterozoic Granite from South of Dabaishitou, East Tianshan. Earth Science, 43(12): 4427-4442. doi: 10.3799/dqkx.2018.174

    东天山大白石头南新元古代片麻状花岗岩锆石U-Pb年代学、岩石地球化学及地质意义

    doi: 10.3799/dqkx.2018.174
    基金项目: 

    中国地质调查局项目 1212011120473

    中国地质调查局项目 121201232000167711

    西安财经学院项目 16FCJH05

    详细信息
      作者简介:

      孟勇(1979-), 男, 硕士, 高级工程师, 主要从事区域地质调查及区域构造研究工作

    • 中图分类号: P59

    Zircon U-Pb Age, Geochemistry and Tectonic Implications of Neoproterozoic Granite from South of Dabaishitou, East Tianshan

    • 摘要: 对东天山大白石头南片麻状花岗岩的研究,可以为新元古代早期Rodinia超大陆汇聚事件提供约束.在野外调查和岩相学研究的基础上,对该片麻状花岗岩开展了LA-ICP-MS锆石U-Pb定年、全岩地球化学和锆石原位Hf同位素分析.研究显示,片麻状花岗岩LA-ICP-MS锆石U-Pb年龄为922.7±7.9 Ma.岩石富SiO2(70.04%~71.60%)、碱(Na2O+K2O=5.93%~6.58%)、Al2O3(13.88%~14.91%)和低MgO(1.13%~1.29%).岩石Al2O3/TiO2(25~27)小于100,CaO/Na2O(0.7)大于0.3,K2O/Na2O(1.6~2.2)大于1.0,富集大离子亲石元素Rb、Th、K及La等,亏损Ba、Ta、Nb和Sr等,(La/Yb)N(7.29~8.11)小于10,δEu小于0.5,均显示出S型花岗岩特征.锆石εHft)均为正值(3.226 78~13.727 46),二阶段模式年龄为920~1 598 Ma,表明新元古代花岗岩形成于大陆边缘构造环境.综合已有研究结果,可以推断天山地区出露的该期构造岩浆事件可能对应于新元古代的罗迪尼亚(Rodinia)超大陆汇聚事件.

       

    • 图  1  大白石头地区构造地质简图

      Fig.  1.  Geological sketch of Dabaishitou area

      图  2  样品野外照片(a)和显微照片(b)

      Fig.  2.  Field photo (a) and microstructure photo (b) of the sample

      图  3  锆石CL图像及U-Pb年龄

      Fig.  3.  CL images and U-Pb ages of zircons

      图  4  研究区花岗岩锆石U-Pb年龄谐和图和年龄加权平均值

      Fig.  4.  Zircon U-Pb concordia diagram and histogram for the granite

      图  5  A/CNK-A/NK图解

      Maniar and Piccoli(1989)

      Fig.  5.  A/CNK-A/NK diagram

      图  6  SiO2-K2O(a)、SiO2-AR(b)和Na2O-K2O(c)图解

      a.据Rickwood(1989);b.据Wright(1969);c.据Rollinson (1993)

      Fig.  6.  SiO2-K2O (a), SiO2-AR (b) and Na2O-K2O (c) diagrams

      图  7  球粒陨石标准化稀土元素配分图(a)和原始地幔标准化微量元素蛛网图(b)

      标准化值据Taylor and McLemann(1985)

      Fig.  7.  Chondrite-normalized REE patterns (a) and primitive-mantle normalized spider diagram for monzogranitic gneiss (b)

      图  8  岩石A/MF-C/MF成因图解

      Altherr et al.(2000)

      Fig.  8.  Petrogenesis A/FM-C/MF diagram

      图  9  片麻状花岗岩的锆石176Hf/177Hf-t年龄图解

      Fig.  9.  Zircons 176Hf/177Hf-t diagram of the gneissic granite

      图  10  岩石Rb-(Ta+Yb) (a)和Rb-(Nb+Yb)(b)图解

      syn-COLG.同碰撞花岗岩;WPG.板内花岗岩;VAG.火山弧花岗岩;ORG.洋脊花岗岩.据Pearce et al.(1984)

      Fig.  10.  Rb-(Ta+Yb) (a) and Rb-(Nb+Yb) (b) diagrams for samples

      表  1  片麻状花岗岩锆石U-Pb数据

      Table  1.   U-Pb isotopic compositions of the gneissic granite

      测点号 含量(10-6) Th/U 同位素比值 年龄(Ma)
      Th U 206Pb/238U 207Pb/206Pb 207Pb/235U 208Pb/232Th 206Pb/238U
      DMZ1601 129.84 375.41 0.35 0.156 19 0.001 81 0.070 66 0.001 54 1.526 33 0.032 96 0.048 67 0.000 86 935.6 10.10
      DMZ1602 72.03 216.32 0.33 0.150 38 0.001 84 0.070 83 0.001 85 1.472 88 0.038 05 0.044 68 0.000 99 903.1 10.29
      DMZ1603 84.88 215.71 0.39 0.157 38 0.001 90 0.070 09 0.001 78 1.525 34 0.038 41 0.045 20 0.000 89 942.2 10.58
      DMZ1604 69.11 532.17 0.13 0.155 85 0.001 75 0.070 96 0.001 33 1.529 06 0.028 62 0.050 10 0.001 08 933.7 9.78
      DMZ1605 290.32 549.57 0.53 0.158 66 0.001 76 0.069 90 0.001 23 1.533 46 0.027 01 0.048 01 0.000 60 949.3 9.81
      DMZ1606 90.71 605.89 0.15 0.158 46 0.001 76 0.070 78 0.001 21 1.550 67 0.026 75 0.049 79 0.000 91 948.2 9.77
      DMZ1607 51.81 705.55 0.07 0.155 91 0.001 72 0.070 48 0.001 17 1.518 95 0.025 52 0.046 74 0.001 14 934.0 9.60
      DMZ1608 122.39 160.12 0.76 0.157 20 0.001 98 0.069 91 0.002 01 1.519 19 0.043 07 0.044 82 0.000 77 941.2 11.05
      DMZ1609 494.98 890.75 0.56 0.198 95 0.002 18 0.088 13 0.001 31 2.423 63 0.036 69 0.058 64 0.000 66 1 169.7 11.74
      DMZ1610 79.92 166.84 0.48 0.156 49 0.001 99 0.069 77 0.002 04 1.509 00 0.043 56 0.048 34 0.000 98 937.3 11.08
      DMZ1611 124.85 285.96 0.44 0.152 16 0.001 82 0.069 65 0.001 67 1.464 63 0.034 81 0.045 47 0.000 81 913.0 10.17
      DMZ1612 226.00 340.18 0.66 0.148 70 0.001 76 0.070 33 0.001 62 1.445 31 0.032 99 0.042 13 0.000 64 893.7 9.87
      DMZ1613 48.37 270.85 0.18 0.149 07 0.001 76 0.068 68 0.001 59 1.414 60 0.032 46 0.044 74 0.001 11 895.7 9.90
      DMZ1614 124.17 346.72 0.36 0.153 40 0.001 79 0.070 50 0.001 50 1.494 25 0.031 68 0.045 89 0.000 79 920.0 9.98
      DMZ1615 58.62 261.43 0.22 0.153 52 0.001 86 0.068 98 0.001 74 1.463 03 0.036 58 0.044 88 0.001 11 920.6 10.42
      DMZ1616 238.95 483.96 0.49 0.152 55 0.001 75 0.070 99 0.001 39 1.496 17 0.029 30 0.041 40 0.000 60 915.2 9.78
      DMZ1617 437.82 870.44 0.50 0.152 77 0.001 73 0.074 22 0.001 32 1.566 22 0.028 10 0.045 66 0.000 62 916.5 9.65
      DMZ1618 146.58 498.97 0.29 0.212 68 0.002 40 0.085 70 0.001 44 2.517 86 0.042 82 0.062 87 0.001 02 1 243.1 12.77
      DMZ1619 165.83 665.61 0.25 0.149 79 0.001 70 0.070 57 0.001 29 1.460 13 0.026 95 0.040 93 0.000 70 899.8 9.52
      DMZ1620 231.67 383.74 0.60 0.152 40 0.001 79 0.069 39 0.001 50 1.460 48 0.031 50 0.042 92 0.000 64 914.4 9.99
      DMZ1621 100.66 608.97 0.17 0.151 84 0.001 72 0.069 68 0.001 24 1.461 05 0.026 32 0.043 70 0.000 84 911.2 9.60
      DMZ1622 97.78 836.98 0.12 0.157 67 0.001 76 0.069 34 0.001 16 1.509 73 0.025 65 0.045 80 0.000 87 943.8 9.82
      DMZ1623 65.96 697.53 0.09 0.156 42 0.001 76 0.069 72 0.001 19 1.505 91 0.025 99 0.050 15 0.001 12 936.8 9.79
      DMZ1624 61.12 355.76 0.17 0.150 22 0.001 77 0.069 57 0.001 53 1.443 12 0.031 69 0.044 86 0.001 07 902.2 9.94
      下载: 导出CSV

      表  2  片麻状花岗岩锆石Hf同位素分析结果

      Table  2.   Zircon Hf isotopic compositions of the gneissic granite

      样品 T(Ma) 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf εHf(t) TDM(Ga) TDMC(Ga) fLu/Hf
      Hf-DMZ-01 935.6 0.072 548 0.004 513 0.001 604 0.000 089 0.282 465 0.000 026 8.828 03 0.916 98 1.131 93 0.037 37 1.251 69 0.037 37 -0.951 68
      Hf-DMZ-02 903.1 0.065 190 0.001 182 0.001 514 0.000 016 0.282 427 0.000 021 6.839 23 0.723 12 1.183 48 0.029 37 1.354 14 0.029 37 -0.954 39
      Hf-DMZ-03 942.2 0.058 122 0.000 694 0.001 312 0.000 016 0.282 441 0.000 017 8.291 06 0.597 09 1.157 49 0.024 13 1.291 32 0.024 13 -0.960 50
      Hf-DMZ-05 949.3 0.083 186 0.000 453 0.001 834 0.000 010 0.282 493 0.000 018 9.975 74 0.622 47 1.098 37 0.025 54 1.188 50 0.025 54 -0.944 77
      Hf-DMZ-06 948.2 0.096 117 0.001 334 0.002 268 0.000 013 0.282 527 0.000 027 10.886 46 0.951 21 1.061 85 0.039 53 1.128 99 0.039 53 -0.931 68
      Hf-DMZ-07 934.0 0.049 232 0.000 405 0.001 032 0.000 011 0.282 346 0.000 022 4.937 44 0.764 51 1.281 59 0.030 59 1.499 96 0.030 59 -0.968 92
      Hf-DMZ-08 941.2 0.094 719 0.000 471 0.002 059 0.000 017 0.282 636 0.000 023 14.717 51 0.818 83 0.898 58 0.033 93 0.876 11 0.033 93 -0.937 98
      Hf-DMZ-10 937.3 0.106 080 0.001 137 0.002 443 0.000 019 0.282 589 0.000 028 12.722 80 0.984 90 0.977 26 0.041 19 1.002 06 0.041 19 -0.926 42
      Hf-DMZ-11 913.0 0.191 629 0.005 154 0.004 339 0.000 120 0.282 983 0.000 038 25.029 42 1.342 94 0.419 14 0.059 90 0.182 50 0.059 90 -0.869 30
      Hf-DMZ-12 893.7 0.081 784 0.001 171 0.001 924 0.000 010 0.282 461 0.000 024 7.597 26 0.844 12 1.147 83 0.034 69 1.298 20 0.034 69 -0.942 04
      Hf-DMZ-14 920.0 0.057 918 0.000 234 0.001 304 0.000 009 0.282 311 0.000 019 3.226 78 0.659 95 1.340 27 0.026 58 1.598 42 0.026 58 -0.960 71
      Hf-DMZ-15 920.6 0.081 325 0.001 338 0.001 893 0.000 018 0.282 435 0.000 022 7.265 53 0.762 68 1.184 04 0.03130 1.34039 0.03130 -0.94298
      Hf-DMZ-16 915.2 0.087 136 0.001 246 0.001 922 0.000 011 0.282 621 0.000 023 13.727 46 0.807 60 0.916 78 0.033 33 0.919 99 0.033 33 -0.942 11
      Hf-DMZ-17 916.5 0.080 228 0.001 107 0.001 882 0.000 027 0.282 454 0.000 024 7.861 95 0.830 50 1.156 28 0.034 09 1.298 92 0.034 09 -0.943 32
      Hf-DMZ-19 899.8 0.111 358 0.002 171 0.002 548 0.000 046 0.282 541 0.000 024 10.205 91 0.832 03 1.049 57 0.034 85 1.135 25 0.034 85 -0.923 24
      Hf-DMZ-20 914.4 0.146 224 0.005 927 0.003 296 0.000 097 0.282 679 0.000 031 14.938 13 1.084 78 0.864 83 0.046 56 0.841 04 0.046 56 -0.900 72
      Hf-DMZ-21 911.2 0.157 528 0.002 011 0.003 571 0.000 020 0.282 863 0.000 020 21.203 34 0.699 59 0.593 18 0.030 43 0.431 32 0.030 43 -0.892 43
      Hf-DMZ-22 943.8 0.063 551 0.000 993 0.001 409 0.000 032 0.282 367 0.000 021 5.667 26 0.747 34 1.264 34 0.030 22 1.460 86 0.030 22 -0.957 57
      Hf-DMZ-23 936.8 0.044 911 0.000 740 0.001 000 0.000 026 0.282 357 0.000 025 5.390 26 0.874 93 1.265 81 0.034 99 1.473 15 0.034 99 -0.969 87
      Hf-DMZ-24 902.2 0.084 347 0.003 151 0.001 899 0.000 051 0.282 383 0.000 037 5.044 50 1.311 29 1.258 39 0.053 73 1.468 40 0.053 73 -0.942 79
      下载: 导出CSV

      表  3  片麻状花岗岩主量元素(%)及微量元素(10-6)化学组成

      Table  3.   Major element (%) and trace element (10-6) compositions of the gneissic granite

      样号 D01-1 D01-2 D01-3 D01-4 D01-5 样号 D01-1 D01-2 D01-3 D01-4 D01-5
      SiO2 70.32 71.60 71.15 70.04 71.83 Ho 1.77 1.50 1.92 1.57 1.51
      Al2O3 14.46 13.94 13.96 14.91 13.88 Er 4.87 4.32 5.30 4.18 4.04
      Fe2O3 1.37 1.09 1.27 1.11 1.00 Tm 0.74 0.64 0.82 0.63 0.64
      FeO 2.20 2.05 2.12 1.82 1.98 Yb 4.75 4.08 5.34 4.15 4.04
      MnO 0.048 0.045 0.046 0.048 0.050 Lu 0.74 0.63 0.78 0.62 0.60
      MgO 1.29 1.21 1.13 1.22 1.18 Y 47.8 42.3 51.5 40.4 40.3
      CaO 1.53 1.45 1.56 1.49 1.49 ΣREE 274.43 213.11 290.50 219.95 234.26
      Na2O 2.34 2.13 2.28 2.06 2.07 LREE 241.89 185.22 255.43 192.38 206.80
      K2O 3.76 4.00 3.75 4.52 3.86 HREE 32.54 27.89 35.07 27.57 27.46
      TiO2 0.57 0.52 0.55 0.57 0.53 LREE/HREE 7.43 6.64 7.28 6.98 7.53
      P2O5 0.11 0.12 0.10 0.11 0.11 (La/Yb)N 8.11 7.45 7.62 7.29 8.10
      LOI 1.94 1.81 2.04 2.05 1.97 δEu 0.38 0.38 0.40 0.44 0.38
      Total 99.94 99.97 99.96 99.95 99.95 Rb 139 136 142 162 118
      Mg# 36.96 37.12 34.77 40.13 37.34 Sr 90.3 80.8 108 93.9 82.8
      A/CNK 1.35 1.33 1.31 1.36 1.35 Ba 792 772 916 925 780
      SI 11.77 11.55 10.71 11.37 11.69 Nb 15.5 14.5 15.6 15.6 12.5
      AR 2.23 2.32 2.27 2.34 2.26 Ta 1.21 1.20 1.39 1.20 0.94
      σ 1.36 1.31 1.29 1.60 1.22 Zr 291 275 290 269 228
      A/MF 11.21 11.52 12.35 12.22 11.76 Hf 8.66 7.97 8.48 7.96 7.04
      C/MF 1.19 1.20 1.38 1.22 1.26 U 3.75 3.36 4.83 3.42 3.34
      La 53.7 42.4 56.7 42.2 45.6 Th 30.9 26.6 34.0 30.5 26.7
      Ce 112 82.2 120 90.7 96.9 Th/U 8.24 7.92 7.04 8.92 7.99
      Pr 13.6 10.8 14.4 10.9 11.7 Zr/Hf 33.60 34.50 34.20 33.79 32.39
      Nd 50.5 40.0 52.6 39.1 42.4 Rb/Ba 0.18 0.18 0.16 0.18 0.15
      Sm 10.8 8.75 10.4 8.32 9.13 Sr/Ba 0.11 0.10 0.12 0.10 0.11
      Eu 1.29 1.07 1.33 1.16 1.07 Nb/Ta 12.81 12.08 11.22 13.00 13.30
      Gd 9.46 7.98 9.81 7.66 7.93 Rb/Nb 8.97 9.38 9.10 10.38 9.44
      Tb 1.50 1.30 1.57 1.24 1.26 La/Nb 3.46 2.92 3.63 2.71 3.65
      Dy 8.71 7.44 9.53 7.52 7.44
      下载: 导出CSV

      表  4  天山及西北邻区部分新元古代花岗岩年龄统计

      Table  4.   Some ages of Neoproterozoic granite in the Tianshan and Northwest China area

      位置 样品名称 年代学方法 年龄 备注
      阿拉塔格 花岗片麻岩 LA-ICP-MS锆石U-Pb 945±6 Ma,942±6 Ma 黄博涛等,2014
      拉尔敦达坂北 片麻状花岗岩 LA-ICP-MS锆石U-Pb 882±33 Ma Chen et al., 2000
      东天山星星峡 片麻状花岗岩 SHRIMP锆石U-Pb 942±7 Ma 胡霭琴等,2008
      西天山温泉 片麻状花岗岩 SHRIMP锆石U-Pb 919±6 Ma
      西天山赛里木湖以东 片麻状花岗岩 SHRIMP锆石U-Pb 930 Ma 胡霭琴等,2006
      巴仑台北 片麻状花岗岩 SHRIMP锆石U-Pb 926±8 Ma 陈新跃等,2009
      伊犁地块达根别里 花岗岩 LA-ICP-MS锆石U-Pb 942.5±2.6 Ma 李婷等,2015
      塔里木盆地北缘 二云斜长片麻岩 LA-ICP-MS锆石U-Pb 822±7 Ma 杨鑫等,2017
      塔里木盆地北缘辛格尔南托格拉克布拉克 斜长角闪岩 角闪石激光熔样40Ar/39Ar等时线年龄 866±6 Ma 胡蔼琴等,2006
      兴地断裂南阔克苏 石英闪长岩 锆石U-Pb 828 Ma 胡蔼琴等,1997
      库尔勒至阿克苏 片麻状花岗岩 锆石U-Pb 970 Ma,944 Ma,884 Ma
      阿尔金环形山 二长花岗片麻岩 LA-ICP-MS锆石U-Pb 928±9 Ma 王立社等,2015
      柴北缘锡铁山 花岗质片麻岩 独居石电子探针原位U-Th-Pb定年 886±18 Ma 张聪等,2016
      北山柳园西古堡泉 花岗片麻岩 单颗粒锆石U-Pb 880±31 Ma 梅华林等,1999
      中祁连山东段响河 花岗岩 单颗粒锆石U-Pb 917±12 Ma 郭进京等,1999
      昆中断裂带两侧 花岗片麻岩 锆石U-Pb 900 Ma± 陆松年,2002
      下载: 导出CSV
    • [1] Alexeiev, D.V., Ryazantsev, A.V., Kröner, A., et al., 2011.Geochemical Data and Zircon Ages for Rocks in a High-Pressure Belt of Chu-Yili Mountains, Southern Kazakhstan:Implications for the Earliest Stages of Accretion in Kazakhstan and the Tianshan.Journal of Asian Earth Sciences, 42(5):805-820. https://doi.org/10.1016/j.jseaes.2010.09.004
      [2] Allègre, C.J., Othman, D.B., 1980.Nd-Sr Isotopic Relationship in Granitoid Rocks and Continental Crust Development:A Chemical Approach to Orogenesis.Nature, 286(5771):335-342. https://doi.org/10.1038/286335a0
      [3] Altherr, R., Holl, A., Hegner, E., et al., 2000.High-Potassium, Calc-Alkaline Ⅰ-Type Plutonism in the European Variscides:Northern Vosges (France) and Northern Schwarzwald (Germany).Lithos, 50(1-3):51-73.https://doi.org/10.1016/s0024-4937(99)00052-3 doi: 10.1016/S0024-4937(99)00052-3
      [4] Biske, Y.S., Seltmann, R., 2010.Paleozoic Tian-Shan as a Transitional Region between the Rheic and Urals-Turkestan Oceans.Gondwana Research, 17(2-3):602-613. https://doi.org/10.1016/j.gr.2009.11.014
      [5] Cawood, P.A., Nemchin, A.A., 2000.Provenance Record of a Rift Basin:U/Pb Ages of Detrital Zircons from the Perth Basin, Western Australia.Sedimentary Geology, 134(3-4):209-234.https://doi.org/10.1016/s0037-0738(00)00044-0 doi: 10.1016/S0037-0738(00)00044-0
      [6] Cawood, P.A., Nemchin, A.A., 2001.Paleogeographic Development of the East Laurentian Margin:Constraints from U-Pb Dating of Detrital Zircons in the Newfoundland Appalachians.Geological Society of America Bulletin, 113(9):1234-1246.https://doi.org/10.1130/0016-7606(2001)113<1234:pdotel>2.0.co;2 doi: 10.1130/0016-7606(2001)113<1234:PDOTEL>2.0.CO;2
      [7] Cawood, P.A., Nemchin, A.A., Smith, M., et al., 2003.Source of the Dalradian Supergroup Constrained by U-Pb Dating of Detrital Zircon and Implications for the East Laurentian Margin.Journal of the Geological Society, 160(2):231-246. https://doi.org/10.1144/0016-764902-039
      [8] Cawood, P.A., Nemchin, A.A., Strachan, R.A., et al., 2004.Laurentian Provenance and an Intracratonic Tectonic Setting for the Moine Supergroup, Scotland, Constrained by Detrital Zircons from the Loch Eil and Glen Urquhart Successions.Journal of the Geological Society, 161(5):861-874. https://doi.org/10.1144/16-764903-117
      [9] Chen, C.M., Lu, H.F., Jia, D., et al., 1999.Closing History of the Southern Tianshan Oceanic Basin, Western China:An Oblique Collisional Orogeny.Tectonophysics, 302(1/2):23-40.https://doi.org/10.1016/s0040-1951(98)00273-x http://www.sciencedirect.com/science/article/pii/S004019519800273X
      [10] Chen, X.Y., Wang, Y.J., Sun, L.H., et al., 2009.Zircon SHRIMP U-Pb Dating of the Granitic Gneisses from Bingdaban and Laerdundaban (Tianshan Orogen) and Their Geological Significances.Geochimica, 38(5):424-431 (in Chinese with English abstract).https://doi.org/10.19700/j.0379-1726.2009.05.002
      [11] Chen, Y.B., Hu, A.Q., Zhang, G.X., et al., 2000.Zircon U-Pb Age of Granitic Gneiss on Duku Highway in Western Tianshan of China and Its Geological Implications.Chinese Science Bulletin, 45(7):649-653.https://doi.org/10.1007/bf02886044 doi: 10.1007/BF02886044
      [12] Dobretsov, N.L., Buslov, M.M., 2007.Late Cambrian-Ordovician Tectonics and Geodynamics of Central Asia.Russian Geology and Geophysics, 48(1):71-82. https://doi.org/10.1016/j.rgg.2006.12.006
      [13] Gao, J., Klemd, R., 2003.Formation of HP-LT Rocks and Their Tectonic Implications in the Western Tianshan Orogen, NW China:Geochemical and Age Constraints.Lithos, 66(1-2):1-22.https://doi.org/10.1016/s0024-4937(02)00153-6 doi: 10.1016/S0024-4937(02)00153-6
      [14] Gao, S., Luo, T.C., Zhang, B.R., et al., 1998.Chemical Composition of the Continental Crust as Revealed by Studies in East China.Geochimica et Cosmochimica Acta, 62(11):1959-1975.https://doi.org/10.1016/s0016-7037(98)00121-5 doi: 10.1016/S0016-7037(98)00121-5
      [15] Guo, J.J., Zhao, F.Q., Li, H.K., 1999.Jinningian Collisional Granite Belt in the Eastern Sector of the Central Qilian Massif and Its Implication.Acta Geoscientia Sinica, 20(1):10-15 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXB901.001.htm
      [16] Guo, Z.J., Li, M.S., 1993.On the Early Paleozoic Dispersed Terranes in Mid-Tianshan.Acta Scientiarum Naturalium Universitatis Pekinesis, 29(3):356-362 (in Chinese with English abstract).https://doi.org/10.13209/j.0479-8023.1993.043
      [17] Guo, Z.J., Zhang, Z.C., Jia, C.Z., et al., 2000.The Precambrian Basement Tectonic Framework of the Tarim Craton.Science in China (Series D:Earth Sciences), 30(6):568-575(in Chinese).
      [18] Han, B.F., He, G.Q., Wang, X.C., et al., 2011.Late Carboniferous Collision between the Tarim and Kazakhstan-Yili Terranes in the Western Segment of the South Tian Shan Orogen, Central Asia, and Implications for the Northern Xinjiang, Western China.Earth-Science Reviews, 109(3/4):74-93.https://doi.org/10.1016/j.earscirev.2011.09.001 http://www.ncbi.nlm.nih.gov/pubmed/25848427
      [19] He, G.Q., Li, M.S., Han, B.F., 2001.Geotectonic Research of Southwest Tianshan and Its West Adjacent Area, China.Xinjiang Geology, 19(1):7-11 (in Chinese with English abstract).
      [20] Heinhorst, J., Lehmann, B., Ermolov, P., et al., 2000.Paleozoic Crustal Growth and Metallogeny of Central Asia:Evidence from Magmatic-Hydrothermal Ore Systems of Central Kazakhstan.Tectonophysics, 328(1-2):69-87.https://doi.org/10.1016/s0040-1951(00)00178-5 doi: 10.1016/S0040-1951(00)00178-5
      [21] Hong, D.W., Zhang, J.S., Wang, T., et al., 2004.Continental Crustal Growth and the Supercontinental Cycle:Evidence from the Central Asian Orogenic Belt.Journal of Asian Earth Sciences, 23(5):799-813.https://doi.org/10.1016/s1367-9120(03)00134-2 doi: 10.1016/S1367-9120(03)00134-2
      [22] Hoskin, P.W.O., Black, L.P., 2002.Metamorphic Zircon Formation by Solid-State Recrystallization of Protolith Igneous Zircon.Journal of Metamorphic Geology, 18(4):423-439. https://doi.org/10.1046/j.1525-1314.2000.00266.x
      [23] Hou, K.J., Li, Y.H., Zou, T.R., et al., 2007.Laser Ablation-MC-ICP-MS Technique for Hf Isotope Microanalysis of Zircon and Its Geological Applications.Acta Petrologica Sinica, 23(10):2595-2604(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200710026.htm
      [24] Hu, A.Q., Wang, Z.G., Tu, G.C., 1997.Geological Evolution, Petrogenesis and Metallogeny of North Xinjiang.Science Press, Beijing, 36-62(in Chinese).
      [25] Hu, A.Q., Wei, G.J., Zhang, J.B., et al., 2008.SHRIMP U-Pb Ages for Zircons of the Amphibolites and Tectonic Evolution Significance from the Wenquan Domain in the West Tianshan Mountains, Xinjiang, China.Acta Petrologica Sinica, 24(12):2731-2740(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB200812008.htm
      [26] Hu, A.Q., Zhang, G.X., Chen, Y.B., 2006.Crustal Evolution Chronology and Geochemistry of Major Geological Events in Xinjiang, China.Geological Publishing House, Beijing, 69-161(in Chinese).
      [27] Hu, A.Q., Zhang, G.X., Chen, Y.B., et al., 2001.A Model of Division of the Continental Crust Basement and the Time Scales of the Major Geological Events in the Xinjiang-Based on Studies of Isotopic Geochronology and Geochemistry.Xinjiang Geology, 19(1):12-19 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-xjdi200101003.htm
      [28] Hu, A.Q., Zhang, G.X., Zhang, Q.F., et al., 1999.Nd Isotopic Constraints of the Basement Age of the Tianshan Orogenic Belt and the Crustal Proliferation.Science in China (Series D:Earth Sciences), 29(2):104-112(in Chinese).
      [29] Huang, B.T., He, Z.Y., Zong, K.Q., et al., 2014.Zircon U-Pb and Hf Isotopic Study of Neoproterozoic Granitic Gneisses from the Alatage Area, Xinjiang:Constraints on the Precambrian Crustal Evolution in the Central Tianshan Block.Chinese Science Bulletin, 59(3):287-296(in Chinese). http://www.cqvip.com/QK/86894X/201401/48544030.html
      [30] Jahn, B.M., Windley, B., Natal'in, B., et al., 2004.Phanerozoic Continental Growth in Central Asia.Journal of Asian Earth Sciences, 23(5):599-603.https://doi.org/10.1016/s1367-9120(03)00124-x doi: 10.1016/S1367-9120(03)00124-X
      [31] Jahn, B.M., Wu, F.Y., Hong, D.W., 2000.Important Crustal Growth in the Phanerozoic:Isotopic Evidence of Granitoids from East-Central Asia.Journal of Earth System Science, 109(1):5-20.https://doi.org/10.1007/bf02719146 doi: 10.1007/BF02719146
      [32] Khain, E., 2003.The Palaeo-Asian Ocean in the Neoproterozoic and Early Palaeozoic:New Geochronologic Data and Palaeotectonic Reconstructions.Precambrian Research, 122(1-4):329-358.https://doi.org/10.1016/s0301-9268(02)00218-8 doi: 10.1016/S0301-9268(02)00218-8
      [33] Kheraskova, T.N., Volozh, Y.A., Didenko, A.N., et al., 2003.The Vendian-Early Paleozoic History of the Continental Margin of Eastern Paleogondwana, Paleoasian Ocean, and Central Asian Foldbelt.Russian Journal of Earth Sciences, 5(3):165-184.https://doi.org/10.2205/2003es000123 doi: 10.2205/2003ES000123
      [34] Klemd, R., Bröcker, M., Hacker, B.R., et al., 2005.New Age Constraints on the Metamorphic Evolution of the High-Pressure/Low-Temperature Belt in the Western Tianshan Mountains, NW China.The Journal of Geology, 113(2):157-168. https://doi.org/10.1086/427666
      [35] Klemd, R., John, T., Scherer, E.E., et al., 2011.Changes in Dip of Subducted Slabs at Depth:Petrological and Geochronological Evidence from HP-UHP Rocks (Tianshan, NW-China).Earth and Planetary Science Letters, 310(1-2):9-20. https://doi.org/10.1016/j.epsl.2011.07.022
      [36] Konopelko, D., Kullerud, K., Apayarov, F., et al., 2012.SHRIMP Zircon Chronology of HP-UHP Rocks of the Makbal Metamorphic Complex in the Northern Tien Shan, Kyrgyzstan.Gondwana Research, 22(1):300-309. https://doi.org/10.1016/j.gr.2011.09.002
      [37] Lei, R.X., Wu, C.Z., Gu, L.X., et al., 2011.Zircon U-Pb Chronology and Hf Isotope of the Xingxingxia Granodiorite from the Central Tianshan Zone (NW China):Implications for the Tectonic Evolution of the Southern Altaids.Gondwana Research, 20(2-3):582-593. https://doi.org/10.1016/j.gr.2011.02.010
      [38] Levashova, N.M., Gibsher, A.S., Meert, J.G., 2011.Precambrian Microcontinents of the Ural-Mongolian Belt:New Paleomagnetic and Geochronological Data.Geotectonics, 45(1):51-70.https://doi.org/10.1134/s0016852111010043 doi: 10.1134/S0016852111010043
      [39] Li, C.Y., Wang, Q., Liu, X.Y., et al., 1982.Explanatory Notes to the Tectonic Map of Asia.Geological Publishing House, Beijing, 1-49(in Chinese).
      [40] Li, J.Y., Wang, K.Z., Li, Y.P., et al., 2006.Geomorphological Features, Crustal Composition and Geological Evolution of the Tianshan Mountains.Geological Bulletin of China, 25(8):895-909(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZQYD200608001.htm
      [41] Li, Q., Yu, H.F., Xiu, Q.Y., 2002.On Precambrian Basement of the Eastern Tianshan Mountains, Xinjiang.Xinjiang Geology, 20(4):346-351 (in Chinese with English abstract).
      [42] Li, T., Li, Z.P., Bai, J.K., et al., 2015.Geochronology, Geochemistry of Dagenbieli Neoproterozoic Granites in the Yili Block, and Its Geological Implications.Northwestern Geology, 48(3):96-111(in Chinese with English abstract).
      [43] Li, X.H., Li, W.X., Li, Z.X., 2007.On the Genetic Classification and Tectonic Implications of the Early Yanshanian Granitoids in the Nanling Range, South China.Chinese Science Bulletin, 52(14):1873-1885. https://doi.org/10.1007/s11434-007-0259-0
      [44] Li, Y.G., Wang, S.S., Liu, M.W., et al., 2015.U-Pb Dating Study of Baddeleyite by LA-ICP-MS:Technique and Application.Acta Geologica Sinica, 89(12):2400-2418 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DZXE201512015.htm
      [45] Li, Y.J., Song, W.J., Wu, G.Y., et al., 2005.Jinning Granodiorite and Diorite Deeply Concealed in the Central Tarim Basin.Science in China (Series D:Earth Sciences), 35(2):97-104(in Chinese). http://d.wanfangdata.com.cn/Periodical_zgkx-ed200512002.aspx
      [46] Li, Z.X., Bogdanova, S.V., Collins, A.S., et al., 2008.Assembly, Configuration, and Break-up History of Rodinia:A Synthesis.Precambrian Research, 160(1-2):179-210. https://doi.org/10.1016/j.precamres.2007.04.021
      [47] Liu, S.W., Guo, Z.J., Zhang, Z.C., et al., 2004.Nature of the Precambrian Metamorphic Blocks in the Eastern Segment of Central Tianshan:Constraint from Geochronology and Nd Isotopic Geochemistry.Science in China (Series D:Earth Sciences), 34(5):395-403(in Chinese). doi: 10.1016-j.humpath.2008.12.003/
      [48] Long, L.L., Gao, J., Xiong, X.M., et al., 2006.The Geochemical Characteristics and the Age of the Kule Lake Ophiolite in the Southern Tianshan.Acta Petrologica Sinica, 22(1):65-73 (in Chinese with English abstract).
      [49] Lu, S.N., 2002.Preliminary Study of Precambrian Geology in the North Qinghai-Tibet Plateau.Geological Publishing House, Beijing, 35-117(in Chinese).
      [50] Lu, S.N., Li, H.K., Chen, Z.H., et al., 2004.Relationship between Neoproterozoic Cratons of China and the Rodinia.Earth Science Frontiers, 11(2):515-523 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DXQY200402029.htm
      [51] Ludwig, K.R., 2003.ISOPLOT 3.00:A Geochronological Toolkit for Microsoft Excel.Berkeley Geochronology Center, Berkeley.
      [52] Ma, X.X., Shu, L.S., Jahn, B.M., et al., 2012a.Precambrian Tectonic Evolution of Central Tianshan, NW China:Constraints from U-Pb Dating and In Situ Hf Isotopic Analysis of Detrital Zircons.Precambrian Research, 222-223:450-473. https://doi.org/10.1016/j.precamres.2011.06.004
      [53] Ma, X.X., Shu, L.S., Santosh, M., et al., 2012b.Detrital Zircon U-Pb Geochronology and Hf Isotope Data from Central Tianshan Suggesting a Link with the Tarim Block:Implications on Proterozoic Supercontinent History.Precambrian Research, 206-207:1-16. https://doi.org/10.1016/j.precamres.2012.02.015
      [54] Maniar, P.D., Piccoli, P.M., 1989.Tectonic Discrimination of Granitoids.Geological Society of America Bulletin, 101(5):635-643.https://doi.org/10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2 doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
      [55] Mei, H.L., Li, H.M., Lu, S.N., et al., 1999.The Age and Origin of the Liuyuan Granitoid, Northwestern Gansu.Acta Petrologica et Mineralogica, 18(1):14-17(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW901.002.htm
      [56] Pearce, J.A., Harris, N.B.W., Tindle, A.G., 1984.Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks.Journal of Petrology, 25(4):956-983. https://doi.org/10.1093/petrology/25.4.956
      [57] Peter, D.K., Roland, M., 2003.Lu-Hf and Sm-Nd Isotope Systems in Zircon.Reviews in Mineralogy and Geochemistry, 53(1):327-341. https://doi.org/10.2113/0530327
      [58] Rickwood, P.C., 1989.Boundary Lines within Petrologic Diagrams which Use Oxides of Major and Minor Elements.Lithos, 22(4):247-263. https://doi.org/10.1016/0024-4937(89)90028-5
      [59] Rollinson, H.R., 1993.Using Geochemical Data:Evaluation, Presentation, Interpretation.Longman Group U.K.Ltd., New York, 1-352.
      [60] Shu, L.S., Deng, X.L., Zhu, W.B., et al., 2011.Precambrian Tectonic Evolution of the Tarim Block, NW China:New Geochronological Insights from the Quruqtagh Domain.Journal of Asian Earth Sciences, 42(5):774-790. https://doi.org/10.1016/j.jseaes.2010.08.018
      [61] Shu, L.S., Zhu, W.B., Wang, B., et al., 2013.The Formation and Evolution of Ancient Blocks in Xinjiang.Geology in China, 40(1):43-60(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DIZI201301005.htm
      [62] Su, W., Gao, J., Klemd, R., et al., 2010.U-Pb Zircon Geochronology of Tianshan Eclogites in NW China:Implication for the Collision between the Yili and Tarim Blocks of the Southwestern Altaids.European Journal of Mineralogy, 22(4):473-478. https://doi.org/10.1127/0935-1221/2010/0022-2040
      [63] Sylvester, P.J., 1998.Post-Collisional Strongly Peraluminous Granites.Lithos, 45(1-4):29-44.https://doi.org/10.1016/s0024-4937(98)00024-3 doi: 10.1016/S0024-4937(98)00024-3
      [64] Taylor, S.R., McLemann, S.M., 1985.The Continental Crust:Its Composition of Melts and Evolution.Oxford Press, Blackwell, 1-312.
      [65] Wang, B., Shu, L.S., Faure, M., et al., 2011.Paleozoic Tectonics of the Southern Chinese Tianshan:Insights from Structural, Chronological and Geochemical Studies of the Heiyingshan Ophiolitic Mélange (NW China).Tectonophysics, 497(1-4):85-104. https://doi.org/10.1016/j.tecto.2010.11.004
      [66] Wang, C., Liu, L., Wang, Y.H., et al., 2015.Recognition and Tectonic Implications of an Extensive Neoproterozoic Volcano-Sedimentary Rift Basin along the Southwestern Margin of the Tarim Craton, Northwestern China.Precambrian Research, 257:65-82. https://doi.org/10.1016/j.precamres.2014.11.022
      [67] Wang, C., Liu, L., Yang, W.Q., et al., 2013.Provenance and Ages of the Altyn Complex in Altyn Tagh:Implications for the Early Neoproterozoic Evolution of Northwestern China.Precambrian Research, 230:193-208. https://doi.org/10.1016/j.precamres.2013.02.003
      [68] Wang, H.H., Li, J.H., Zhou, X.B., et al., 2015.New Opinion on the Position of the Tarim Block in the Rodinia Supercontinent:Constraints from Stratigraphic Correlation and Paleomagnetism.Chinese Journal of Geophysics, 58(2):589-600 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQWX201502021.htm
      [69] Wang, L.S., Zhang, W., Duan, X.X., et al., 2015.Isotopic Age and Genesis of the Monzogranitic Gneiss at the Huanxingshan in Middle Altyn Tagh.Acta Petrologica Sinica, 31(1):119-132(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201501009
      [70] Windley, B.F., Alexeiev, D., Xiao, W., et al., 2007.Tectonic Models for Accretion of the Central Asian Orogenic Belt.Journal of the Geological Society, 164(1):31-47. https://doi.org/10.1144/0016-76492006-022
      [71] Wright, J.B., 1969.A Simple Alkalinity Ratio and Its Application to Questions of Non-Orogenic Granite Genesis.Geological Magazine, 106(4):370-384.https://doi.org/10.1017/s0016756800058222 doi: 10.1017/S0016756800058222
      [72] Wu, F.Y., Li, X.H., Yang, J.H., et al., 2007.Discussions on the Petrogenesis of Granites.Acta Petrologica Sinica, 23(6):1217-1238(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB200706000.htm
      [73] Wu, Y.B., Zheng, Y.F., 2004.Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age.Chinese Science Bulletin, 49(16):1589-1604 (in Chinese). doi: 10.1007/BF03184122
      [74] Xiao, W.J., Han, C.M., Yuan, C., et al., 2008.Middle Cambrian to Permian Subduction-Related Accretionary Orogenesis of Northern Xinjiang, NW China:Implications for the Tectonic Evolution of Central Asia.Journal of Asian Earth Sciences, 32(2-4):102-117. https://doi.org/10.1016/j.jseaes.2007.10.008
      [75] Xiao, X.C., Tang, Y.Q., Feng, Y.M., et al., 1992.Tectonics in Northern Xinjiang and Its Neighbouring Areas.Geological Publishing House, Beijing, 1-169(in Chinese).
      [76] Xu, X.Y., Li, R.S., Chen, J.L., et al., 2014.New Constrains on the Paleozoic Tectonic Evolution of the Northern Xinjiang Area.Acta Petrologica Sinica, 30(6):1521-1534 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201406001
      [77] Yang, X., Xu, X.H., Li, H.L., et al., 2017.Early Neoproterozoic Tectonic Framework of North Margin of Tarim Basin, Constraints from Zircon U-Pb Geochronology and Geochemistry.Geotectonica et Metallogenia, 41(2):381-395 (in Chinese with English abstract).https://doi.org/10.16539/j.ddgzyckx.2017.02.012 http://en.cnki.com.cn/Article_en/CJFDTOTAL-DGYK201702013.htm
      [78] Ye, M.F., Li, X.H., Li, W.X., et al., 2007.SHRIMP Zircon U-Pb Geochronological and Whole-Rock Geochemical Evidence for an Early Neoproterozoic Sibaoan Magmatic Arc along the Southeastern Margin of the Yangtze Block.Gondwana Research, 12(1/2):144-156.https://doi.org/10.1016/j.gr.2006.09.001 doi: 10.1016-j.gr.2006.09.001/
      [79] Yu, H.F., Lu, S.N., Mei, H.L., et al., 1999.Characteristics of Neoproterozoic Eclogite-Granite Zones and Deep Level Ductile Shear Zone in Western China and Their Significance for Continental Reconstruction.Acta Petrologica Sinica, 15(4):532-538(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB199904004.htm
      [80] Zhang, C., Liu, X.Y., Yang, J.S., et al., 2016.The Neoproterozoic Metamorphism of North Qaidam UHPM Belt, Western China:Constrain from Petrological Study and Monazite Dating of Paragneiss.Acta Petrologica Sinica, 32(12):3715-3728(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201612011.htm
      [81] Zhang, C.L., Li, H.K., Santosh, M., et al., 2012.Precambrian Evolution and Cratonization of the Tarim Block, NW China:Petrology, Geochemistry, Nd-Isotopes and U-Pb Zircon Geochronology from Archaean Gabbro-TTG-Potassic Granite Suite and Paleoproterozoic Metamorphic Belt.Journal of Asian Earth Sciences, 47:5-20. https://doi.org/10.1016/j.jseaes.2011.05.018
      [82] Zhu, D.C., Mo, X.X., Wang, L.Q., et al., 2009a.Petrogenesis of Highly Fractionated Ⅰ-Type Granites in the Zayu Area of Eastern Gangdese, Tibet:Constraints from Zircon U-Pb Geochronology, Geochemistry and Sr-Nd-Hf Isotopes.Science in China (Series D:Earth Sciences), 52(9):1223-1239. https://doi.org/10.1007/s11430-009-0132-x
      [83] Zhu, D.C., Zhao, Z.D., Pan, G.T., et al., 2009b.Early Cretaceous Subduction-Related Adakite-Like Rocks of the Gangdese Belt, Southern Tibet:Products of Slab Melting and Subsequent Melt-Peridotite Interaction? Journal of Asian Earth Sciences, 34(3):298-309. https://doi.org/10.1016/j.jseaes.2008.05.003
      [84] 陈新跃, 王岳军, 孙林华, 等, 2009.天山冰达坂和拉尔敦达坂花岗片麻岩SHRIMP锆石年代学特征及其地质意义.地球化学, 38(5):424-431. doi: 10.3321/j.issn:0379-1726.2009.05.002
      [85] 郭进京, 赵凤清, 李怀坤, 1999.中祁连东段晋宁期碰撞型花岗岩及其地质意义.地球学报, 20(1):10-15. doi: 10.3321/j.issn:1006-3021.1999.01.002
      [86] 郭召杰, 李茂松, 1993.中天山早古生代离散地体构造的讨论.北京大学学报(自然科学版), 29(3):356-362. http://www.cnki.com.cn/Article/CJFDTotal-BJDZ199303009.htm
      [87] 郭召杰, 张志诚, 贾承造, 等, 2000.塔里木克拉通前寒武纪基底构造格架.中国科学(D辑:地球科学), 30(6):568-575. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200006002
      [88] 何国琦, 李茂松, 韩宝福, 2001.中国西南天山及邻区大地构造研究.新疆地质, 19(1):7-11. doi: 10.3969/j.issn.1000-8845.2001.01.002
      [89] 侯可军, 李延河, 邹天人, 等, 2007.LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用.岩石学报, 23(10):2595-2604. doi: 10.3969/j.issn.1000-0569.2007.10.025
      [90] 胡霭琴, 王中刚, 涂光炽, 1997.新疆北部地质演化及其成岩成矿规律.北京:科学出版社, 36-62.
      [91] 胡霭琴, 韦刚健, 张积斌, 等, 2008.西天山温泉地区早古生代斜长角闪岩的锆石SHRIMP U-Pb年龄及其地质意义.岩石学报, 24(12):2731-2740. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200812007
      [92] 胡霭琴, 张国新, 陈义兵, 2006.中国新疆地壳演化主要地质事件年代学和地球化学.北京:地质出版社, 69-161.
      [93] 胡霭琴, 张国新, 陈义兵, 等, 2001.新疆大陆基底分区模式和主要地质事件的划分.新疆地质, 19(1):12-19. doi: 10.3969/j.issn.1000-8845.2001.01.003
      [94] 胡霭琴, 张国新, 张前锋, 等, 1999.天山造山带基底时代和地壳增生的Nd同位素制约.中国科学(D辑:地球科学), 29(2):104-112. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd199902002
      [95] 黄博涛, 贺振宇, 宗克清, 等, 2014.新疆阿拉塔格地区新元古代花岗片麻岩的锆石U-Pb定年与Hf同位素:对中天山地块前寒武纪地壳演化的制约.科学通报, 59(3):287-296. http://www.cqvip.com/QK/94252X/201403/48693121.html
      [96] 李春昱, 王荃, 刘雪亚, 等, 1982.亚洲大地构造图说明书.北京:地质出版社, 1-49.
      [97] 李锦轶, 王克桌, 李亚萍, 等, 2006.天山山脉地貌特征、地壳组成与地质演化.地质通报, 25(8):895-909. doi: 10.3969/j.issn.1671-2552.2006.08.001
      [98] 李铨, 于海峰, 修群业, 2002.东天山前寒武纪基底若干问题的讨论.新疆地质, 20(4):346-351. doi: 10.3969/j.issn.1000-8845.2002.04.011
      [99] 李婷, 李智佩, 白建科, 等, 2015.伊犁地块达根别里新元古代花岗岩的锆石年代学、地球化学及其地质意义.西北地质, 48(3):96-111. doi: 10.3969/j.issn.1009-6248.2015.03.011
      [100] 李艳广, 汪双双, 刘民武, 等, 2015.斜锆石LA-ICP-MS U-Pb定年方法及应用.地质学报, 89(12):2400-2418. doi: 10.3969/j.issn.0001-5717.2015.12.015
      [101] 李曰俊, 宋文杰, 吴根耀, 等, 2005.塔里木盆地中部隐伏的晋宁期花岗闪长岩和闪长岩.中国科学(D辑:地球科学), 35(2):97-104. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200502001
      [102] 刘树文, 郭召杰, 张志诚, 等, 2004.中天山东段前寒武纪变质地块的性质:地质年代学和钕同位素地球化学的约束.中国科学(D辑:地球科学), 34(5):395-403. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200405001
      [103] 龙灵利, 高俊, 熊贤明, 等, 2006.南天山库勒湖蛇绿岩地球化学特征及其年龄.岩石学报, 22(1):65-73. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200601007
      [104] 陆松年, 2002.青藏高原北部前寒武纪地质初探.北京:地质出版社, 35-117.
      [105] 陆松年, 李怀坤, 陈志宏, 等, 2004.新元古时期中国古大陆与罗迪尼亚超大陆的关系.地学前缘, 11(2):515-523. doi: 10.3321/j.issn:1005-2321.2004.02.021
      [106] 梅华林, 李惠民, 陆松年, 等, 1999.甘肃柳园地区花岗质岩石时代及成因.岩石矿物学杂志, 18(1):14-17. http://www.cnki.com.cn/Article/CJFDTotal-YSKW901.002.htm
      [107] 舒良树, 朱文斌, 王博, 等, 2013.新疆古块体的形成与演化.中国地质, 40(1):43-60. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201301003
      [108] 王洪浩, 李江海, 周肖贝, 等, 2015.塔里木陆块在Rodinia超大陆中位置的新认识——来自地层对比和古地磁的制约.地球物理学报, 58(2):589-600. http://www.cqvip.com/QK/94718X/201502/664342818.html
      [109] 王立社, 张巍, 段星星, 等, 2015.阿尔金环形山花岗片麻岩同位素年龄及成因研究.岩石学报, 31(1):119-132. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201501009
      [110] 吴福元, 李献华, 杨进辉, 等, 2007.花岗岩成因研究的若干问题.岩石学报, 23(6):1217-1238. doi: 10.3969/j.issn.1000-0569.2007.06.001
      [111] 吴元保, 郑永飞, 2004.锆石成因矿物学研究及其对U-Pb年龄解释的制约.科学通报, 49(16):1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002
      [112] 肖序常, 汤耀庆, 冯益民, 等, 1992.新疆北部及其邻区大地构造.北京:地质出版社, 1-169.
      [113] 徐学义, 李荣社, 陈隽璐, 等, 2014.新疆北部古生代构造演化的几点认识.岩石学报, 30(6):1521-1534. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201406001
      [114] 杨鑫, 徐旭辉, 李慧莉, 等, 2017.塔里木北缘新元古代早期构造演化的锆石U-Pb年代学和地球化学约束.大地构造与成矿学, 41(2):381-395. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201702013
      [115] 于海峰, 陆松年, 梅华林, 等, 1999.中国西部新元古代榴辉岩-花岗岩带和深层次韧性剪切带特征及其大陆再造意义.岩石学报, 15(4):532-538. doi: 10.3321/j.issn:1000-0569.1999.04.005
      [116] 张聪, 刘晓瑜, 杨经绥, 等, 2016.柴北缘超高压变质带的新元古代变质作用——来自锡铁山副片麻岩的岩石学及独居石年代学证据.岩石学报, 32(12):3715-3728. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201612011.htm
    • 加载中
    图(10) / 表(4)
    计量
    • 文章访问数:  4103
    • HTML全文浏览量:  1826
    • PDF下载量:  26
    • 被引次数: 0
    出版历程
    • 收稿日期:  2018-03-20
    • 刊出日期:  2018-12-15

    目录

      /

      返回文章
      返回