Re-Os Isochron Age of Pyrites from Meiling Cu Deposit in the Eastern Tianshan: A Case Study for the Os Isotopic Heterogeneity
-
摘要: 金属硫化物Re-Os等时线年龄的合理解释是揭示金属矿床成矿时代的关键.通过对新疆东天山梅岭铜矿床开展Re-Os同位素定年研究,结果表明浸染状和脉状矿石中黄铁矿样品在Os浓度和Os同位素比值方面都有很大的变化,这两类样品定义了很好的Re-Os等时线年龄,分别为523±59 Ma和707±99 Ma.由于得到的等时线年龄明显老于它们的实际地质成矿年龄,且187Os/188Os与普通Os的倒数(以1/192Os为例)之间存在着很好的相关性(R2分别为0.997 3和0.994 5),因此这些样品存在着初始Os同位素组成不均一的现象,这些Re-Os等时线是混合等时线,没有地质意义.理论和数学公式推导显示观测到的Re-Os等时相关性是在形成时期没有达到完全的同位素平衡的二元混合的结果,这种同位素扩散不平衡产生的原因主要是在矿床形成时期Os同位素在金属硫化物与硅酸盐矿物之间的同位素扩散存在限制性.回归得到的Os的初始值更偏向于地壳值,表明矿床形成时期的地壳混染可能造成金属硫化物体系中的这种初始Os同位素不均一.因此,将Re-Os同位素体系应用于金属硫化物样品定年时,187Os/188Os与1/192Os之间是否存在相关关系可以作为Re-Os等时线年龄是否具有地质意义的判断标准.Abstract: Interpretations of the Re-Os isochron age of metallic sulfides are crucial to the reconstruction of ore-formation age of metallic deposits. Re-Os dating of pyrites from Meiling Cu deposit in eastern Tianshan, NW China indicates that the disseminated and massive ores show large variations in both Os concentrations and isotopic ratios. Our isotopic data of the two kinds of ores have defined good Re-Os correlations and the isochron ages are 523±59 Ma and 707±99 Ma, respectively. The two isochron ages are both significantly older than the true formation age of the Meiling Cu deposit. Together with the good correlations between 187Os/188Os ratio and the reciprocal of the common Os (i.e., 1/192Os, R2 are 0.997 3 and 0.994 5 for the disseminated and massive ores, respectively), we suggest that the initial Os isotopic compositions of these samples are heterogeneous and the two ages are mixed isochron ages. The mathematical deduction demonstrates that the observed Re-Os isochron correlations are the result of binary mixing without complete isotopic equilibrium at the time of formation, primarily due to limited diffusional exchange of Os isotopes between refractory Os-bearing inclusions and silicate minerals. The initial Os isotopic compositions may approach the value of continental crust. Crustal contamination during the formation of the deposit was responsible for the initial Os isotopic heterogeneity in the metallic sulfide system. It is concluded that whether there is a good Re-Os isochron correlation for samples can be used to constrain the geological meaning of Re-Os isochron ages when the Re-Os isotopic system of metallic sulfides is used to date the formation age of metallic deposit.
-
Key words:
- metallic sulfide /
- Re-Os isotope /
- initial Os isotope /
- isochron age /
- mixed isochron /
- geochronolgy
-
图 1 东天山地质概况
Fig. 1. Geological sketch and distribution of the Cu-polymetallic deposits in the eastern Tianshan
图 5 梅岭铜矿床5个浸染状样品等时线图解(a);梅岭铜矿床5个浸染状样品187Os/188Os-1/192Os图解(b); 梅岭铜矿床5个脉状样品等时线图解(c);梅岭铜矿床5个脉状样品187Os/188Os-1/192Os图解(d)
Fig. 5. 187Re/188Os vs.187Os/188Os (a) and inverse of 192Os (b) for pyrite samples from the disseminated ores; 187Re/188Os vs.187Os/188Os (c) and inverse of 192Os (d) for pyrite samples from the vein ores
图 6 Re-Os混合等时线
图据Li et al.(2014).a.k=0,具有不相同187Os/188Os比值的两端元混合过程中Os同位素交换达到了平衡或来自一个Os同位素均一的端元;在这种情况下,获得的等时线为传统意义上的等时线(Ap),初始187Os/188Os线为Ip,等时线年龄(tp)等于岩石形成的真实年龄(t).b.k≠0,具有不相同187Os/188Os比值的两端元混合过程中Os同位素交换没有达到平衡;在这种情况下获得的混合等时线(Ap)和初始混合线(IM)以及真实形成年龄(t).获得的混合等时线的年龄(tp)已经没有地质意义
Fig. 6. Illustration of binary mixing on the Re-Os isochron diagram
图 7 (a) Haynes-Stellite矿床辉钴矿样品等时线图解;(b) Haynes-Stellite矿床辉钴矿样品187Os/188Os与1/192Os图解; (c) Idaho地区4个辉钴矿样品等时线图解;(d) Idaho地区4个辉钴矿样品187Os/188Os与1/192Os图解
Fig. 7. 187Re/188Os vs.187Os/188Os (a) and inverse of 192Os (b) for samples from the Haynes-Stellite deposit; 187Re/188Os vs.187Os/188Os (c) and inverse of 192Os (d) for samples from the Idaho zone
表 1 新疆梅岭铜矿床浸染状矿石黄铁矿Re-Os同位素分析数据
Table 1. Re-Os isotopic data of pyrite samples from the disseminated ores
样品编号 质量(g) Re(10-12) ±2σ(10-12) Os(10-12) ±2σ(10-12) 187Os/188Os ±2σ 187Re/188Os ±2σ 1/192Os TMA(Ma) 16HS0104 0.593 4 2 424 26 15.28 0.16 50.771 1 0.709 5 5 815.45 88.96 1.234 6 520 16HS0107 0.605 2 2 174 116 13.67 0.28 54.922 5 1.540 2 6 244.42 130.37 1.478 2 524 16HS0108 0.605 5 2 718 25 26.53 0.10 8.519 0 0.079 3 1 033.95 10.41 0.194 6 485 16HS0113 0.611 6 3 827 40 23.32 0.10 43.997 2 0.403 9 5 314.68 60.51 0.714 5 493 16HS0115 0.606 0 2 885 29 18.43 0.07 33.558 0 0.298 8 4 043.74 43.77 0.720 5 494 表 2 新疆梅岭铜矿床脉状矿石黄铁矿Re-Os同位素分析数据
Table 2. Re-Os isotopic data of pyrite samples from the vein ores
样品编号 质量(g) Re(10-12) ±2σ(10-12) Os(10-12) ±2σ(10-12) 187Os/188Os ±2σ 187Re/188Os ±2σ 1/192Os TMA(Ma) 16HS0205 0.604 9 3 101 26 19.34 0.10 61.04 0.54 6 911.29 68.82 1.15 526 16HS0205 0.599 3 3 277 26 22.24 0.87 568.31 7.37 53 339.32 2 139.13 8.39 636 16HS0206 0.588 8 2 720 25 20.62 0.68 770.37 5.69 64 493.13 2 214.12 12.23 712 16HS0207 0.578 1 2 867 26 17.90 0.49 151.12 2.58 15 968.23 458.88 2.87 564 16HS0208 0.488 2 5 381 34 34.24 0.09 42.13 0.21 4 905.34 33.30 0.47 511 -
[1] Bell, K., Powell, J.L., 1969.Strontium Isotopic Studies of Alkalic Rocks:The Potassium-Rich Lavas of the Birunga and Toro-Ankole Regions, East and Central Equatorial Africa.Journal of Petrology, 10(3):536-572. https://doi.org/10.1093/petrology/10.3.536 [2] Bookstrom, A.A., Box, S.E., Cossette, P.M., et al., 2016.Geologic History of the Blackbird Co-Cu District in the Lemhi Subbasin of the Belt-Purcell Basin.In: MacLean, J.S., Sears, J.W., eds., Belt Basin: Window to Mesoproterozoic Earth.Geological Society of America, 86: 509-525.https://doi.org/10.1130/2016.2522(08) [3] Cohen, A.S., Coe, A.L., Bartlett, J.M., et al., 1999.Precise Re-Os Ages of Organic-Rich Mudrocks and the Os Isotope Composition of Jurassic Seawater.Earth and Planetary Science Letters, 167(3-4):159-173. https://doi.org/10.1016/S0012-821X(99)00026-6 [4] Cohen, A.S., Waters, F.G., 1996.Separation of Osmium from Geological Materials by Solvent Extraction for Analysis by Thermal Ionisation Mass Spectrometry.Analytica Chimica Acta, 332(2-3):269-275. https://doi.org/10.1016/0003-2670(96)00226-7 [5] Creaser, R.A., Papanastassiou, D.A., Wasserburg, G.J., 1991.Negative Thermal Ion Mass Spectrometry of Osmium, Rhenium and Iridium.Geochimica et Cosmochimica Acta, 55(1):397-401. https://doi.org/10.1016/0016-7037(91)90427-7 [6] Deng, X.H., Wang, J.B., Pirajno, F., et al., 2016a.Re-Os Dating of Chalcopyrite from Selected Mineral Deposits in the Kalatag District in the Eastern Tianshan Orogen, China.Ore Geology Reviews, 77:72-81. https://doi.org/10.1016/j.oregeorev.2016.01.014 [7] Deng, X.H., Wang, J.B., Santosh, M., et al., 2016b.New 40Ar/39Ar Ages from the Kalatag District in the Eastern Tianshan, NW China: Constraints on the Timing of Cu Mineralization and Stratigraphy.Ore Geology Reviews, in Press.https://doi.org/10.1016/j.oregeorev.2016.08.006 [8] Endo, S., Wallis, S., Hirata, T., et al., 2009.Age and Early Metamorphic History of the Sanbagawa Belt:Lu-Hf and P-T Constraints from the Western Iratsu Eclogite.Journal of Metamorphic Geology, 27(5):371-384. https://doi.org/10.1111/j.1525-1314.2009.00821.x [9] Finlay, A.J., Selby, D., Osborne, M.J., 2011.Re-Os Geochronology and Fingerprinting of United Kingdom Atlantic Margin Oil:Temporal Implications for Regional Petroleum Systems.Geology, 39(5):475-478. https://doi.org/10.1130/g31781.1 [10] Gangopadhyay, A., Walker, R.J., 2003.Re-Os Systematics of the Ca.2.7 Ga Komatiites from Alexo, Ontario, Canada.Chemical Geology, 196(1-4):147-162. https://doi.org/10.1016/s0009-2541(02)00411-4 [11] Gao, S., Rudnick, R.L., Carlson, R.W., et al., 2002.Re-Os Evidence for Replacement of Ancient Mantle Lithosphere beneath the North China Craton.Earth and Planetary Science Letters, 198(3-4):307-322. https://doi.org/10.1016/s0012-821x(02)00489-2 [12] Han, C.M., Zhao, G.C., 2003.Major Types and Characteristics of Late Paleozoic Ore Deposits, East Tianshan, Northwest China.International Geology Review, 45(9):798-813. https://doi.org/10.2747/0020-6814.45.9.798 [13] Jiang, S.H., Bagas, L., Liang, Q.L., 2017.Pyrite Re-Os Isotope Systematics at the Zijinshan Deposit of SW Fujian, China:Constraints on the Timing and Source of Cu-Au Mineralization.Ore Geology Reviews, 80:612-622. https://doi.org/10.1016/j.oregeorev.2016.07.024 [14] Langmuir, C.H., Vocke, R.D.Jr., Hanson, G.N., et al., 1978.A General Mixing Equation with Applications to Icelandic Basalts.Earth and Planetary Science Letters, 37(3):380-392. https://doi.org/10.1016/0012-821x(78)90053-5 [15] Li, C., Wang, D.H., Zhou, L.M., et al., 2017.Study on the Re-Os Isotope Composition of Graphite from the Lutang Graphite Deposit in Hunan Province.Rock and Mineral Analysis, 36(3):297-304 (in Chinese with English abstract). [16] Li, J., Liang, X.R., Xu, J.F., et al., 2010.Simplified Technique for the Measurements of Re-Os Isotope by Multicollector Inductively Coupled Plasma Mass Spectrometry (MC-ICP-MS).Geochemical Journal, 44(1):73-80. https://doi.org/10.2343/geochemj.1.0044 [17] Li, J., Jiang, X.Y., Xu, J.F., et al., 2014.Determination of Platinum-Group Elements and Re-Os Isotopes Using ID-ICP-MS and N-TIMS from a Single Digestion after Two-Stage Column Separation.Geostandards and Geoanalytical Research, 38(1):37-50. https://doi.org/10.1111/j.1751-908x.2013.00242.x [18] Li, J., Wang, X.C., Xu, J.F., et al., 2015.Disequilibrium-Induced Initial Os Isotopic Heterogeneity in Gram Aliquots of Single Basaltic Rock Powders:Implications for Dating and Source Tracing.Chemical Geology, 406:10-17. https://doi.org/10.1016/j.chemgeo.2015.04.010 [19] Liu, D.Q., Chen, Y.C., Wang, D.H., et al., 2003.A Discussion on Problems Related to Mineralization of Tuwu-Yandong Cu-Mo Orefield in Hami, Xinjiang.Mineral Deposits, 22(4):334-344 (in Chinese with English abstract). [20] Mao, Q, G., 2003.The Geological, Metallogenesis and Metallogenic Prognosis Studies of the Kalatage Copper Polymetallic Ore Distric in Eastern Tianshan, NW China (Unpublished Post-Doc.Report).Beijing Institute of Geology for Mineral Resources, Beijing (in Chinese with English abstract). [21] Meisel, T., Moser, J., Wegscheider, W., 2001.Recognizing Heterogeneous Distribution of Platinum Group Elements (PGE) in Geological Materials by Means of the Re-Os Isotope System.Fresenius' Journal of Analytical Chemistry, 370(5):566-572. https://doi.org/10.1007/s002160100791 [22] Nozaki, T., Kato, Y., Suzuki, K., 2010.Re-Os Geochronology of the Imori Besshi-Type Massive Sulfide Deposit in the Sanbagawa Metamorphic Belt, Japan.Geochimica et Cosmochimica Acta, 74(15):4322-4331. https://doi.org/10.1016/j.gca.2010.04.055 [23] Okamoto, K., Shinjoe, H., Katayama, I., et al., 2004.SHRIMP U-Pb Zircon Dating of Quartz-Bearing Eclogite from the Sanbagawa Belt, South-West Japan:Implications for Metamorphic Evolution of Subducted Protolith.Terra Nova, 16(2):81-89. https://doi.org/10.1111/j.1365-3121.2004.00531.x [24] Pearson, D.G., Woodland, S.J., 2000.Solvent Extraction/anion Exchange Separation and Determination of PGEs (Os, Ir, Pt, Pd, Ru) and Re-Os Isotopes in Geological Samples by Isotope Dilution ICP-MS.Chemical Geology, 165(1/2):87-107. https://doi.org/10.1016/s0009-2541(99)00161-8 [25] Puchtel, I.S., Brügmann, G.E., Hofmann, A.W., 2001.187Os-Enriched Domain in an Archean Mantle Plume:Evidence from 2.8 Ga Komatiites of the Kostomuksha Greenstone Belt, NW Baltic Shield.Earth and Planetary Science Letters, 186(3-4):513-526. https://doi.org/10.1016/s0012-821x(01)00264-3 [26] Puchtel, I.S., Humayun, M., Walker, R.J., 2007.Os-Pb-Nd Isotope and Highly Siderophile and Lithophile Trace Element Systematics of Komatiitic Rocks from the Volotsk Suite, SE Baltic Shield.Precambrian Research, 158(1-2):119-137. https://doi.org/10.1016/j.precamres.2007.04.004 [27] Qin, K.Z., 2000.Metallogenesis in Relation to Central-Asia Style Orogeny of Northern Xinjiang (Dissertation).Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing (in Chinese with English abstract). [28] Qin, Z.W., 1987.Mix-Isochron and Its Significance in Isotopic Chronology.Science in China (Series B), 17(1):95-103 (in Chinese with English abstract). [29] Ravizza, G., Turekian, K.K., 1989.Application of the 187Re-187Os System to Black Shale Geochronometry.Geochimica et Cosmochimica Acta, 53(12):3257-3262. https://doi.org/10.1016/0016-7037(89)90105-1 [30] Reisberg, L., Meisel, T., 2002.The Re-Os Isotopic System:A Review of Analytical Techniques.Geostandards and Geoanalytical Research, 26(3):249-267. https://doi.org/10.1111/j.1751-908x.2002.tb00633.x [31] Rui, Z.Y., Wang, L.S., Wang, Y.T., et al., 2002.Discussion on Metallogenic Epoch of Tuwu and Yandong Porphyry Copper Deposits in Eastern Tianshan Mountains, Xinjiang.Mineral Deposits, 21(1):16-22 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ200201003.htm [32] Roy-Barman, M., 1993.Mesure du Rapport 187Os/188Os Dans les Basaltes et les Péridotites: Contribution à la Systematique 187Re/188Os Dans le Manteau.Univ.de Paris Ⅶ, Paris (in Franch). [33] Saintilan, N.J., Creaser, R.A., Bookstrom, A.A., 2017.Re-Os Systematics and Geochemistry of Cobaltite (CoAsS) in the Idaho Cobalt Belt, Belt-Purcell Basin, USA:Evidence for Middle Mesoproterozoic Sediment-Hosted Co-Cu Sulfide Mineralization with Grenvillian and Cretaceous Remobilization.Ore Geology Reviews, 86:509-525. https://doi.org/10.1016/j.oregeorev.2017.02.032 [34] Selby, D., Creaser, R.A., 2005.Direct Radiometric Dating of Hydrocarbon Deposits Using Rhenium-Osmium Isotopes.Science, 308(5726):1293-1295. https://doi.org/10.1126/science.1111081 [35] Selby, D., Kelley, K.D., Hitzman, M.W., et al., 2009.Re-Os Sulfide (Bornite, Chalcopyrite, and Pyrite) Systematics of the Carbonate-Hosted Copper Deposits at Ruby Creek, Southern Brooks Range, Alaska.Economic Geology, 104(3):437-444. https://doi.org/10.2113/gsecongeo.104.3.437 [36] Slack, J.F., 2006.High REE and Y Concentrations in Co-Cu-Au Ores of the Blackbird District, Idaho.Economic Geology, 101(2):275-280. https://doi.org/10.2113/gsecongeo.101.2.275 [37] Slack, J.F., 2012.Strata-Bound Fe-Co-Cu-Au-Bi-Y-REE Deposits of the Idaho Cobalt Belt:Multistage Hydrothermal Mineralization in a Magmatic-Related Iron Oxide Copper-Gold System.Economic Geology, 107(6):1089-1113. https://doi.org/10.2113/econgeo.107.6.1089 [38] Smoliar, M.I., Walker, R.J., Morgan, J.W., 1996.Re-Os Ages of Group ⅡA, ⅢA, IVA, and IVB Iron Meteorites.Science, 271(5252):1099-1102. https://doi.org/10.1126/science.271.5252.1099 [39] Suzuki, K., Shimizu, H., Masuda, A., 1996.Re-Os Dating of Molybdenites from Ore Deposits in Japan:Implication for the Closure Temperature of the ReOs System for Molybdenite and the Cooling History of Molybdenum Ore Deposits.Geochimica et Cosmochimica Acta, 60(16):3151-3159. https://doi.org/10.1016/0016-7037(96)00164-0 [40] Nozaki, T., Kato, Y., Suzuki, K., 2010.Re-Os Geochronology of the Iimori Besshi-Type Massive Sulfide Deposit in the Sanbagawa Metamorphic Belt, Japan.Geochimica et Cosmochimica Acta, 74(15):4322-4331. https://doi.org/10.1016/j.gca.2010.04.055 [41] Völkening, J., Walczyk, T., Heumann, K.G., 1991.Osmium Isotope Ratio Determinations by Negative Thermal Ionization Mass Spectrometry.International Journal of Mass Spectrometry and Ion Processes, 105(2):147-159. https://doi.org/10.1016/0168-1176(91)80077-z [42] Vollmer, R., 1976.Rb-Sr and U-Th-Pb Systematics of Alkaline Rocks:The Alkaline Rocks from Italy.Geochimica et Cosmochimica Acta, 40(3):283-295. https://doi.org/10.1016/0016-7037(76)90205-2 [43] Walker, R.J., Echeverria, L.M., Shirey, S.B., et al., 1991.Re-Os Isotopic Constraints on the Origin of Volcanic Rocks, Gorgona Island, Colombia:Os Isotopic Evidence for Ancient Heterogeneities in the Mantle.Contributions to Mineralogy and Petrology, 107(2):150-162. https://doi.org/10.1007/bf00310704 [44] Yamaguchi, M., Yanagi, T., 1970.Geochronology of Some Metamorphic Rocks in Japan.Eclogae Geologicae Helvetiae, 63:371-388. [45] Yang, S.H., Chen, J.F., Qu, W.J., et al., 2007.Re-Os "Ages" of Jinchuan Copper-Nickel Sulfide Deposit and Their Significance.Geochimica, 36(1):27-36 (in Chinese with English abstract). [46] Yang, Z., Jiang, H., Yang, M.G., et al., 2017.Zircon U-Pb and Molybdenite Re-Os Dating of the Gangjiang Porphyry Cu-Mo Deposit in Central Gangdese and Its Geological Significance.Earth Science, 42(3):339-356 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.026 [47] Yu, M.J., Wang, J.B., Mao, Q.G., et al., 2016.Characteristics of Ore-Forming Fluids of Meiling Copper-Zinc (Gold) Deposit in Kalatage Ore Concentration Area of East Tianshan Mountains, Xinjiang, and Their Geological Significance.Mineral Deposit, 35(4):829-845(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ201604013.htm [48] Zhang, G.Z., Xue, C.J., Chi, G.X., et al., 2017.Multiple-Stage Mineralization in the Sawayaerdun Orogenic Gold Deposit, Western Tianshan, Xinjiang:Constraints from Paragenesis, EMPA Analyses, Re-Os Dating of Pyrite (Arsenopyrite) and U-Pb Dating of Zircon from the Host Rocks.Ore Geology Reviews, 81:326-341. https://doi.org/10.1016/j.oregeorev.2016.10.038 [49] Zhang, Z., Song, J.L., Tang, J.X., et al., 2017.Petrogensis, Diagenesis and Mineralization Ages of Galale Cu-Au Deposit, Tibet:Zircon U-Pb Age, Hf Isotopic Composition and Molybdenite Re-Os Dating.Earth Science, 42(6):862-880 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.523 [50] Zheng, Y.F., 1989.Influences of the Nature of the Initial Rb-Sr System on Isochron Validity.Chemical Geology:Isotope Geoscience Section, 80(1):1-16. https://doi.org/10.1016/0168-9622(89)90043-2 [51] 李超, 王登红, 周利敏, 等, 2017.湖南鲁塘石墨矿Re-Os同位素研究.岩矿测试, 36(3):297-304. http://d.old.wanfangdata.com.cn/Periodical/ykcs201703013 [52] 刘德权, 陈毓川, 王登红, 等, 2003.土屋-延东铜钼矿田与成矿有关问题的讨论.矿床地质, 22(4):334-344. doi: 10.3969/j.issn.0258-7106.2003.04.002 [53] 毛启贵, 2003.北天山卡拉塔格地区铜金多金属矿床的地质、成矿和成矿预测研究(博士后研究报告).北京:北京矿产地质研究所, 1-150. [54] 秦克章, 2000.新疆北部中亚型造山与成矿作用(博士学位论文).北京: 中国科学院研究生院(地质与地球物理研究所), 1-207. [55] 覃振蔚, 1987.混合等时线及其在同位素年代学中的意义.中国科学(B辑), (1):95-103. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000005275358 [56] 芮宗瑶, 王龙生, 王义天, 等, 2002.东天山土屋和延东斑岩铜矿床时代讨论.矿床地质, 21(1):16-22. doi: 10.3969/j.issn.0258-7106.2002.01.003 [57] 杨胜洪, 陈江峰, 屈文俊, 等, 2007.金川铜镍硫化物矿床的Re-Os"年龄"及其意义.地球化学, 36(1):27-36. doi: 10.3321/j.issn:0379-1726.2007.01.003 [58] 杨震, 姜华, 杨明国, 等, 2017.冈底斯中段岗讲斑岩铜钼矿床锆石U-Pb和辉钼矿Re-Os年代学及其地质意义.地球科学, 42(3):339-356. http://earth-science.net/WebPage/Article.aspx?id=3545 [59] 于明杰, 王京彬, 毛启贵, 等, 2016.新疆东天山卡拉塔格矿集区梅岭铜锌(金)床成矿流体特征及地质意义.矿床地质, 35(4):829-845. http://d.old.wanfangdata.com.cn/Periodical/kcdz201604013 [60] 张志, 宋俊龙, 唐菊兴, 等, 2017.西藏嘎拉勒铜金矿床的成岩成矿时代与岩石成因:锆石U-Pb年龄、Hf同位素组成及辉钼矿Re-Os定年.地球化学, 42(6):862-880. http://d.old.wanfangdata.com.cn/Periodical/dqkx201706002