The Mineralization of the Jinba Gold Deposit, Xinjiang, China: Evidence from Geology and Fluid Inclusions
-
摘要: 金坝金矿作为额尔齐斯构造成矿带的典型金矿,人们对其构造蚀变特征、成矿流体演化以及成矿热液来源还缺乏深入研究,区内岩浆活动与金坝金矿之间的关系尚不明确.在矿床地质特征研究基础上,详细分析矿化蚀变特征,使用扫描电镜阴极发光(SEM-CL)分析石英显微结构,通过流体包裹体研究和S-D-O同位素分析对成矿流体和矿质来源进行探讨.区内黄铁矿化、绢云母化、硅化普遍发育,是重要的找矿标志.矿区斜长花岗岩和闪长岩的钻孔样品由矿化中心向外蚀变及矿化逐渐减弱,变化明显.SEM-CL显示石英微结构具有热液石英特征的穿插结构和重结晶结构,表明变形变质作用强烈.热液成矿分为4个阶段:磁铁矿-石英阶段、金-黄铁矿-石英阶段、金-多金属硫化物-石英阶段和石英-碳酸盐化阶段.金坝金矿的流体包裹体多以水溶液包裹体为主,并有CO2-H2O包裹体及碳质流体包裹体.成矿温度主峰为260~280 ℃和380~400 ℃,盐度范围在0.88%~13.72% Nacleqv,流体密度为0.90~0.95 g/cm3.表明成矿流体体系为中高温热液、中低盐度、中低密度的H2O-NaCl-CO2体系.成矿流体有从中高温富CO2向低温盐水溶液演化的特点.矿床硫质来源具有深源硫特征.流体包裹体中δDH2O值为-78.0‰~-80.5‰,成矿溶液的δ18OH2O值为1.49‰~5.31‰,表明成矿热液流体由成矿早期的岩浆水向晚期成矿流体的大气降水演化.Abstract: Jinba gold deposit is typical of the Ertix tectonic metallogenic belt, however, exsiting studies on its characteristics of tectonic alteration, evolution of ore-forming fluid and the source of hydrothermal fluid are insuffienct and the relationship between magmatic activity and Jinba gold deposit in the area is not clear. We carried out hydrothermal alteration, fluid inclusions and mineral sources based on the study of the geological characteristics of the deposit so as to provide useful information and reference for the genesis, mineralization and prospecting of Jinba gold deposit. It is found that sericitization, pyritization, silicification develop widely, which is an important sign of prospecting. Gold mineralization in the area is closely related to plagioclase granite and diorite, the drilling rock samples show gradual weakening mineralization and alteration from the center to the outside, with significant changes. The interpenetration texture and recrystallized texture characteristics of SEM-CL show that the deformation and metamorphism are very strong. And it has the characteristics of hydrothermal quartz. The hydrothermal mineralization is divided into four mineralization stages:magnetite quartz stage, gold-pyrite-quartz stage, gold-polymetallic sulfide-quartz stage, and quartz-carbonatation stage. Through the study on fluid inclusions, it is confirmed that the types of fluid inclusions in the Jinba gold deposit are:aqueous inclusions (LH2O-VCO2), CO2-H2O inclusions (LCO2-LH2O) and carbonic fluid inclusions. H2O and CO2 are the main ore-forming fluids in the gold deposit. There are two homogenization temperature peaks:260-280℃ and 380-400℃, with salinity from 0.88% to 13.72% Nacleqv and density from 0.90 to 0.95 g/cm3, so the fluid characteristics reflect that it is in medium-high temperature, low salinity and low-density environment. The composition of sulfur isotope present the ore-forming materials are derived from the deep crust. The data of δ18OH2O (1.49‰-5.31‰) and δDH2O (-78.0‰——80.5‰) suggest that meteoric water involves in the mineralization.
-
Key words:
- Habahe rock body /
- wall-rock alteration /
- fluid inclusions /
- Jinba gold deposit /
- Ertix tectonic belt
-
图 5 金坝金矿围岩、矿石显微镜下特征
a.碎斑状石英裂隙晚期石英细脉充填,样品号:ZK15-2-190,(正交光);b.弱蚀变斜长花岗岩,黑云母化,样品号:ZK15-2-190(正交光);c.蚀变较强的绿泥石化黝帘石化碎裂斜长花岗岩,ZK15-2-176(正交光);d.绿泥石化黝帘石化,达到糜棱岩化斜长花岗岩,黝帘石深蓝色干涉色明显,样品号:ZK15-2-127(正交光);e.辉长闪长岩中黄铁矿-石英细脉,样品号:ZK15-1-280(单偏光);f.闪长岩型矿石,浸染状黄铁矿黄铜矿,样品号:ZK15-1-282(反光);Q.石英;Bt.黑云母;Chl.绿泥石;Zo.黝帘石;Py.黄铁矿;Ccp.黄铁矿
Fig. 5. Photos showing the microscopic characteristics of surrounding rock and ore in Jinba gold deposit
图 11 硫同位素组成
赛都金矿硫同位素数据据程忠富和芮行健(1997)和张国瑞(2007)
Fig. 11. Histogtam of sulfur isotope compositions of sulfides
表 1 金坝金矿区15勘探线构造蚀变带岩性特征
Table 1. Lithologic characteristics of structural alteration zone of line 15 in Jinba gold deposit
钻孔 样号 岩性 野外、镜下特征 ZK15-2 JB-ZK15-2-062 弱蚀变斜长花岗岩 斜长石(60%)发生黝帘石化,石英30%,包括透镜状石英及其周边重结晶亚颗粒石英. JB-ZK15-2-107 弱蚀变斜长花岗岩 斜长石(50%)见微斜长石,石英(30%),网脉状硅化、绿帘石化,镜下绢云母化,脉状绿泥石化. JB-ZK15-2-108 碎裂斜长花岗岩 碎斑为角砾状石英(动力变质作用),石英(35%),斜长石(55%)大多被交代,黝帘石化、绢云母化强烈. JB-ZK15-2-114 绿泥石化斜长花岗岩 斜长石(30%),石英(30%),绿帘石(15%),绿泥石化、绿帘石化明显(镜下异常干涉色). JB-ZK15-2-116 绿泥石化斜长花岗岩 斜长石(60%),石英(20%),透镜状石英及其周边重结晶亚颗粒石英发育,糜棱岩化. JB-ZK15-2-117 糜棱岩化斜长花岗岩 斜长石(60%),石英(20%),构造-蚀变强烈,镜下透镜状石英及其周边重结晶亚颗粒石英发育,绢云母化强. JB-ZK15-2-120 糜棱岩化斜长花岗岩 同上,构造挤压强烈,糜棱岩化发育,角砾状透镜状石英. JB-ZK15-2-125 糜棱岩化斜长花岗岩 斜长石(60%),石英(30%),镜下绿泥石化、黝帘石化强烈. JB-ZK15-2-127 糜棱岩化斜长花岗岩 斜长石(60%),石英(30%),糜棱岩化,镜下绿泥石化、黝帘石化、碳酸盐化强烈. JB-ZK15-2-130 碎裂斜长花岗岩 碎斑石英(角砾状石英)发育,绿帘石化强烈. JB-ZK15-2-137 碎裂斜长花岗岩 斜长石(65%),石英(35%),石英变形强烈,见较多的次生包裹体和残留的原生包裹体. JB-ZK15-2-146 绿泥石化斜长花岗岩 斜长石(60%),石英(20%),角闪石(10%),流动构造强烈,镜下绿泥石化、绢云母化. JB-ZK15-2-176 碎裂斜长花岗岩 斜长石(65%),石英(20%),糜棱岩化发育,绿帘石化、绿泥石化. JB-ZK15-2-190 弱蚀变斜长花岗岩 斜长石(55%),见微斜长石,石英(35%),绿泥石化. ZK15-1 JB-ZK15-1-279 辉长闪长岩 角闪石含量>65%,斜长石(30%),见星点状黄铁矿. JB-ZK15-1-280 蚀变闪长岩 斜长石(40%),绿帘石(30%),角闪石(10%),绿帘石化发育,见星点状、长条状黄铁矿. JB-ZK15-1-282 闪长岩型矿石 斜长石(50%),角闪石(15%),黑云母(20%),浸染状黄铁矿化,见黄铜矿化,透闪石化、绿泥石化、绿帘石化强. JB-ZK15-1-283 蚀变斜长花岗岩 斜长石(50%),角闪石(10%),石英(20%),绿泥石(15%),白云母(绢云母)化、绿泥石化、绿帘石化. JB-ZK15-1-348 碎裂斜长花岗岩 斜长石(60%),石英(35%),糜棱岩化发育. JB-ZK15-1-351 蚀变辉长闪长岩 斜长石(40%),石英(30%),角闪石(30%),角闪石具定向构造,磁铁矿定向排列. JB-ZK15-1-357 蚀变辉长闪长岩 斜长石(50%),石英(20%), 绿泥石(20%),接触带,硅化、石英脉、黄铁矿化. JB-ZK15-1-365 蚀变辉长闪长岩 角闪石含量>50%,斜长石(30%),角闪石柱状变晶,磁铁矿沿角闪石边部析出,定向排列. 注:JB-ZK15-2-062样号表示15号勘探线15-2钻孔62 m处. 表 2 新疆哈巴河县金坝金矿流体包裹体显微测温综合分析
Table 2. Comprehensive analysis of microtemperature measurement of fluid inclusion of Jinba gold deposit in Habahe County, Xinjiang
样品号 采样位置 成矿阶段 样品特征 包裹体类型 大小(μm) Th, tot(℃) Tm, ice(℃) 盐度(% NaCleqv) Tm, CO2(℃) Th, CO2(℃) 产出特点 8-3-255.5 ZK8-3-255.5 主成矿阶段 斜长花岗岩中透镜状石英 LH2O-VH2O 2~12 254~280(4) RD, M LCO2-LH2O 4~8 247~258(13) -56.9~-57.8(6) 29.4~30.4(9) RD, B 8-3-270 ZK8-3-270 主成矿阶段 闪长岩中浸染状黄铁矿石英脉 LH2O-VH2O 4~12 -2.3~-2.6(6) 3.71~4.34(6) RD, C 8-3-273 ZK8-3-273 主成矿阶段 斜长花岗岩中石英脉 LH2O-VH2O 2~12 200~220(4) -4.4~-7.7(7) 7.02~11.34(7) RD, C LCO2-LH2O 4~12 -60.4~-56.9(4) 12.2~30.9(4) RD 15-2-117 ZK15-2-117 成矿早阶段 斜长花岗岩中透镜状石英 LH2O-VH2O 4~20 265~396(31) -0.5~-9.8(13) 0.88~13.72(13) B, C LCO2-LH2O 4~16 262~401(22) -60.4~-57.1(9) 15.3~30.6(10) I, B, C LCO2 4~8 B, C 注:I.孤立分布;RD.随机无序包裹体群;B.带状包裹体群;C.簇状包裹体群;M.串珠状包裹体群;括号内数字为测试个数. 表 3 金坝金矿的黄铁矿硫同位素组成
Table 3. Sulfur isotopic composition of pyrite of Jinba gold deposit
样品号 岩石名称 δ34SV-CDT(‰) 备注 DJ15-1 蚀变辉长闪长岩中的浸染状黄铁矿 6.89 中国科学院地球化学研究所环境地球化学国家重点实验室测试 DJ15-2 8.71 DJ15-2 8.33 DJ15-3 7.98 DJ15-4 3.75 DJ15-4 3.42 DJ15-7 5.00 ZK-15-1-282 闪长岩型矿石中浸染状黄铁矿 8.70 中国科学院地质与地球物理研究所岩石圈演化国家重点实验室稳定同位素实验室测试 表 4 金坝金矿石英流体包裹体氢、氧同位素组成
Table 4. Hydrogen and oxygen composition in fluid inclusions from the Jinba gold deposit
样品编号 对应成矿阶段 校正后温度(℃) δ18O(‰) δ18OH2O(‰) δDH2O(‰) ZK-15-2-177 成矿早阶段 400 9.4 4.81 -78.00 ZK-15-2-177 400 9.7 5.11 -78.20 ZK-15-2-177 400 9.9 5.31 -78.50 ZK-8-3-48.5 主成矿阶段 280 10.7 1.99 -80.00 ZK-8-3-48.5 280 10.2 1.49 -80.50 表 5 金坝金矿与邻近金矿的地质特征对比
Table 5. Table of characteristics of ore forming fluid of Jinba gold deposit, Saidu gold deposit and Axile gold deposit
矿床 含矿地层 赋矿岩石 控矿构造 矿区内侵入岩 矿石建造 围岩蚀变 成矿阶段 成矿流体特征 阿希勒金矿 中泥盆统托克萨雷组(D1-2) 石英闪长岩、糜棱岩 额尔齐斯次级构造带-阿希勒断裂以及玛尔卡库里断裂带 斜长花岗岩、英云闪长岩、花岗闪长岩和辉长闪长岩 石英-金-黄铁矿-硫化物 硅化、黄铁矿化、绢云母化、绿泥石化及孔雀石化 Ⅰ.早期白色石英脉阶段;Ⅱ.贫硫化物石英脉阶段;Ⅲ.浸染状黄铁矿化石英脉阶段 包裹体类型:①富CO2包裹体;②水溶液包裹体;③纯H2O的单相包裹体;均一温度:中-低温125.2~298.7 ℃,低盐度0.35%~10%,低密度,热液主要来源于岩浆水并有围岩中水的参与. 赛都金矿 中下泥盆统托克萨雷组(D1-2) 含金石英脉、蚀变千枚岩、闪长岩、斜长花岗斑岩 玛尔卡库里韧性剪切带及其原生的托库孜巴依次级韧性剪切带 闪长岩脉和斜长花岗斑岩脉 石英-绢云母-碲矿物-硫化物-金 硅化、钾化、钠长石化、绢云母化、黄铁矿化、次生石英化、绿泥石化及碳酸盐化 Ⅰ.早期硅化阶段;Ⅱ.浸染状黄铁矿-乳白色石英阶段;Ⅲ.多金属硫化物-烟灰色石英阶段;Ⅳ.晚期石英-碳酸盐化阶段 包裹体类型:①水溶液包裹体;②富N2包裹体和CO2包裹体;③CO2-H2O包裹体;中低温100~300 ℃;中低盐度0.35%~9.86%,低密度,热液主要来自于岩浆水,在金矿的形成过程中有围岩水的参与。由成矿早期的岩浆水向晚期成矿流体的大气降水演化. 金坝金矿 中泥盆阿舍勒组(D1-2 αs) 斜长花岗岩、闪长岩、含金石英脉、绢云绿泥千枚岩和黄铁矿化石英砂岩 玛尔卡库里大断裂早期韧性剪切以及区内次一级北西-南东向脆性断裂构造 斑状斜长花岗岩、中粗粒斜长花岗岩、混染岩化斜长花岗岩、斜长岩脉和闪长岩脉 石英-金-黄铁矿-硫化物 绢云母化、绿泥石化、硅化、黄铁矿化、黝帘石化、绿帘石化及绿泥石化 Ⅰ.磁铁矿-石英阶段;Ⅱ.金-黄铁矿-石英阶段;Ⅲ.金-多金属硫化物-石英阶段;Ⅳ.石英-碳酸盐阶段 包裹体类型:①水溶液包裹体;②CO2-H2O包裹体;③碳质流体包裹体;中高温200~400 ℃,中低盐度0.88%~13.72%,低密度,热液来源:成矿流体由成矿早期的岩浆水向晚期成矿流体的大气降水演化. 注:据单立华(2008)、卫晓峰等(2011)、张国瑞(2007)、徐九华等(2009)整理. -
[1] Bernet, M., Bassett, K., 2005.Provenance Analysis by Single-Quartz-Grain SEM-CL/Optical Microscopy.Journal of Sedimentary Research, 75(3):492-500. https://doi.org/10.2110/jsr.2005.038 [2] Bodnar, R.J., 1993.Revised Equation and Table for Determining the Freezing Point Depression of H2O-NaCl Solutions.Geochimica et Cosmochimica Acta, 57(3):683-684. https://doi.org/10.1016/0016-7037(93)90378-A [3] Buslov, M.M., Watanabe, T., Fujiwara, Y., et al., 2004.Late Paleozoic Faults of the Altai Region, Central Asia:Tectonic Pattern and Model of Formation.Journal of Asian Earth Sciences, 23(5):655-671. https://doi.org/10.1016/S1367-9120(03)00131-7 [4] Cai, K.D., 2007.Magmatism of the Western Chinese Altai Orogen: Geochronology, Petrogenesis and Tectonic Implications (Dissertation).Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 31-41 (in Chinese with English abstract). [5] Chen, H.Y., Chen, Y.J., Liu, Y.L., 2000.Mineralization and Its Relationship with Central Asian Orogenic in the Irtysh Gold Metallogenic Belt, Xinjiang.Science in China (Series D), 30(S):38-44 (in Chinese with English abstract). http://www.koreascience.or.kr/article/ArticleFullRecord.jsp?cn=GMHHB4_2016_v29n1_23 [6] Chen, Z.F., Rui, X.J., 1997.Ore-Forming Geochemical Environments of Saidu Gold Deposit in Habahe Xinjiang.Volcanology and Mineral Resources, 18(1):27-36 (in Chinese with English abstract). https://www.researchgate.net/publication/249057249_Geological_and_Geochemical_Characteristics_of_the_Hetai_Gold_Deposit_South_China_Gold_Mineralization_in_an_Auriferous_Shear_Zone [7] Chen, X.C., Liang, X.W., Duan, D., et al., 2014.Detailed Investigation Report of Jinba Gold Deposit in Habahe County, Xinjiang.Xinjiang Geological Explration Institute of China Metallurgical Geology Bureau, Urumqi (in Chinese). [8] Deng, S.L., 2011.Mineralization of Ductile Shear Belt Gold Deposit of Maerkakuli in Habahe, Xinjiang (Dissertation).Chengdu University of Technology, Chengdu, 16-29 (in Chinese with English abstract). [9] Dong, Y.G., 2000.Distribution of Gold Deposits Related to Fault Structures in Altay, Xinjiang.Volcanology and Mineral Resources, 21(1):41-46 (in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S004019510500449X [10] Groves, D.I., Goldfarb, R.J., Gebre, M., et al., 1998.Orogenic Gold Deposits:A Proposed Classification in the Context of Their Crustal Distribution and Relationship to Other Gold Deposit Types.Ore Geology Reviews, 13(1):7-27. https://doi.org/10.1016/S0169-1368(97)00012-7 [11] Groves, D.I., Goldfarb, R.J., Robert, F., et al., 2003.Gold Deposits in Metamorphic Belts:Overview of Current Understanding, Outstanding Problems, Future Research, and Exploration Significance.Economic Geology, 98:1-29. https://doi.org/10.2113/gsecongeo.98.1.1 [12] Lai, Y., 1995.Application of Cathodoluminescence to Mineralization and Lithogenesis Study.Acta Scientiarum Naturalium Universitatis Pekinensis, 31(5):631-638 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SSZK201103006.htm [13] Li, G.M., Shen, Y.C., Liu, T.B., et al., 2007.Metallogenic Evolution of Tuokuzibayi Gold Deposit in Southern Altay, North Xinjiang:Evidence from Characteristics of Quartz Vein Systems, Isotopic Geochemistry and Ar-Ar Chronology.Mineral Deposits, 26(1):15-32 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ200701001.htm [14] Li, Y., Zhou, G., Chai, F.M., 2012.LA-ICP-MS U-Pb Ages and Geological Implications of the Habahe Pluton at the Southern Margin of the Altay, Xinjiang.Xinjiang Geology, 30(2):146-151 (in Chinese with English abstract). https://www.researchgate.net/publication/307092802_U-Pb_zircon_age_geochemical_and_isotopic_characteristics_of_the_Miaoya_syenite_and_carbonatite_complex_central_China [15] Li, Y.Q., She, Z.B., Ma, C.Q., 2011.SEM-CL Analysis of Quartz and Its Application in Petrology.Advances in Earth Science, 26(3):325-331 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkxjz201103011 [16] Loucks, R.R., Mavrogenes, J.A., 1999.Cold Solubility in Supercritical Hydrothermal Brines Measured in Synthetic Fluid Inclusion.Science, 284(5423):2159-2163. https://doi.org/10.1126/science.284.5423.2159 [17] Müller, A., René, M., Behr, H.J., et al., 2003.Trace Elements and Cathodoluminescence of Iigneous Quartz in Topaz Granites from the Hub Stock.Mineralogy and Petrology, 79(3-4):167-191. https://doi.org/10.1007/s00710-003-0238-3 [18] Roedder, E., 1984.Fluid Inclusions:Reviews in Mineralogy.Mineralogical Society of America, 12:1-644. doi: 10.1007-s004100050570/ [19] Rui, X.J., Zhu, S.H., Liu, K.J., 1993.The Main Characteristics and Regional Metallogenic Model of Altay Primary Gold Deposits in Xinjiang.Eeological Review, 39(2):138-148 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000371974 [20] Rusk, B.G., Reed, M.H., Dilles, J.H., 2006.Intensity of Quartz Cathodoluminescence and Trace-Element Content in Quartz from the Porphyry Copper Deposit at Butte, Montana.American Mineralogist, 91(8-9):1300-1312. https://doi.org/10.2138/am.2006.1984 [21] Seyedolali, A., Krinsley, D., Boggs, S., et al., 1997.Provenance Interpretation of Quartz by Scanning Electron Microscope-Cathodoluminescence Fabric Analysis.Geology, 25(9):787-790.https://doi.org/10.1130/0091-7613(1997)025<0787:PIOQBS>2.3.CO;2 doi: 10.1130/0091-7613(1997)025<0787:PIOQBS>2.3.CO;2 [22] Shan, L.H., 2008.Study on Ore-Controlling Regularities and Prospecting Directions on the Axile Gold Deposit in Xinjiang (Dissertation).University of Science and Technology Beijing, Beijing, 77-80 (in Chinese with English abstract). [23] Tian, X.Y., Xiao, G.L., 2007.Geological Characteristics and Genetic Analysis of Tukuzbuy Gold Deposit in Habahe County.Xinjiang.Xinjiang Geology, 25(3):258-262 (in Chinese with English abstract). https://www.researchgate.net/publication/248133096_Geochemical_characteristics_of_pyrite_in_Duolanasayi_gold_deposit_Xinjiang [24] Van den Kerkhof, A., Thiéry, R., 2001.Carbonic Inclusions.Lithos, 55(1):49-68. https://doi.org/10.1016/S0024-4937(00)00038-4 [25] Wei, X.F., Xu, J.H., Yin, Y.J., et al., 2011.Characteristics of Ore-Forming Fluid in Axile Gold Deposit, Xinjiang.Nonferrous Metals (Mining Section), 63(4):29-35 (in Chinese with English abstract). https://www.researchgate.net/publication/289088135_Geochemistry_of_fluid_inclusions_in_the_Axi_gold_deposit_West_Tianshan_Xinjiang [26] Xu, J.H., Ding, R.F., Xie, Y.L., et al., 2008.The Source of Hydrothermal Fluids for the Sarekoubu Gold Deposit in the Southern Altai, Xinjiang, China:Evidence from Fluid Inclusions and Geochemistry.Journal of Asian Earth Sciences, 32(2):247-258. https://doi.org/10.1016/j.jseaes.2007.10.010 [27] Xu, J.H., Xie, Y.L., Ding, R.F., et al., 2007.CO2-CH4 Fluids and Gold Mineralization:Southern Margin of Altay, China and Muruntau of Uzbekisatn.Acta Petrologica Sinica, 23(8):2026-2032 (in Chinese with English abstract). http://www.oalib.com/paper/1472158 [28] Xu, J.H., Yang, R., Xiao, X., et al., 2015.CO2-Rich Inclusions in Vein Gold-Copper Mineralization of the Sarekoubu-Qiaxia District, Southern Altaides, China:Implication for Ore Genesis.Journal of Geochemical Exploration, 159(12):262-277. https://doi.org/10.1016/j.gexplo.2015.10.001 [29] Xu, J.H., Zhang, G.R., Xie, Y.L., et al., 2009.The Evolution of Teconic-Metallogenic Fluids in the Saidu Gold Deposit, Southern Altay.Acta Petrologica et Mineralogical, 28(2):141-151 (in Chinese with English abstract). https://www.researchgate.net/publication/236659058_Evolution_of_ore-forming_fluids_in_the_Sawayaerdun_gold_deposit_in_the_Southwestern_Chinese_Tianshan_metallogenic_belt [30] Zhang, G.R., 2007.Characteristics of Ore Forming Fluids and Geochemistry of Saidu Gold Deposit, Altay (Dissertation).University of Science and Technology Beijing, Beijing, 25-32 (in Chinese with English abstract). [31] Zhang, L.G., Liu, J.X., Zhou, H.B., et al., 1990.Oxygen Isotope Fracitonation in the Quartz-Water-Salt System.Mineral Deposits, 9(2):158-166 (in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/0016703779900991 [32] 蔡克大, 2007.阿尔泰造山带西段岩浆活动的时代、成因机制及其构造意义(硕士学位论文).广州: 中国科学研究院广州地化研究所, 31-41. http://cdmd.cnki.com.cn/Article/CDMD-80165-2007101546.htm [33] 陈华勇, 陈衍景, 刘玉琳, 2000.新疆额尔齐斯金矿带的成矿作用及其与中亚型造山作用的关系.中国科学(D辑), 30(增刊): 38-44. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd2000Z1006 [34] 陈孝聪, 梁孝伟, 段旦, 等, 2014.新疆哈巴河县金坝金矿详查报告.乌鲁木齐: 中国冶金地质总局新疆地质勘察院. [35] 程忠富, 芮行健, 1997.赛都金矿成矿地球化学环境.火山地质与矿产, 18(1): 27-36. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700247288 [36] 邓霜岭, 2011.新疆哈巴河玛尔卡库里韧性剪切带与金矿成矿作用研究(硕士学位论文).成都: 成都理工大学, 16-29. http://cdmd.cnki.com.cn/Article/CDMD-10616-1012500570.htm [37] 董永观, 2000.新疆阿尔泰金矿断裂构造控矿规律研究.火山地质与矿产, 21(1): 41-46. doi: 10.3969/j.issn.1671-4814.2000.01.006 [38] 赖勇, 1995.阴极发光技术在成岩成矿作用研究中的应用.北京大学学报(自然科学版), 31(5): 631-638. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199500167139 [39] 李光明, 沈远超, 刘铁兵, 等, 2007.新疆阿尔泰南缘托库孜巴依金矿成矿演化:石英脉系、同位素地球化学及其Ar-Ar年代学证据.矿床地质, 26(1): 15-32. doi: 10.3969/j.issn.0258-7106.2007.01.002 [40] 李艳青, 佘振兵, 马昌前, 2011.石英SEM-CL微结构及其在岩石学中的应用.地球科学进展, 26(3): 325-331. http://d.old.wanfangdata.com.cn/Periodical/dqkxjz201103011 [41] 李永, 周刚, 柴凤梅, 2012.阿尔泰南缘哈巴河岩体LA-ICP-MS锆石定年及地质意义.新疆地质, 30(2): 146-151. doi: 10.3969/j.issn.1000-8845.2012.02.005 [42] 芮行健, 朱韶华, 刘抗娟, 1993.新疆阿尔泰原生金矿基本特征及区域成矿模式.地质论评, 39(2): 138-148. doi: 10.3321/j.issn:0371-5736.1993.02.007 [43] 单立华, 2008.新疆阿希勒金矿床控矿规律与找矿方向研究(博士学位论文).北京: 北京科技大学, 77-80. http://cdmd.cnki.com.cn/Article/CDMD-10008-1012032095.htm [44] 田晓云, 肖国莲, 2007.新疆哈巴河县托库孜巴依金矿地质特征及成因浅析.新疆地质, 25(3): 258-262. doi: 10.3969/j.issn.1000-8845.2007.03.006 [45] 卫晓峰, 徐九华, 阴元军, 等, 2011.新疆阿希勒金矿床成矿流体特征.有色金属(矿山部分), 63(4): 29-35. doi: 10.3969/j.issn.1671-4172.2011.04.008 [46] 徐九华, 谢玉玲, 丁汝福, 等, 2007.CO2-CH4流体与金成矿作用:以阿尔泰山南缘和穆龙套金矿为例.岩石学报, 23(4): 2026-2032. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200708023 [47] 徐九华, 张国瑞, 谢玉玲, 等, 2009.阿尔泰山南缘赛都金矿床的构造-成矿流体及其演化.岩石矿物学杂志, 28(2): 141-151. doi: 10.3969/j.issn.1000-6524.2009.02.006 [48] 张国瑞, 2007.阿尔泰赛都金矿成矿流体特征和矿床地球化学(博士学位论文).北京: 北京科技大学, 25-32. http://ir.ustb.edu.cn/handle/400002224/85977 [49] 张理刚, 刘敬秀, 周环波, 等, 1990.石英-水-盐体系氧同位素分馏作用.矿床地质, 9(2): 158-166. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=KCDZ199002007&dbname=CJFD&dbcode=CJFQ