• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    藏南地区错那洞钨锡多金属矿床地质特征及成因

    梁维 张林奎 夏祥标 马国桃 黄勇 张志 付建刚 曹华文 缪华清 李光明

    梁维, 张林奎, 夏祥标, 马国桃, 黄勇, 张志, 付建刚, 曹华文, 缪华清, 李光明, 2018. 藏南地区错那洞钨锡多金属矿床地质特征及成因. 地球科学, 43(8): 2742-2754. doi: 10.3799/dqkx.2018.154
    引用本文: 梁维, 张林奎, 夏祥标, 马国桃, 黄勇, 张志, 付建刚, 曹华文, 缪华清, 李光明, 2018. 藏南地区错那洞钨锡多金属矿床地质特征及成因. 地球科学, 43(8): 2742-2754. doi: 10.3799/dqkx.2018.154
    Liang Wei, Zhang Linkui, Xia Xiangbiao, Ma Guotao, Huang Yong, Zhang Zhi, Fu Jiangang, Cao Huawen, Miao Huaqing, Li Guangming, 2018. Geology and Preliminary Mineral Genesis of the Cuonadong W-Sn Polymetallic Deposit, Southern Tibet, China. Earth Science, 43(8): 2742-2754. doi: 10.3799/dqkx.2018.154
    Citation: Liang Wei, Zhang Linkui, Xia Xiangbiao, Ma Guotao, Huang Yong, Zhang Zhi, Fu Jiangang, Cao Huawen, Miao Huaqing, Li Guangming, 2018. Geology and Preliminary Mineral Genesis of the Cuonadong W-Sn Polymetallic Deposit, Southern Tibet, China. Earth Science, 43(8): 2742-2754. doi: 10.3799/dqkx.2018.154

    藏南地区错那洞钨锡多金属矿床地质特征及成因

    doi: 10.3799/dqkx.2018.154
    基金项目: 

    国家重点研发计划项目 2016YFC0600308

    中国地质调查局项目 121201010000160901

    国家自然科学基金项目 41702080

    详细信息
      作者简介:

      梁维(1986-), 男, 博士研究生, 主要从事多金属矿成矿规律与成矿预测研究

      通讯作者:

      李光明

    • 中图分类号: P597

    Geology and Preliminary Mineral Genesis of the Cuonadong W-Sn Polymetallic Deposit, Southern Tibet, China

    • 摘要: 前人尚未关注特提斯喜马拉雅铅锌金锑成矿带钨锡成矿问题.错那洞钨锡多金属矿床位于特提斯喜马拉雅东段,产于新发现的错那洞大型片麻岩穹隆构造之中.错那洞钨锡多金属矿床主要富集钨、锡、铍,伴生铜、铅、锌、铋、钼等,其矿化类型主要为矽卡岩型;此外,铍的矿化类型还有伟晶岩型.主要矿石矿物为白钨矿、锡石和硅铍石,含有少量的黄铜矿、方铅矿、闪锌矿、辉铋矿、辉钼矿等,翠砷铜铀矿、晶质铀矿和钍石的发现表明错那洞地区具铀矿成矿潜力.研究结果表明,错那洞钨锡多金属矿床可达到大型-超大型规模.较低的Zr含量、Zr/Hf和Nb/Ta比值表明错那洞大型片麻岩穹隆核部淡色花岗岩为高分异花岗岩;花岗岩具有富钛铁矿、贫磁铁矿特征,Fe2O3/FeO < 0.5,锆石Ce/Ce*平均值约为23,暗示错那洞淡色花岗岩为还原性花岗岩.具还原性的高分异花岗岩是错那洞钨锡多金属矿床形成的必要条件,而片麻岩穹隆构造是其空间分布的控制因素,由此认为错那洞钨锡多金属矿受片麻岩穹隆构造和淡色花岗岩的双重控制.

       

    • 图  1  错那洞钨锡多金属矿床地质图

      Fig.  1.  Geological map of the Cuonadong W-Sn polymetallic deposit

      图  2  错那洞片麻岩穹隆物质组成

      a.二云母花岗岩(深色)和白云母(白色)花岗岩;b.白云母花岗岩未变形,主要矿物为石英、斜长石、白云母,含有少量的石榴石(正交偏光);c.花岗质片麻岩中石英发生强烈的形变;d.花岗质片麻岩中石榴石发生形变(正交偏光);e.片麻岩中发育两期伟晶岩脉;f.伟晶岩由长石、石英和白云母等组成,未发生变形(正交偏光);g.强变形的石榴二云母片岩;h.石榴二云片岩发生剪切变形(正交偏光);i.石榴十字石片岩中粗大的石榴石和十字石.Qz.石英;Pl.斜长石;Bi.黑云母;Chl.绿泥石;Grt.石榴石;Ms.白云母;St.十字石

      Fig.  2.  Composition of the Cuonadong gneiss dome in southern Tibet

      图  3  错那洞钨锡多金属矿矿体产出的空间位置

      a.错那洞片麻岩穹隆“核-幔-壳”结构,显示矿体为矽卡岩化大理岩,存在于穹隆结构中部强变形的石榴二云片岩带中;b.大理岩层中矽卡岩,翠绿色为绿泥石,褐色为绿帘石

      Fig.  3.  Ore position of the Cuonadong W-Sn polymetallic deposit

      图  4  错那洞钨锡多金属矿床大理岩及矽卡岩特征

      a.大理岩具有成层性;b.大理岩中方解石与白云母共生,其间充填他形石英(正交偏光);c.含大量自形绿帘石集合体的矽卡岩;d.显微镜下少量透辉石、透闪石和石榴石与绿帘石共生(正交偏光).Qz.石英;Di.透辉石;Ep.绿帘石;Cc.方解石;Grt.石榴石;Ms.白云母

      Fig.  4.  Characteristics of skarnization marble in the Cuonadong W-Sn polymetallic deposit

      图  5  错那洞钨锡多金属矿床矿石宏观及微观特征

      a.矽卡岩中的锡石呈自形状集合体产出;b.荧光灯下,矽卡中白钨矿发出天蓝色荧光;c.锡石与石英共生,且锡石具有结晶环带(正交偏光);d.白钨矿与石英共生,显示出强内反射特征(反射光);e.伟晶岩中富Be的绿柱石具有典型的六方柱晶形;f.硅铍石和羟硅铍石是矽卡岩中重要的富Be矿物,且与锡石具有共生关系(BSD图像).Cst.锡石;Sch.白钨矿;Qz.石英;Brl.绿柱石;Be.硅铍石;Ber.羟硅铍石;Di.透辉石;Ep.绿帘石;Tri.透闪石

      Fig.  5.  Macro- and micro-features of ores in the Cuonadong W-Sn polymetallic deposit

      图  6  错那洞钨锡多金属矿床典型矿物交生关系及对应的能谱面扫描图

      a.扫描电镜下主要矿物(白钨矿、锡石及萤石)的交生关系,显示钨锡矿形成于同一时间;b~f.对应图a视域中F、W、Sn、Si和Ca等元素分布特征.Cst.锡石;Sch.白钨矿;Fl.萤石;Di.透辉石

      Fig.  6.  Relationship of typical ore minerals and its corresponding distribution of main elements by scanning electron microscope within the Cuonadong W-Sn polymetallic deposit

      图  7  错那洞钨锡多金属矿床主要金属矿物BSE图像特征

      a.矽卡岩中闪锌矿残留体;b.自形方铅矿晶体;c.矽卡岩中残留黄铜矿,氧化边为赤铁矿;d.自形辉锑矿晶体;e.矽卡岩中自形泡铋矿;f.他形辉铋矿;g.与方解石共生的针状辉钼矿;h.矽卡岩中放射状翠砷铜铀矿集合体;i.自形晶质铀矿;j.粒状钍石晶体.Sph.闪锌矿;Gn.方铅矿;Bis.泡铋矿;Bmt.辉铋矿;Ccp.黄铜矿;Hem.赤铁矿;Cc.方解石;Mb.辉钼矿;Zeu.翠砷铀矿;Ura.晶质铀矿;Tho.钍石;Sch.白钨矿;Stb.辉锑矿

      Fig.  7.  BSE image characteristics of main metal minerals within the Cuonadong W-Sn polymetallic deposit

    • [1] Bau, M., 1996.Controls on the Fractionation of Isovalent Trace Elements in Magmatic and Aqueous Systems:Evidence from Y/Ho, Zr/Hf, and Lanthanide Tetrad Effect.Contributions to Mineralogy and Petrology, 123(3)323-333. doi: 10.1007/s004100050159
      [2] Beaudoin, G., Taylor, B.E., Sangster, D.F., 1991.Silver-Lead-Zinc Veins, Metamorphic Core Complexes, and Hydrologic Regimes during Crustal Extension.Geology, 19(12):1217-1220.https://doi.org/10.1130/0091-7613(1991)019<1217:slzvmc>2.3.co;2 doi: 10.1130/0091-7613(1991)019<1217:slzvmc>2.3.co;2
      [3] Blevin, P.L., Chappell, B.W., 1992.The Role of Magma Sources, Oxidation States and Fractionation in Determining the Granite Metallogeny of Eastern Australia.Transactions of the Royal Society of Edinburgh:Earth Sciences, 83(1-2):305-316. https://doi.org/10.1017/s0263593300007987
      [4] Blevin, P.L., Chappell, B.W.1995.Chemistry, Origin, and Evolution of Mineralized Granites in the Lachlan Fold Belt, Australia; The Metallogeny of I-and S-Type Granites.Economic Geology, 90(6):1604-1619. https://doi.org/10.2113/gsecongeo.90.6.1604
      [5] Burchfiel, B.C., Chen, Z., Hodges, K.V., et al., 1992.The South Tibetan Detachment System, Himalayan Orogen:Extension Contemporaneous and Parallel to Shorting in a Collisional Mountain Belt.Geological Society of American Special Paper, 269:1-41. doi: 10.1130/SPE269
      [6] Fu, J.G., Li, G.M., Wang, G.H., et al., 2016.First Field Identification of the Cuonadong Dome in Southern Tibet:Implications for EW Extension of the North Himalayan Gneiss Dome.International Journal of Earth Sciences, 106(5):1581-1596. https://doi.org/10.1007/s00531-016-1368-2
      [7] Fu, W., Feng, Z.H., Huang, Y.G., et al., 2014.Mineralogical Characteristics and Genesis of the Uranyl Minerals in the Oxidized Zone of the Huashan Deposit, Guangxi, and Their Implications for Deep Ore Exploration.Acta Geoscientica Sinica, 35(3):295-304 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=7552a0031c08a4b4cbd343a4855ccba9&encoded=0&v=paper_preview&mkt=zh-cn
      [8] Gao, L.E., Gao, J.H., Zhao, L.H., et al., 2017.The Miocene Leucogranite in the Nariyongcuo Gneiss Dome, Southern Tibet:Products from Melting Metapelite and Fractional Crystallization.Acta Petrologica Sinica, 33(8):2395-2411 (in Chinese with English abstract).
      [9] Garzanti, E., 1999.Stratigraphy and Sedimentary History of the Nepal Tethys Himalaya Passive Margin.Journal of Asian Earth Sciences, 17(5-6):805-827. https://doi.org/10.1016/s1367-9120(99)00017-6
      [10] Harrison, T.M., Lovera, O.M., Grove, M., 1997.New Insights into the Origin of Two Contrasting Himalayan Granite Belts.Geology, 25(10):899-902. http://cn.bing.com/academic/profile?id=fab52a8a94c23e3761e693095e4eaa33&encoded=0&v=paper_preview&mkt=zh-cn
      [11] Hoskin, P.W.O., Schaltegger, U., 2003.The Composition of Zircon and Igneous and Metamorphic Petrogenesis.Reviews in Mineralogy and Geochemistry, 53(1):27-62. https://doi.org/10.2113/0530027
      [12] Hou, Z.Q., Lü, Q.T., Wang, A.J., et al., 2003.Continental Collision and Related Metallogeny:A Case Study of Mineralization in Tibetan Orogen.Mineral Deposits, 22(4):319-333 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ200304000.htm
      [13] Hou, Z.Q., Mo, X.X., Yang, Z.M., et al., 2006a.Metallogeneses in the Collisional Orogen of the Qinghai-Tibet Plateau:Tectonic Setting, Tempo-Spatial Distribution and Ore Deposit Types.Chinese Geology, 33(2):340-351 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=7bb2559d7613f361373458e89a59941f&encoded=0&v=paper_preview&mkt=zh-cn
      [14] Hou, Z.Q., Qu, X.M., Yang, Z.S., et al., 2006b.Metallogenesis in Tibetan Collisional Orogenic Belt:Ⅲ.Mineralization in Post-Collisional Extension Setting.Mineral Deposits, 25(6):629-651 (in Chinese with English abstract).
      [15] Hou, Z.Q., Yang, Z.M., Qu, X.M., et al., 2009.The Miocene Gangdese Porphyry Copper Belt Generated during Post-Collisional Extension in the Tibetan Orogen.Ore Geology Reviews, 36(1-3):25-51. https://doi.org/10.1016/j.oregeorev.2008.09.006
      [16] Huangfu, P.P., Wang, Y.J., Li, Z.H., et al., 2016.Effects of Crustal Eclogitization on Plate Subduction/Collision Dynamics:Implications for India-Asia Collision.Journal of Earth Science, 27(5):727-739. https://doi.org/10.1007/s12583-016-0701-9
      [17] Ishihara, S., 1998.Granitoid Series and Mineralization in the Circum-Pacific Phanerozoic Granitic Belts.Resource Geology, 48(4):219-224. https://doi.org/10.1111/j.1751-3928.1998.tb00019.x
      [18] Ishihara, S., 2004.The Redox State of Granitoids Relative to Tectonic Setting and Earth History:The Magnetite-Ilmenite Series 30 Years Later.Transactions of the Royal Society of Edinburgh:Earth Sciences, 95(1-2):23-33. https://doi.org/10.1017/s0263593300000894
      [19] Ishihara, S., Hashimoto, M., Machida, M., 2000.Magnetite/Ilmenite-Series Classification and Magnetic Susceptibility of the Mesozoic-Cenozoic Batholiths in Peru.Resource Geology, 50(2):123-129. https://doi.org/10.1111/j.1751-3928.2000.tb00062.x
      [20] Ishihara, S., Sawata, H., Arpornsuwan, S., et al., 1979.The Magnetite-Series and Ilmenite-Series Granitoids and Their Bearing on Tin Mineralization, Particularly of the Malay Peninsula Region.Geological Society of Malaysia, 11:103-111.
      [21] le Fort, P., 1975.Himalayas:The Collided Range-Present Knowledge of Continental Arc.American Journal of Sciences, 275:1-44. http://d.old.wanfangdata.com.cn/Periodical/ynzwyj200203001
      [22] Lee, J., Hacker, B., Wang, Y., 2004.Evolution of North Himalayan Gneiss Domes:Structural and Metamorphic Studies in Mabja Dome, Southern Tibet.Journal of Structural Geology, 26(12):2297-2316. doi: 10.1016/j.jsg.2004.02.013
      [23] Li, G.M., Zhang, L.K., Jiao, Y.J., et al., 2017.First Discovery and Implications of Cuonadong Superlarge Be-W-Sn Polymetallic Deposit in Himalayan Metallogenic Belt, Southern Tibet.Mineral Deposits, 36(4):1003-1008 (in Chinese with English abstract).
      [24] Li, H.L., Li, G.M., Li, Y.X., et al., 2017.A Study on Ore Geological Characteristics and Fluid Inclusions of Jienagepu Gold Deposit in Zhaxikang Ore Concentration District, Southern Tibet, China.Acta Mineralogica Sinica, 37(6):684-696 (in Chinese with English abstract).
      [25] Lin, B., Tang, J.X., Zheng, W.B., et al., 2016.Geochemical Characteristics, Age and Genesis of Cuonadong Leucogranite, Tibet.Acta Petrologica et Mineralogica, 35(3):391-406 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yskwxzz201603002
      [26] Liu, G.H., Einsele, G., 1994.Sedimentary History of the Tethyan Basin in the Tibetan Himalayas.Geologische Rundschau, 83(1):32-61. https://doi.org/10.1007/bf00211893
      [27] Liu, W.C., Wang, Y., Zhang, X.X., et al., 2004.The Rock Types and Isotope Dating of the Kangmar Gneissic Dome in Southern Tibet.Earth Science Frontiers, 11(4):491-501 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy200404015
      [28] Manning, D.A.C., 1981.The Effect of Fluorine onLiquidus Phase Relationships in the System Qz-Ab-Or with Excess Water at 1 kb.Contributions to Mineralogy and Petrology, 76(2):206-215. https://doi.org/10.1007/bf00371960
      [29] Naeem, M., Burg, J.P., Ahmad, N., et al., 2016.U-Pb Zircon Systematics of the Mansehra Granitic Complex:Implications on the Early Paleozoic Orogenesis in NW Himalaya of Pakistan.Geosciences Journal, 20(4):427-447. https://doi.org/10.1007/s12303-015-0062-x
      [30] Nie, F.J., Hu, P., Jiang, S.H., et al., 2005.Type and Temporal-Spatial Distribution of Gold and Antimony Deposits (Prospects) in Southern Tibet, China.Acta Geologica Sinica, 79(3):373-385 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200503009
      [31] Pan, Y., Kidd, W.S.F., 1992.Nyainqentanglha Shear Zone:A Late Miocene Extensional Detachment in the Southern Tibetan Plateau.Geology, 20(9):775-778.https://doi.org/10.1130/0091-7613(1992)020<0775:nszalm>2.3.co;2 doi: 10.1130/0091-7613(1992)020<0775:nszalm>2.3.co;2
      [32] Qi, X.X., Li, T.F., Meng, X.J., et al., 2008.Cenozoic Tectonic Evolution of the Tethyan Himalayan Foreland Fault-Fold Belt in Southern Tibet, and Its Constraint on Antimony-Gold Polymetallic Minerogenesis.Acta Petrologica Sinica, 24(7):1638-1648 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=129be08fca1f86b56cffa04f068eee89&encoded=0&v=paper_preview&mkt=zh-cn
      [33] Robyr, M., Vannay, J.C., Epard, J.L., et al., 2002.Thrusting, Extension, and Doming during the Polyphase Tectonometamorphic Evolution of the High Himalayan Crystalline Zone in NW India.Journal of Asian Earth Sciences, 21(3):221-239. https://doi.org/10.1016/s1367-9120(02)00039-1
      [34] Sato, K., Kovalenko, S.V., Romanovsky, N.P., et al., 2004.Crustal Control on the Redox State of Granitoid Magmas:Tectonic Implications from the Granitoid and Metallogenic Provinces in the Circum-Japan Sea Region.Transactions of the Royal Society of Edinburgh:Earth Sciences, 95(1-2):319-337. https://doi.org/10.1017/s0263593300001103
      [35] Takagi, T., Tsukimura, K., 1997.Genesis of Oxidized-and Reduced-Type Granites.Economic Geology, 92(1):81-86. https://doi.org/10.2113/gsecongeo.92.1.81
      [36] Thomas, R., Webster, J.D., Heinrich, W., 2000.Melt Inclusions in Pegmatite Quartz:Complete Miscibility between Silicate Melts and Hydrous Fluids at Low Pressure.Contributions to Mineralogy and Petrology, 139(4):394-401. https://doi.org/10.1007/s004100000120
      [37] Thompson, J.F.H., Sillitoe, R.H., Baker, T., et al., 1999.Intrusion-Related Gold Deposits Associated with Tungsten-Tin Provinces.Mineralium Deposita, 34(4):323-334. https://doi.org/10.1007/s001260050207
      [38] Wang, R.C., Wu, F.Y., Xie, L., et al., 2017.A Preliminary Study of Rare-Metal Mineralization in the Himalayan Leucogranite Belts, South Tibet.Science in China (Series D), 47(8):871-880 (in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20172017091300133575
      [39] Wang, X.X., Zhang, J.J., Santosh, M., et al., 2012.Andean-Type Orogeny in the Himalayas of South Tibet:Implications for Early Paleozoic Tectonics along the Indian Margin of Gondwana.Lithos, 154:248-262. https://doi.org/10.1016/j.lithos.2012.07.011
      [40] Wang, X.X., Zhang, J.J., Wang, J.M., 2016.Geochronology and Formation Mechanism of the Paiku Granite in the Northern Himalaya, and Its Tectonic Implications.Earth Science, 41(6):982-998. https://doi.org/10.3799/dqkx.2016.082
      [41] Webster, J.D., Thomas, R., Rhede, D., et al., 1997.Melt Inclusions in Quartz from an Evolved Peraluminous Pegmatite:Geochemical Evidence for Strong Tin Enrichment in Fluorine-Rich and Phosphorus-Rich Residual Liquids.Geochimica et Cosmochimica Acta, 61(13):2589-2604. doi: 10.1016/S0016-7037(97)00123-3
      [42] Wu, F.Y., Liu, X.C., Ji, W.Q., et al., 2017.Highly Fractionated Granites:Recognition and Research.Science in China (Series D), 47(7):745-765 (in Chinese). http://d.old.wanfangdata.com.cn/Periodical/dizhixb201708010
      [43] Wu, F.Y., Liu, Z.C., Liu, X.C., et al., 2015.Himalayan Leucogranite:Petrogenesis and Implications to Orogenesis and Plateau Uplift.Acta Petrologica Sinica, 31(1):1-36 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201501001
      [44] Wu, J.Y., Li, G.M., Zhou, Q., et al., 2015.A Preliminary Study of the Metallogenic System in the Zhaxikang Integrated Exploration Area, Southern Tibet.Chinese Geology, 42(6):1674-1683 (in Chinese with English abstract).
      [45] Xie, Y.L., Li, L.M., Wang, B.G., et al., 2017.Genesis of the Zhaxikang Epithermal Pb-Zn-Sb Deposit in Southern Tibet, China:Evidence for a Magmatic Link.Ore Geology Reviews, 80:891-909. https://doi.org/10.1016/j.oregeorev.2016.08.007
      [46] Yang, Z.S., Hou, Z.Q., Gao, W., et al., 2006.Metallogenic Characteristics and Genetic Model of Antimony and Gold Deposits in South Tibetan Detachment System.Acta Geologica Sinica, 80(9):1377-1391 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200609013
      [47] Yang, Z.S., Hou, Z.Q., Meng, X.J., et al., 2009.Post-Collisional Sb and Au Mineralization Related to the South Tibetan Detachment System, Himalayan Orogen.Ore Geology Reviews, 36(1-3):194-212. https://doi.org/10.1016/j.oregeorev.2009.03.005
      [48] Yin, A., Harrison, T.M., 2000.Geologic Evolution of the Himalayan-Tibetan Orogen.Annual Review of Earth and Planetary Sciences, 28(1):211-280. https://doi.org/10.1146/annurev.earth.28.1.211
      [49] Yu, X., Zhao, B., Zhang, D.H., et al., 2015.Partition Behaviors of Tungsten in Mineral/Melt and Solution/Melt Systems and Their Effects on Mineralization.Bulletin of Mineralogy Petrology and Geochemistry, 34(3):646-653 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwysdqhxtb201503026
      [50] Zeng, L.S., Gao, L.E., Tang, S.H., et al., 2014.Eocene Magmatism in the Tethyan Himalaya, Southern Tibet.Geological Society, London, Special Publications, 412(1):287-316. https://doi.org/10.1144/sp412.8
      [51] Zeng, L.S., Liu, J., Gao, L.E., et al., 2009.Early Oligocene Anatexis in the YardoiGneiss Dome, Southern Tibet and Geological Implications.Chinese Science Bulletin, 54(1):104-112 (in Chinese). doi: 10.1007/s11434-008-0362-x
      [52] Zhang, D.H., Zhang, W.H., Xu, G.J., et al., 2004.The Ore Fluid Geochemisty of F-Rich Silicate Melt-Hydrous Fluid System and Its Metallogeny-The Current Status and Problems.Geoscience Frontier, 11 (2):479-490 (in Chinese with English abstract).
      [53] Zhang, H.F., Harris, N., Parrish, R., et al., 2004.U-Pb Ages of Kude and Sajia Leucogranites in Sajia Dome from North Himalaya and Their Geological Implications.Chinese Science Bulletin, 49(19):2087-2092. https://doi.org/10.1360/04wd0198
      [54] Zhang, J.J., Guo, L., Zhang, B., 2007.Structure and Kinematics of the Yalashangbo Dome in the Northern Himalayan Dome Belt, China.Chinese Journal of Geology, 42(1):16-30 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkx200701003
      [55] Zhang, J.J., Yang, X.Y., Qi, G.W., et al., 2011.Geochronology of the Malashan Dome and Its Application in Formation of the Southern Tibet Detachment System (STDS) and Northern Himalayan Gneiss Domes (NHGD).Acta Petrologica Sinica, 27(12):3535-3544 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201112003
      [56] Zhang, J.Y., Liao, Q.A., Li, D.W., et al., 2003.Laguigangri Leucogranites and Its Relation with Laguigangri Metamorphic Core Complex in Sajia, South Tibet.Earth Science, 28(6):695-701 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx200306018
      [57] Zhang, Z., Zhang, L.K., Li, G.M., et al., 2017.The Cuonadong Gneiss Dome of North Himalaya:A New Member of Gneiss Dome and a New Proposition for the Ore-Controlling Role of North Himalaya Gneiss Domes.Acta Geoscientica Sinica, 38(5):754-766 (in Chinese with English abstract).
      [58] Zheng, Y.C., Hou, Z.Q., Fu, Q., et al., 2016.Mantle Inputs to Himalayan Anatexis:Insights from Petrogenesis of the Miocene Langkazi Leucogranite and Its Dioritic Enclaves.Lithos, 264:125-140. https://doi.org/10.13039/501100001809
      [59] Zheng, Y.Y., Liu, M.Y., Sun, X., et al., 2012.Type, Discovery Process and Significance of Zhaxikang Antimony Polymetallic Ore Deposit, Tibet.Earth Science, 37(5):1003-1014 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2012.108
      [60] Zhu, D.C., Chung, S.L., Mo, X.X., et al., 2009.The 132 Ma Comei-Bunbury Large Igneous Province:Remnants Identified in Present-Day Southeastern Tibet and Southwestern Australia.Geology, 37(7):583-586. https://doi.org/10.1130/g30001a.1
      [61] Zhu, D.C., Mo, X.X., Pan, G.T., et al., 2008.Petrogenesis of the Earliest Early Cretaceous Mafic Rocks from the Cona Area of the Eastern Tethyan Himalaya in South Tibet:Interaction between the Incubating Kerguelen Plume and the Eastern Greater India Lithosphere?Lithos, 100(1-4):147-173. https://doi.org/10.1016/j.lithos.2007.06.024
      [62] Zhu, D.C., Mo, X.X., Zhao, Z.D., et al., 2009.Permian and Early Cretaceous Tectonomagmatism in Southern Tibet and Tethyan Evolution:New Perspective.Earth Science Frontiers, 16(2):1-20 (in Chinese with English abstract).
      [63] 付伟, 冯佐海, 黄永高, 等, 2014.广西花山铀矿床氧化带中铀酰矿物特征、成因及其勘查指示意义.地球学报, 35(3):295-304. http://d.old.wanfangdata.com.cn/Periodical/dqxb201403005
      [64] 高利娥, 高家昊, 赵令浩, 等, 2017.藏南拿日雍错片麻岩穹窿中新世淡色花岗岩的形成过程:变泥质岩部分熔融与分离结晶作用.岩石学报, 33(8):2395-2411. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201708005
      [65] 侯增谦, 吕庆田, 王安建, 等, 2003.初论陆-陆碰撞与成矿作用——以青藏高原造山带为例.矿床地质, 22(4):319-333. doi: 10.3969/j.issn.0258-7106.2003.04.001
      [66] 侯增谦, 莫宣学, 杨志明, 等, 2006a.青藏高原碰撞造山带成矿作用:构造背景、时空分布和主要类型.中国地质, 33(2):340-351. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi200602013
      [67] 侯增谦, 曲晓明, 杨竹森, 等, 2006b.青藏高原碰撞造山带:Ⅲ.后碰撞伸展成矿作用.矿床地质, 25(6):629-651. http://d.old.wanfangdata.com.cn/Periodical/kcdz200604001
      [68] 李光明, 张林奎, 焦彦杰, 等, 2017.西藏喜马拉雅成矿带错那洞超大型铍锡钨多金属矿床的发现及意义.矿床地质, 36(4):1003-1008. http://d.old.wanfangdata.com.cn/Periodical/kcdz201704014
      [69] 李洪梁, 李光明, 李应栩, 等, 2017.藏南扎西康矿集区姐纳各普金矿床地质与流体包裹体特征.矿物学报, 37(6):684-696. http://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201706002.htm
      [70] 林彬, 唐菊兴, 郑文宝, 等, 2016.西藏错那洞淡色花岗岩地球化学特征、成岩时代及岩石成因.岩石矿物学杂志, 35(3):391-406. doi: 10.3969/j.issn.1000-6524.2016.03.002
      [71] 刘文灿, 王瑜, 张祥信, 等, 2004.西藏南部康马岩体岩石类型及其同位素测年.地学前缘, 11(4):491-501. doi: 10.3321/j.issn:1005-2321.2004.04.015
      [72] 聂凤军, 胡朋, 江思宏, 等, 2005.藏南地区金和锑矿床(点)类型及其时空分布特征.地质学报, 79(3):373-385. doi: 10.3321/j.issn:0001-5717.2005.03.009
      [73] 戚学祥, 李天福, 孟祥金, 等, 2008.藏南特提斯喜马拉雅前陆断褶带新生代构造演化与锑金多金属成矿作用.岩石学报, 24(7):1638-1648. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200807020
      [74] 王汝成, 吴福元, 谢磊, 等, 2017.藏南喜马拉雅淡色花岗岩稀有金属成矿作用初步研究.中国科学(D辑), 47(8):871-880. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201708001.htm
      [75] 王晓先, 张进江, 王佳敏, 2016.北喜马拉雅佩枯花岗岩年代学、成因机制及其构造意义.地球科学, 41(6):982-998. https://doi.org/10.3799/dqkx.2016.082
      [76] 吴福元, 刘志超, 刘小驰, 等, 2015.喜马拉雅淡色花岗岩.岩石学报, 31(1):1-36. http://d.old.wanfangdata.com.cn/Periodical/dqkx200503003
      [77] 吴福元, 刘小驰, 纪伟强, 等, 2017.高分异花岗岩的识别与研究.中国科学(D辑), 47(7):745-765. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20172017071200021563
      [78] 吴建阳, 李光明, 周清, 等, 2015.藏南扎西康整装勘查区成矿体系初探.中国地质, 42(6):1674-1683. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201506002
      [79] 杨竹森, 侯增谦, 高伟, 等, 2006.藏南拆离系锑金成矿特征与成因模式.地质学报, 80(9):1377-1391. doi: 10.3321/j.issn:0001-5717.2006.09.013
      [80] 喻晓, 赵博, 张德会, 等, 2015.钨在矿物/熔体和溶液/熔体中的分配行为及其对成矿作用的影响.矿物岩石地球化学通报, 34(3):646-653. doi: 10.3969/j.issn.1007-2802.2015.03.022
      [81] 曾令森, 刘静, 高利娥, 等, 2009.藏南也拉香波穹隆早渐新世地壳深熔作用及其地质意义.科学通报, 54(3):373-381. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=KXTB200903019&dbname=CJFD&dbcode=CJFQ
      [82] 张德会, 张文淮, 许国建, 2004.富F熔体-溶液体系流体地球化学及其成矿效应——研究现状及存在问题.地学前缘, 11(2):479-490. doi: 10.3321/j.issn:1005-2321.2004.02.018
      [83] 张进江, 郭磊, 张波, 2007.北喜马拉雅穹隆带雅拉香波穹隆的构造组成和运动学特征.地质科学, 42(1):16-30. doi: 10.3321/j.issn:0563-5020.2007.01.003
      [84] 张进江, 杨雄英, 戚国伟, 等.2011.马拉山穹窿的活动时限及其在藏南拆离系-北喜马拉雅片麻岩穹窿形成机制的应用.岩石学报, 27(12):3535-3544. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=YSXB201112004&dbname=CJFD&dbcode=CJFQ
      [85] 张金阳, 廖群安, 李德威, 等, 2003.藏南萨迦拉轨岗日淡色花岗岩特征及与变质核杂岩的关系.地球科学, 28(6):695-701. doi: 10.3321/j.issn:1000-2383.2003.06.018
      [86] 张志, 张林奎, 李光明, 等, 2017.北喜马拉雅错那洞穹隆:片麻岩穹隆新成员与穹隆控矿新命题.地球学报, 38(5):754-766. http://d.old.wanfangdata.com.cn/Periodical/dqxb201705015
      [87] 郑有业, 刘敏院, 孙祥, 等, 2012.西藏扎西康锑多金属矿床类型、发现过程及意义.地球科学, 37(5):1003-1014. https://doi.org/10.3799/dqkx.2012.108
      [88] 朱弟成, 莫宣学, 赵志丹, 等, 2009.西藏南部二叠纪和早白垩世构造岩浆作用与特提斯演化:新观点.地学前缘, 16(2):1-20. doi: 10.3321/j.issn:1005-2321.2009.02.001
    • 加载中
    图(7)
    计量
    • 文章访问数:  3620
    • HTML全文浏览量:  1559
    • PDF下载量:  50
    • 被引次数: 0
    出版历程
    • 收稿日期:  2018-03-05
    • 刊出日期:  2018-08-15

    目录

      /

      返回文章
      返回