The Petrogenesis and Tectonic Significance of Early Cretaceous Volcanic Rocks in Nixiong Area from the Central and Northern Lhasa Terrane
-
摘要: 以往的研究多侧重于拉萨地体中南部,对拉萨地块中北部地区的火山岩浆活动的分布特点、火山岩成因及构造意义关注相对较少,且对该地区中生代火山岩的成因机制存在不同认识.尼雄地区广泛发育的白垩纪火山岩保存了大量青藏高原新生代之前的地质演化信息.岩石学和锆石U-Pb定年研究表明,火山岩类型主要为玄武安山岩、粗面安山岩和流纹岩,其SiO2含量为55.76%~77.78%,铝饱和指数(A/CNK)为0.89~3.04,属高钾钙碱性-碱钙性、偏铝质-过铝质岩石;其富集Th、U,亏损Nb、Ta等高场强元素,显示出A型花岗质岩石特征;此外,流纹岩具有较高的SiO2含量和极低的MgO、TiO2、P2O5含量及δEu值,相对亏损Ba、Nb、Ta、Sr和Eu等元素,与高分异的A型流纹岩特征一致.从1个玄武安山岩、1个粗面安山岩和2个流纹岩样品中获得的岩浆锆石U-Pb年龄分别为117 Ma、127 Ma和126~127 Ma,代表了尼雄地区早白垩世火山岩的形成年龄,否定了前人把尼雄地区火山岩全归属为始新世林子宗群年波组或渐新世日贡拉组的认识.综合研究表明,玄武安山岩、粗面安山岩和流纹岩可能为壳幔熔体混合的结果,并伴随着一定的分离结晶作用.它们可能同时受到班公湖-怒江洋壳向南、雅鲁藏布江新特提斯洋壳向北双向俯冲的影响.Abstract: Many studies have been focused on the central and southern Lhasa terrane, but it remains controversial as to the genetic mechanism of the Mesozoic volcanic rocks in the central and northern Lhasa terrane due to less attention paid to the distribution characteristics of volcanic magmatism, the origin of volcanic rocks, and the tectonic significance of the volcanic rocks. Early Cretaceous volcanic rocks are widely exposed in Nixiong area, which record abundant pre-Cenozoic evolutionary geohistory of the Tibetan Plateau. Petrological and zircon U-Pb dating analyses show that the volcanic rocks are mainly composed of basalitic andesite, trachyandesite and rhyolites. They have variable SiO2 contents ranging from 55.76% to 77.78%, and alumina saturation index (A/CNK) of 0.89-3.04, indicative of high-K calc-alkaline to alkaline-calc and metaluminous to peraluminous. They are characterized by the enrichment of Th and U, and the depletion of HFSEs (such as Nb and Ta), typical of A-type granitoids. In addition, rhyolites show distinct high SiO2, but low MgO, TiO2, P2O5 and δEu, and display fiercely negative Ba, Nb, Ta, Sr and Eu anomalies, suggesting that they are highly fractionated A-type rocks. LA-ICP-MS U-Pb dating of magmatic zircons from one basalitic andesite, one trachyandesite and two rhyolites samples indicate that they were formed at 117 Ma, 127 Ma and 126-127 Ma, respectively. It is proved that results of previous studies are wrong in that the volcanic rocks in Nixiong area are all Eocene Nianbo Formation of Lingzizhong group or Oligocene Rigongla Formation. In addition, it is found that the basalitic andesite, trachyandesite and rhyolites are likely derived from partial melting of a crust-mantle mixed source, and have experienced significant fractional crystallization. We speculate that the studied rocks have been affected by double subduction of southward subduction of Bangong Co-Nujiang Tethys oceanic crust, and northward subduction of Yalung-Zangbo oceanic crust.
-
Key words:
- Tibetan Plateau /
- Lhasa terrane /
- Early Cretaceous /
- volcanism /
- petrogensis /
- geochemistry /
- geochronology
-
图 1 青藏高原地质简图(a)和研究区地质简图(b)
图a据Zhu et al.(2008). JSSZ.金沙江缝合带;LSSZ.龙木错-双湖缝合带;BNSZ.班公湖-怒江缝合带;SNMZ.狮泉河-纳木错断裂;LMF.洛巴堆-米拉山断裂;IYZSZ.印度-雅鲁藏布江
Fig. 1. Simplified geological map of the Tibetan Plateau (a) and geological map of the study area (b)
图 4 早白垩世火山岩SiO2-Zr/TiO2(a)和(Na2O+K2O)-SiO2图解(b)
图a据Winchester and Floyd (1977);图b据Frost et al.(2001)
Fig. 4. SiO2-Zr/TiO2 (a) and (Na2O+K2O)-SiO2 (b) diagrams of the Early Cretaceous volcanic rocks
图 5 早白垩世火山岩的Th-Co关系
Fig. 5. The relation of Th and Co for the Early Cretaceous volcanic rocks
图 6 早白垩世火山岩原始地幔标准化微量元素蛛网图(a)及球粒陨石标准化稀土元素配分模式(b)
标准值据Sun and McDonough (1989);上、中、下地壳值据Rudnick and Gao(2003)
Fig. 6. Primitive-mantle-normalized trace element spider diagram (a) and chondrite-normalized REE pattern (b) of the Early Cretaceous volcanic rocks
图 7 早白垩世火山岩TFe2O3/(TFe2O3+MgO)-SiO2图解(a)与(Na2O+K2O-CaO)-SiO2图解(b)
图a修改自Frost et al.(2001)和Rajesh(2007); 图b据Frost et al.(2001)
Fig. 7. Plots of TFe2O3/(TFe2O3+MgO) vs. SiO2 (a) and (Na2O+K2O-CaO) vs. SiO2 (b) of the Early Cretaceous volcanic rocks
图 8 早白垩世火山岩Nb-Y(a)和Rb-(Y+Nb)(b)判别图解
Fig. 8. Nb vs.Y (a) and Rb vs.(Y+Nb) (b) discrimination diagrams of the Early Cretaceous volcanic rocks
表 1 玄武安山岩、粗面安山岩与流纹岩LA-ICPMS锆石U-Pb定年结果
Table 1. LA-ICPMS zircon U-Pb data of the basalitic andesite, trachyandesite and rhyolite
样品 元素含量(10-6) Th/U 同位素比值 年龄(Ma) Pb Th U 207Pb/206Pb 1 σ 207Pb/235U 1 σ 206Pb/238U 1 σ 207Pb/206Pb 1 σ 207Pb/235U 1 σ 206Pb/238U 1 σ D1651-N1玄武安山岩 D1651-N1-05 49 544 290 1.88 0.048 0 0.007 6 0.123 3 0.019 9 0.018 1 0.000 6 98 337.0 118 18.0 116 3.6 D1651-N1-06 63 764 644 1.19 0.050 7 0.004 7 0.124 1 0.010 6 0.018 5 0.000 4 228 203.7 119 9.6 118 2.5 D1651-N1-07 86 1 131 990 1.14 0.050 6 0.005 6 0.121 3 0.011 9 0.018 4 0.000 3 220 237.0 116 10.7 117 2.1 D1651-N1-08 129 1 599 1 627 0.98 0.049 6 0.003 9 0.123 5 0.008 9 0.018 6 0.000 3 176 174.0 118 8.0 119 2.1 D1651-N1-12 222 2 999 1974 1.52 0.049 0 0.003 2 0.124 6 0.007 6 0.018 5 0.000 3 146 153.7 119 6.8 118 1.8 D1651-N1-13 185 2 493 882 2.83 0.049 7 0.003 4 0.126 5 0.008 4 0.018 4 0.000 3 189 167.6 121 7.6 118 1.6 D1651-N1-14 96 1 120 482 2.32 0.048 0 0.004 0 0.122 3 0.009 6 0.018 5 0.000 3 98 185.2 117 8.7 118 2.2 D1651-N1-15 32 382 320 1.19 0.052 6 0.005 4 0.124 1 0.011 4 0.018 7 0.000 4 322 233.3 119 10.3 119 2.8 D1651-N1-17 81 1 048 482 2.17 0.050 7 0.004 2 0.122 3 0.009 6 0.017 9 0.000 3 233 194.4 117 8.7 114 1.9 D1651-N1-18 51 629 316 1.99 0.051 7 0.005 7 0.122 2 0.013 2 0.018 2 0.000 4 272 237.0 117 12.0 116 2.6 D1651-N1-19 143 1 904 1 302 1.46 0.050 0 0.003 5 0.122 2 0.008 2 0.018 0 0.000 3 195 164.8 117 7.4 115 1.8 PM01-N2粗面安山岩 PM01-N2-01 76 976 787 1.24 0.051 3 0.003 5 0.142 9 0.009 0 0.019 5 0.000 3 257 161.1 136 8.0 124 2.0 PM01-N2-02 108 1 414 1 329 1.06 0.048 1 0.002 2 0.135 9 0.005 5 0.020 2 0.000 2 102 107.4 129 5.0 129 1.5 PM01-N2-05 67 939 683 1.38 0.047 8 0.002 1 0.131 3 0.005 5 0.019 8 0.000 2 87 100.0 125 4.9 126 1.4 PM01-N2-06 129 1 663 1 460 1.14 0.045 6 0.003 4 0.133 6 0.009 4 0.020 2 0.000 3 127 8.4 129 2.1 PM01-N2-07 67 868 768 1.13 0.043 0 0.004 4 0.135 1 0.012 8 0.020 1 0.000 4 129 11.4 128 2.3 PM01-N2-08 95 1 223 1 140 1.07 0.048 4 0.003 5 0.134 5 0.008 8 0.019 9 0.000 3 120 159.2 128 7.9 127 2.0 PM01-N2-09 122 1 665 1 118 1.49 0.047 9 0.003 8 0.125 1 0.009 9 0.019 1 0.000 3 95 238.9 120 8.9 122 2.1 PM01-N2-10 76 1 000 893 1.12 0.045 2 0.004 1 0.135 6 0.011 2 0.019 7 0.000 4 129 10.0 126 2.3 PM01-N2-11 52 645 643 1.00 0.049 0 0.002 1 0.134 1 0.005 4 0.019 9 0.000 2 146 100.0 128 4.8 127 1.4 PM01-N2-12 139 1 850 1787 1.04 0.048 0 0.003 6 0.135 9 0.009 4 0.020 2 0.000 3 102 231.5 129 8.4 129 2.1 PM01-N2-17 108 1 459 1013 1.44 0.046 9 0.004 8 0.135 0 0.011 6 0.020 1 0.000 3 56 220.3 129 10.4 128 2.0 PM01-N7流纹岩 PM01-N7-01 73 970 624 1.55 0.049 1 0.002 4 0.129 8 0.006 5 0.019 3 0.000 3 154 116.7 124 5.9 123 1.7 PM01-N7-02 56 675 655 1.03 0.047 7 0.003 6 0.135 2 0.008 8 0.020 1 0.000 3 83 170.3 129 7.9 128 2.2 PM01-N7-03 60 769 670 1.15 0.044 9 0.003 6 0.132 2 0.010 1 0.019 8 0.000 3 error 126 9.1 127 2.2 PM01-N7-05 61 760 662 1.15 0.045 5 0.003 4 0.142 1 0.010 0 0.021 0 0.000 3 error 135 8.9 134 2.1 PM01-N7-09 45 533 464 1.15 0.050 2 0.002 6 0.143 0 0.007 7 0.020 5 0.000 2 206 122.2 136 6.9 131 1.5 PM01-N7-11 74 975 857 1.14 0.046 4 0.005 2 0.135 0 0.013 1 0.020 3 0.000 4 17 316.6 129 11.7 129 2.5 PM01-N7-14 193 2 373 2 304 1.03 0.047 9 0.003 8 0.129 0 0.009 1 0.019 2 0.000 3 100 233.3 123 8.2 122 1.8 PM01-N7-15 50 603 651 0.93 0.048 4 0.003 1 0.132 4 0.008 4 0.019 9 0.000 3 117 144.4 126 7.5 127 1.6 PM01-N7-16 107 1 254 903 1.39 0.048 7 0.002 4 0.135 7 0.006 3 0.020 1 0.000 2 200 119.4 129 5.7 128 1.4 PM01-N7-17 11 159 181 0.88 0.047 6 0.002 4 0.136 7 0.006 3 0.020 6 0.000 2 83 114.8 130 5.6 131 1.6 PM01-N7-19 101 1 280 1 008 1.27 0.048 5 0.003 1 0.127 2 0.007 5 0.019 0 0.000 3 124 209.2 122 6.8 121 1.8 PM01-N7-20 154 2 083 1 706 1.22 0.046 6 0.003 3 0.138 4 0.008 6 0.020 5 0.000 3 33 157.4 132 7.7 131 2.1 PM05-N1流纹岩 PM05-N1-01 58 559 684 0.82 0.047 2 0.004 0 0.133 0 0.010 6 0.019 9 0.000 3 61 194.4 127 9.5 127 2.1 PM05-N1-02 77 753 761 0.99 0.047 7 0.003 7 0.139 7 0.010 1 0.020 5 0.000 3 87 174.0 133 9.0 131 1.9 PM05-N1-03 22 229 305 0.75 0.038 7 0.006 0 0.130 5 0.015 9 0.019 1 0.000 4 125 14.3 122 2.3 PM05-N1-04 40 379 440 0.86 0.045 7 0.004 1 0.135 3 0.010 7 0.020 0 0.000 4 129 9.6 128 2.5 PM05-N1-05 130 1 453 810 1.79 0.049 4 0.003 3 0.137 2 0.008 7 0.020 0 0.000 3 169 38.9 131 7.7 128 1.6 PM05-N1-06 49 550 476 1.16 0.045 5 0.003 9 0.132 6 0.010 9 0.019 6 0.000 3 126 9.8 125 2.1 PM05-N1-07 28 298 270 1.10 0.044 1 0.006 8 0.134 5 0.018 3 0.020 0 0.000 5 128 16.3 128 2.9 PM05-N1-08 65 671 587 1.14 0.047 2 0.004 2 0.139 3 0.010 6 0.020 3 0.000 3 58 200.0 132 9.4 129 2.2 PM05-N1-09 54 565 468 1.21 0.046 5 0.004 3 0.130 7 0.011 1 0.019 7 0.000 5 33 201.8 125 9.9 126 2.9 PM05-N1-10 32 287 299 0.96 0.045 5 0.006 0 0.128 2 0.014 3 0.019 8 0.000 4 122 12.9 127 2.8 PM05-N1-11 112 1 239 961 1.29 0.048 1 0.002 9 0.134 8 0.007 7 0.020 2 0.000 3 106 133.3 128 6.9 129 1.7 PM05-N1-12 44 461 474 0.97 0.048 6 0.004 1 0.139 6 0.010 4 0.020 2 0.000 3 132 185.2 133 9.3 129 2.0 PM05-N1-13 33 325 322 1.01 0.044 0 0.005 8 0.132 2 0.015 0 0.019 2 0.000 4 126 13.5 122 2.3 PM05-N1-14 192 2 144 1 621 1.32 0.048 8 0.001 9 0.134 0 0.005 3 0.019 9 0.000 2 200 92.6 128 4.8 127 1.3 PM05-N1-15 82 863 850 1.02 0.047 0 0.002 9 0.126 8 0.007 7 0.019 4 0.000 3 56 131.5 121 6.9 124 1.6 PM05-N1-16 28 310 274 1.13 0.044 5 0.006 8 0.129 3 0.017 1 0.018 9 0.000 5 123 15.3 121 3.4 PM05-N1-18 78 865 683 1.27 0.047 4 0.004 2 0.126 4 0.010 6 0.018 8 0.000 4 78 187.0 121 9.6 120 2.8 PM05-N1-19 62 676 598 1.13 0.048 8 0.005 9 0.129 7 0.014 2 0.018 6 0.000 4 139 259.2 124 12.8 119 2.3 PM05-N1-20 111 1 136 1 209 0.94 0.047 8 0.002 4 0.131 6 0.006 4 0.019 9 0.000 2 100 111.1 125 5.7 127 1.5 PM05-N1-21 236 2 898 2 941 0.99 0.049 5 0.003 5 0.137 9 0.009 2 0.020 0 0.000 3 169 159.2 131 8.2 128 1.7 PM05-N1-22 124 1 316 1 524 0.86 0.046 7 0.003 3 0.123 9 0.009 0 0.019 1 0.000 4 35 159.2 119 8.1 122 2.3 表 2 早白垩世火山岩全岩主量(%)、微量(10-6)和稀土元素(10-6)分析结果
Table 2. Major elements (%), trace elements (10-6) and rare earth elements (10-6) results of Early Cretaceous volcanic rocks
岩性 玄武安山岩 粗面安山岩 流纹岩 样品 D1651-H1 D1651-H2 PM01-H6 PM01-H8 PM01-H7 PM01-H12 PM01-H1 PM01-H2 PM05-H1 PM05-H2 PM05-H3 SiO2 55.79 56.15 56.48 55.76 57.82 57.44 71.36 71.96 72.57 78.37 78.78 TiO2 0.90 0.89 1.41 1.36 1.21 1.34 0.35 0.36 0.32 0.11 0.14 Al2O3 16.97 16.86 17.44 17.86 17.16 17.14 15.34 15.48 15.96 12.93 13.51 Fe2O3 8.08 7.93 8.17 8.04 7.47 7.29 2.14 2.22 2.90 2.04 0.91 MnO 0.13 0.14 0.16 0.17 0.14 0.18 0.13 0.13 0.01 0.01 0.01 MgO 3.82 3.58 3.23 3.94 2.36 2.88 0.66 0.61 0.28 0.26 0.33 CaO 5.54 6.20 3.44 3.40 4.35 3.11 1.06 0.48 0.10 0.06 0.10 Na2O 3.72 3.56 3.94 3.38 4.62 4.49 3.90 4.42 0.16 0.08 0.12 K2O 1.82 1.66 1.87 2.11 1.50 2.16 2.38 2.18 4.28 3.95 3.76 P2O5 0.20 0.22 0.36 0.36 0.37 0.37 0.09 0.09 0.07 0.06 0.03 LOI 2.94 2.70 3.40 3.54 2.92 3.45 2.54 2.02 3.26 2.09 2.26 Total 99.91 99.89 99.90 99.92 99.92 99.85 99.95 99.95 99.90 99.96 99.94 K+Na 5.54 5.22 5.81 5.49 6.12 6.65 6.28 6.60 4.44 4.03 3.88 K/Na 0.49 0.47 0.47 0.62 0.32 0.48 0.61 0.49 26.75 47.59 31.33 A/CNK 0.93 0.89 1.18 1.27 1.00 1.11 1.40 1.47 3.14 2.86 3.04 A/NK 2.10 2.20 2.05 2.28 1.86 1.76 1.71 1.61 3.26 2.93 3.17 Mg# 48.36 47.21 43.92 49.26 38.49 43.90 37.92 35.25 16.06 20.16 41.80 La 28.3 28.4 32.2 29.2 32.0 31.7 44.1 41.8 55.2 46.9 67.1 Ce 54.1 54.8 64.4 60.3 65.5 62.2 83.5 78.2 115.0 91.5 124 Pr 6.3 6.3 8.2 7.5 8.0 7.9 9.3 8.9 12.5 11.3 14.6 Nd 24.4 24.3 33.3 30.2 32.4 32.5 33.7 31.9 47.0 42.2 52.5 Sm 5.0 5.0 7.3 6.6 7.1 7.3 6.1 5.8 9.6 8.5 9.7 Eu 1.4 1.3 2.1 1.9 1.9 2.1 1.2 1.3 1.4 0.9 1.2 Gd 5.2 5.1 7.8 7.0 7.2 7.8 5.3 5.3 9.1 7.9 8.2 Tb 0.8 0.8 1.2 1.1 1.1 1.2 0.8 0.8 1.4 1.2 1.2 Dy 5.2 5.2 7.6 6.7 7.1 7.3 5.4 5.3 8.6 7.6 7.1 Ho 1.0 1.0 1.5 1.3 1.4 1.5 1.1 1.1 1.7 1.5 1.4 Er 3.2 3.1 4.6 4.0 4.3 4.3 3.5 3.6 5.1 4.6 4.0 Tm 0.5 0.5 0.7 0.6 0.6 0.6 0.5 0.6 0.8 0.7 0.6 Yb 3.1 3.0 4.4 3.8 4.1 4.2 3.9 3.9 5.2 4.4 3.8 Lu 0.5 0.4 0.6 0.6 0.6 0.6 0.6 0.6 0.8 0.6 0.5 ΣREE 138.8 139.3 175.8 160.7 173.2 171.2 199 189 273 230 296 Eu/Eu* 0.86 0.82 0.87 0.84 0.83 0.85 0.67 0.75 0.48 0.33 0.42 (La/Yb)N 6.51 6.59 5.21 5.45 5.53 5.30 8.04 7.52 7.52 7.43 12.52 (La/Gd)N 4.58 4.70 3.50 3.51 3.74 3.42 6.96 6.68 5.14 5.00 6.89 (Gd/Yb)N 1.42 1.40 1.49 1.55 1.48 1.55 1.15 1.13 1.46 1.49 1.82 Sc 22.8 22.2 17.8 17.8 14.5 15.9 3.9 3.8 10.6 5.8 6.6 V 188.0 189.0 123.0 119.0 84.6 106.0 6.6 6.9 22.4 1.9 3.3 Cr 20.2 28.3 5.0 3.4 1.2 1.8 0.9 1.8 12.5 1.0 1.6 Co 22.3 22.4 15.8 15.2 10.1 12.0 1.3 1.0 0.9 0.3 0.2 Ni 8.4 12.3 3.5 3.3 1.8 2.8 1.0 0.6 2.1 0.5 0.6 Ga 18.1 17.9 20.3 19.2 18.2 19.1 17.1 17.4 21.5 21.6 17.0 Rb 45.9 34.9 90.8 101.0 69.1 78.9 124.0 99.7 185.0 204.0 189.0 Sr 357.0 356.0 393.0 348.0 375.0 580.0 128.0 176.0 12.9 9.3 11.6 Y 27.6 27.0 40.6 35.2 37.1 38.8 30.8 31.1 42.8 39.7 36.1 Zr 149.0 147.0 180.0 170.0 187.0 182.0 254.0 256.0 310.0 181.0 227.0 Nb 6.5 6.4 9.4 8.9 9.7 9.5 11.8 11.6 17.7 15.4 15.8 Cs 2.9 2.2 3.3 4.5 2.3 2.6 3.5 2.6 6.6 2.5 4.6 Ba 598.0 525.0 376.0 414.0 369.0 736.0 292.0 308.0 631.0 342.0 450.0 Hf 4.4 4.4 5.2 5.0 5.4 5.2 6.7 6.7 9.4 7.4 7.5 Ta 0.5 0.5 0.7 0.7 0.7 0.7 1.0 1.0 1.6 1.4 1.3 Pb 7.6 8.4 7.2 4.9 20.1 10.6 27.2 46.2 15.6 2.5 2.3 Th 8.6 8.4 8.7 8.0 9.2 8.6 16.3 15.9 31.3 35.4 25.1 U 1.0 1.0 1.5 1.4 1.6 1.5 2.7 2.6 4.5 2.9 3.5 -
[1] Baker, M.B., Hirschmann, M.M., Ghiorso, M.S., et al., 1995.Compositions of Near-Solidus Peridotite Melts from Experimentsand Thermodynamic Calculations.Nature, 375(6529):308-311. https://doi.org/10.1038/375308a0 [2] Barazangi, M., Ni, J., 1982.Velocities and Propagation Characteristics of Pn and Sn beneath the Himalayan Arc and Tibetan Plateau:Possible Evidence for Underthrusting of Indian Continental Lithosphere beneath Tibet.Geology, 10(4):179-185.https://doi.org/10.1130/0091-7613(1982)10<179:vapcop>2.0.co;2 doi: 10.1130/0091-7613(1982)10<179:vapcop>2.0.co;2 [3] Barth, M.G., McDonough, W.F., Rudnick, R.L., 2000.Tracking the Budget of Nb and Ta in the Continental Crust.Chemical Geology, 165(3-4):197-213. https://doi.org/10.1016/s0009-2541(99)00173-4 [4] Chang, C.F., Zheng, X.L., 1973.Discussion on the Formation of Western-Eastern Ranges in Himalayas and Qinghai-Xizang Plateau and Characteristics of Geological Structure in Everest Region.Science in China(Series D), 2:190-201 (in Chinese). [5] Chen, Y., Zhu, D.C., Zhao, Z.D., et al., 2014.Slab Break off Triggered ca.113 Ma Magmatism around Xainza Area of the Lhasa Terrane, Tibet.Gondwana Research, 26(2):449-463. https://doi.org/10.1016/j.gr.2013.06.005 [6] Chung, S.L., Chu, M.F., Ji, J.Q., et al., 2009.The Nature and Timing of Crustal Thickening in Southern Tibet:Geochemical and Zircon Hf Isotopic Constraints from Postcollisional Adakites.Tectonophysics, 477(1-2):36-48. https://doi.org/10.1016/j.tecto.2009.08.008 [7] Ding, H.X., Zhang, Z.M., Xiang, H., et al., 2015.The Petrogenesis and Tectonic Significance of the Early Cretaceous Volcanics from the Northern Lhasa Terrane, Tibet.Acta Petrologica Sinica, 31(5):1247-1267 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201505005 [8] Dong, X., Zhang, Z.M., Santosh, M., et al., 2011.Late Neoproterozoic Thermal Events in the Northern Lhasa Terrane, South Tibet:Zircon Chronology and Tectonic Implications.Journal of Geodynamics, 52(5):389-405. https://doi.org/10.1016/j.jog.2011.05.002 [9] Frost, B.R., Barnes, C.G., Collins, W.J., et al., 2001.A Geochemical Classification for Granitic Rocks.Journal of Petrology, 42(11):2033-2048. https://doi.org/10.1093/petrology/42.11.2033 [10] Frost, C.D., Frost, B.R., 2010.On Ferroan (A-Type) Granitoids:Their Compositional Variability and Modes of Origin.Journal of Petrology, 52(1):39-53. https://doi.org/10.1093/petrology/egq070 [11] Guan, Q., Zhu, D.C., Zhao, Z.D., et al., 2010.Late Cretaceous Adakites from the Eastern Segment of the Gangdese Belt, Southern Tibet:Products of Neo-Tethyan Mid-Ocean Ridge Subduction? Acta Petrologica Sinica, 26(7):2165-2179 (in Chinese with English abstract). [12] Guo, L., Zhang, H.F., Harris, N., et al., 2012.Paleogene Crustal Anatexis and Metamorphism in Lhasa Terrane, Eastern Himalayan Syntaxis:Evidence from U-Pb Zircon Ages and Hf Isotopic Compositions of the Nyingchi Complex.Gondwana Research, 21(1):100-111. https://doi.org/10.1016/j.gr.2011.03.002 [13] Harris, N.B.W., Inger, S., Xu, R.H., 1990.Cretaceous Plutonism in Central Tibet:An Example of Post-Collision Magmatism? Journal of Volcanology and Geothermal Research, 44(1-2):21-32. https://doi.org/10.1016/0377-0273(90)90009-5 [14] Hastie, A.R., Kerr, A.C., Pearce, J.A., et al., 2007.Classification of Altered Volcanic Island Arc Rocks Using Immobile Trace Elements:Development of the Th-Co Discrimination Diagram.Journal of Petrology, 48(12):2341-2357. https://doi.org/10.1093/petrology/egm062 [15] Hoskin, P.W.O., Schaltegger, U., 2003.The Composition of Zircon and Igneous and Metamorphic Petrogenesis.Reviews in Mineralogy and Geochemistry, 53(1):27-62. https://doi.org/10.2113/0530027 [16] Kang, Z.Q., Xu, J.F., Dong, Y.H., et al., 2008.Cretaceous Volcanic Rocks of Zenong Group in North-Middle Lhasa Block:Products of Southward Subducting of the Slainajap Ocean? Acta Petrologica Sinica, 24(2):303-314 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=e3f635a2c474e03c5e2d74694eb8f601&encoded=0&v=paper_preview&mkt=zh-cn [17] Kang, Z.Q., Xu, J.F., Wang, B.D., et al., 2009.Geochemistry of Cretaceous Volcanic Rocks of Duoni Formation in Northern Lhasa Block:Discussion of Tectonic Setting.Earth Science, 34(1):89-104 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=496e9d437de216890cc027875b03a3b1&encoded=0&v=paper_preview&mkt=zh-cn [18] Kapp, P., Yin, A., Harrison, T.M., et al., 2005.Cretaceous-Tertiary Shortening, Basin Development, and Volcanism in Central Tibet.Geological Society of America Bulletin, 117(7):865-878. https://doi.org/10.1130/b25595.1 [19] Kerr, A.C., White, R.V., Saunders, A.D., 2000.LIP Reading:Recognizing Oceanic Plateaux in the Geological Record.Journal of Petrology, 41(7):1041-1056. https://doi.org/10.1093/petrology/41.7.1041 [20] Li, C., Wang, T.W., Li, H.M., et al., 2003.Discovery of Indosinian Megaporphyritic Granodiorite in the Gangdese Area:Evidence for the Existence of Paleo-Gangdese.Geological Bulletin of China, 22(5):364-366 (in Chinese with English abstract). [21] Liang, Y.P., Zhu.j., Ci.Q., et al., 2010.Zircon U-Pb Ages and Geochemistry of Volcanic Rock from Linzizong Group in Zhunuo Area in Middle Gangdise Belt, Tibet Plateau.Earth Science, 35(2):211-223 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2010.021 [22] Lin, Y.H., Zhang, Z.M., Dong, X., et al., 2013.Precambrian Evolution of the Lhasa Terrane, Tibet:Constraint from the Zircon U-Pb Geochronology of the Gneisses.Precambrian Research, 237:64-77. https://doi.org/10.1016/j.precamres.2013.09.006 [23] Liu, W., Li, F.Q., Yuan, S.H., et al., 2010.Volcanic Rock Provenance of Zenong Group in Coqen Area of Tibet:Geochemistry and Sr-Nd Isotopic Constraint.Acta Petrologica et Mineralogica, 29(4):367-376 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=21c2ecc8b997adf4ce1474f44ec54ecc&encoded=0&v=paper_preview&mkt=zh-cn [24] Liu, Y.S., Hu, Z.C., Zong, K.Q., et al., 2010.Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS.Chinese Science Bulletin, 55(15):1535-1546. https://doi.org/10.1007/s11434-010-3052-4 [25] Ludwig, K.R., 2003.Isoplot/Ex Version 3.00:A Geochronological Toolkit for Microsoft Excel.Berkeley Geochronology Center Special Publication, Berkeley. [26] Ma, G.L., Yue, Y.H., 2010.Cretaceous Volcanic Rocks in Northern Lhasa Block:Constraints on the Tectonic Evolution of the Gangdise Arc.Acta Petrologica et Mineralogica, 29(5):525-538 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=2d634a754c2e6f3b29d91d69d5516e1c&encoded=0&v=paper_preview&mkt=zh-cn [27] Ma, L., Wang, Q., Li, Z.X., et al., 2013.Early Late Cretaceous(ca.93 Ma) Norites and Hornblendites in the Milin Area, Eastern Gangdese:Lithosphere-Asthenosphere Interaction during Slab Roll-Back and an Insight into Early Late Cretaceous(ca.100-80 Ma) Magmatic "Flare-Up" in Southern Lhasa(Tibet).Lithos, 172-173:17-30. https://doi.org/10.13039/501100002367 [28] McCulloch, M.T., Gamble, J.A., 1991.Geochemical and Geodynamical Constraints on Subduction Zone Magmatism.Earth and Planetary Science Letters, 102(3-4):358-374. https://doi.org/10.1016/0012-821x(91)90029-h [29] Meng, F.Y., Zhao, Z.D., Zhu, D.C., et al., 2014.Late Cretaceous Magmatism in Mamba Area, Central Lhasa Subterrane:Products of Back-Arc Extension of Neo-Tethyan Ocean? Gondwana Research, 26(2):505-520. https://doi.org/10.1016/j.gr.2013.07.017 [30] Mo, X.X., Niu, Y.L., Dong, G.C., et al., 2008.Contribution of Syncollisional Felsic Magmatism to Continental Crust Growth:A Case Study of the Paleogene Linzizong Volcanic Succession in Southern Tibet.Chemical Geology, 250(1-4):49-67. https://doi.org/10.1016/j.chemgeo.2008.02.003 [31] Mo, X.X., Pan, G.T., 2006.From the Tethys to the Formation of the Qinghai-Tibet Plateau:Constrained by Tectonic-Magmatic Events.Earth Science Frontiers, 13(6):43-51(in Chinese with Eng lish abstract). [32] Mo, X.X., Zhao, Z.D., DePaolo, D.J., et al., 2006.Three Types of Collisional and Post-Collisional Magmatism in the Lhasa Block, Tibet and Implications for India Intracontinental Subduction and Mineralization:Evidence from Sr-Nd Isotopes.Acta Petrologica Sinica, 22(4):795-803 (in Chinese with English abstract). [33] Pan, G.T., Ding, J., Yao, D.S., et al., 2004.Guidebook of 1:1 500 000 Geologic Map of the Qinghai-Xizang(Tibet) Plateau and Adjacent Areas.Chengdu, Chengdu Cartographic Publishing House. [34] Pearce, J.A., Norry, M.J., 1979.Petrogenetic Implications of Ti, Zr, Y, and Nb Variations in Volcanic Rocks.Contributions to Mineralogy and Petrology, 69(1):33-47. https://doi.org/10.1007/bf00375192 [35] Rajesh, H.M., 2007.The Petrogenetic Characterization of Intermediate and Silicic Charnockites in High-Grade Terrains:A Case Study from Southern India.Contributions to Mineralogy and Petrology, 154(5):591-606. https://doi.org/10.1007/s00410-007-0211-y [36] Rapp, R.P., Watson, E.B., 1995.Dehydration Melting of Metabasalt at 8-32 Kbar:Implications for Continental Growth and Crust-Mantle Recycling.Journal of Petrology, 36(4):891-931. https://doi.org/10.1093/petrology/36.4.891 [37] Rubatto, D., Scambelluri, M., 2003.U-Pb Dating of Magmatic Zircon and Metamorphic Baddeleyite in the Ligurian Eclogites (Voltri Massif, Western Alps).Contributions to Mineralogy and Petrology, 146(3):341-355. https://doi.org/10.1007/s00410-003-0502-x [38] Rudnick, R. L., Gao, S., 2003. Composition of the Continental Crust. In: Rudnick, R. L., ed., The Crust: Treaties on Geochemistry. Elsevier Pergamon, Oxford. [39] Sui, Q. L., 2014. The Geochronology, Petrogenesis and Tectonic Significance of the Early Cretaceous Magmatic Rocks from Yanhu, the Lhasa Terrane, Tibet(Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract). [40] Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [41] Wang, L.Y., Zheng, Y.Y., Gao, S.B., et al., 2016.The Discovery of the Early Cretaceous Zenong Group Volcanic Rocks and Geological Significance in Jiwa Area in South of the Central Lhasa Subterrane.Acta Petrologica Sinica, 32(5):1543-1555 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201605019 [42] Whalen, J.B., Currie, K.L., Chappell, B.W., 1987.A-Type Granites:Geochemical Characteristics, Discrimination and Petrogenesis.Contributions to Mineralogy and Petrology, 95(4):407-419. https://doi.org/10.1007/bf00402202 [43] Winchester, J.A., Floyd, P.A., 1977.Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements.Chemical Geology, 20(4):325-343. https://doi.org/10.1016/0009-2541(77)90057-2 [44] Wu, Y.B., Zheng, Y.F., 2004.Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age.Chinese Science Bulletin, 49(16):1589-1604 (in Chinese). http://cn.bing.com/academic/profile?id=615cb8c204d789c7e63503208ec2377c&encoded=0&v=paper_preview&mkt=zh-cn [45] Xu, W.C., Zhang, H.F., Harris, N., et al., 2013.Geochronology and Geochemistry of Mesoproterozoic Granitoids in the Lhasa Terrane, South Tibet:Implications for the Early Evolution of Lhasa Terrane.Precambrian Research, 236(5):46-58. https://doi.org/10.1016/j.precamres.2013.07.016 [46] Yin, A., Harrison, T.M., 2000.Geologic Evolution of the Himalayan-Tibetan Orogen.Annual Review of Earth and Planetary Sciences, 28(1):211-280. https://doi.org/10.1146/annurev.earth.28.1.211 [47] Yu, Y.S., Gao, Y., Yang, Z.S., et al., 2011.Zircon LA-ICP-MS U-Pb Dating and Geochemistry of Intrusive Rocks from Gunjiu Iron Deposit in the Nixiong Ore Field, Coqen, Tibet.Acta Petrologica Sinica, 27(7):1949-1960 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201107004 [48] Zhang, K.J., Zhang, Y.X., Tang, X.C., et al., 2012.Late Mesozoic Tectonic Evolution and Growth of the Tibetan Plateau Prior to the Indo-Asian Collision.Earth-Science Reviews, 114(3-4):236-249. https://doi.org/10.1016/j.earscirev.2012.06.001 [49] Zhang, L.L., Zhu, D.C., Zhao, Z.D., et al., 2010.Petrogenesis of Magmatism in the Baerda Region of Northern Gangdese, Tibet:Constraints from Geochemistry, Geochronology and Sr-Nd-Hf Isotopes.Acta Petrologica Sinica, 26(6):1871-1888 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=e4417bc130a7d9b8d3bbf38c15e43c5f&encoded=0&v=paper_preview&mkt=zh-cn [50] Zhang, X.Q., Zhu, D.C., Zhao, Z.D., et al., 2012.Geochemistry, Zircon U-Pb Geochronology and In-Situ Hf Isotope of the Maiga Batholith in Coqen, Tibet:Constraints on the Petrogenesis of the Early Cretaceous Granitoids in the Central Lhasa Terrane.Acta Petrologica Sinica, 28(5):1615-1634 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201205023 [51] Zhang, Z.M., Zhao, G.C., Santosh, M., et al., 2010.Late Cretaceous Charnockite with Adakitic Affinities from the Gangdese Batholith, Southeastern Tibet:Evidence for Neo-Tethyan Mid-Ocean Ridge Subduction?Gondwana Research, 17(4):615-631. https://doi.org/10.1016/j.gr.2009.10.007 [52] Zhang, Z.P., Dong, H., Wu, Y., et al., 2016.GeochemicalCharacteristics and Tectonic Significance of Zenong Group Volcanic Rocks in Cuoguocuo Area of Gaize, Tibet.Gansu Geology, 25(4):22-28 (in Chinese with English abstract). [53] Zheng, X.S., Sang, H.Q., Qiu, J., et al., 2010.New Discovery of the Early Cretaceous Volcanic Rocks on the Barton Peninsula, King George Island, Antarctica and Its Geological Significance.Acta Geologica Sinica(English Edition), 74(2):176-182. https://doi.org/10.1111/j.1755-6724.2000.tb00446.x [54] Zhou, C.Y., Zhu, D.C., Zhao, Z.D., et al., 2008.Petrogenesis of Daxiong Pluton in Western Gangdese, Tibet:Zircon U-Pb Dating and Hf Isotopic Constraints.Acta Petrologica Sinica, 24(2):348-358 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=19d265c721968f5c716b2e81048fbf6d&encoded=0&v=paper_preview&mkt=zh-cn [55] Zhu, D.C., Mo X.X., Zhao Z.D., et al., 2008a.Zircon U-Pb Geochronology of Zenong Group Volcanic Rocks in Coqen Area of the Gangdese, Tibet and Tectonic Significance.Acta Petrologica Sinica, 24(3):401-412 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200803001 [56] Zhu, D.C., Mo, X.X., Wang, L.Q., et al., 2008b.Hotspot-Ridge Interaction for the Evolution of Neo-Tethys:Insights from the Late Jurassic-Early Cretaceous Magmatism in Southern Tibet.Acta Petrologica Sinica, 24(2):225-237 (in Chinese with English abstract). [57] Zhu, D.C., Mo, X.X., Zhao, Z.D., 2009.Permian and Early Cretaceous Tectonomagmatism in Southern Tibet and Tethyan Evolution:New Perspective.Earth Science Frontiers, 16(2):1-20 (in Chinese with English abstract). [58] Zhu, D.C., Pan, G.T., Chung, S.L., et al., 2008.SHRIMP Zircon Age and Geochemical Constraints on the Origin of Lower Jurassic Volcanic Rocks from the Yeba Formation, Southern Gangdese, South Tibet.International Geology Review, 50(5):442-471. https://doi.org/10.2747/0020-6814.50.5.442 [59] Zhu, D.C., Pan, G.T., Mo, X.X., et al., 2006.Late Jurassic-Early Cretaceous Geodynamic Setting in Middle-Northern Gangdese:New Insights from Volcanic Rocks.Acta Petrologica Sinica, 22(3):536-546 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=70d049d7459b40ec056365e05bd370bb&encoded=0&v=paper_preview&mkt=zh-cn [60] Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2011.The Lhasa Terrane:Record of a Microcontinent and Its Histories of Drift and Growth.Earth and Planetary Science Letters, 301(1-2):241-255. https://doi.org/10.13039/501100001809 [61] Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2012.Cambrian Bimodal Volcanism in the Lhasa Terrane, Southern Tibet:Record of an Early Paleozoic Andean-Type Magmatic Arc in the Australian Proto-Tethyan Margin.Chemical Geology, 328(11):290-308. https://doi.org/10.1016/j.chemgeo.2011.12.024 [62] Zhu, D.C., Zhao, Z.D., Pan, G.T., et al., 2009a.Early Cretaceous Subduction-Related Adakite-Like Rocks of the Gangdese Belt, Southern Tibet:Products of Slab Melting and Subsequent Melt-Peridotite Interaction? Journal of Asian Earth Sciences, 34(3):298-309. https://doi.org/10.1016/j.jseaes.2008.05.003 [63] Zhu, D.C., Mo, X.X., Niu, Y.L., et al., 2009b.Geochemical Investigation of Early Cretaceous Igneous Rocks along an East-West Traverse throughout the Central Lhasa Terrane, Tibet.Chemical Geology, 268(3-4):298-312.https://doi.org/10.13039/501 100002858 doi: 10.13039/501100002858 [64] Zhu, T.X., Zhuang, Z.H., Zhou, M.K., et al., 2006.New Ordovician-Paleogene Tectonomagnetic Data from the Northern Slope of the Himalayas.Geological Bulletin of China, 25(1-2):76-82 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200601013 [65] 常承法, 郑锡澜, 1973.中国西藏南部珠穆朗玛地区地质构造特征及其青藏高原东西向诸山系形成的探讨.中国科学(D辑), 2:190-201. [66] 丁慧霞, 张泽明, 向华, 等, 2015.青藏高原拉萨地体北部早白垩世火山岩的成因及意义.岩石学报, 31(5):1247-1267. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201505005 [67] 管琪, 朱弟成, 赵志丹, 等, 2010.西藏南部冈底斯带东段晚白垩世埃达克岩:新特提斯洋脊俯冲的产物?岩石学报, 26(7):2165-2179. [68] 康志强, 许继峰, 董彦辉, 等, 2008.拉萨地块中北部白垩纪则弄群火山岩:Slainajap洋南向俯冲的产物?岩石学报, 24(2):303-314. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200802010 [69] 康志强, 许继峰, 王保弟, 等, 2009.拉萨地块北部白垩纪多尼组火山岩的地球化学:形成的构造环境.地球科学, 34(1):89-104. http://earth-science.net/WebPage/Article.aspx?id=1789 [70] 李才, 王天武, 李惠民, 等, 2003.冈底斯地区发现印支期巨斑花岗闪长岩:古冈底斯造山的存在证据.地质通报, 22(5):364-366. doi: 10.3969/j.issn.1671-2552.2003.05.011 [71] 刘伟, 李奋其, 袁四化, 等, 2010.西藏措勤地区则弄群火山岩源区-地球化学及Sr-Nd同位素制约.岩石矿物学杂志, 29(4):367-376. doi: 10.3969/j.issn.1000-6524.2010.04.003 [72] 梁银平, 朱杰, 次邛, 等, 2010.青藏高原冈底斯带中部朱诺地区林子宗群火山岩锆石U-Pb年龄和地球化学特征.地球科学, 35(2):211-223. https://doi.org/10.3799/dqkx.2010.021 [73] 马国林, 岳雅慧, 2010.西藏拉萨地块北部白垩纪火山岩及其对冈底斯岛弧构造演化的制约.岩石矿物学杂志, 29(5):525-538. doi: 10.3969/j.issn.1000-6524.2010.05.008 [74] 莫宣学, 潘桂棠, 2006.从特提斯到青藏高原形成:构造-岩浆事件的约束.地学前缘, 13(6):43-51. doi: 10.3321/j.issn:1005-2321.2006.06.007 [75] 莫宣学, 赵志丹, Depaolo, D.J., 等, 2006.青藏高原拉萨地块碰撞-后碰撞岩浆作用的三种类型及其对大陆俯冲和成矿作用的启示:Sr-Nd同位素证据.岩石学报, 22(4):795-803. [76] 隋清霖, 2014. 西藏拉萨地块盐湖地区早白垩世岩浆岩年代学、岩石成因及构造意义(硕士学位论文). 北京: 中国地质大学. [77] 王力圆, 郑有业, 高顺宝, 等, 2016.中部拉萨地体南侧吉瓦地区早白垩世则弄群火山岩的发现及意义.岩石学报, 32(5):1543-1555. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201605019 [78] 吴元保, 郑永飞, 2004.锆石成因矿物学研究及其对U-Pb年龄解释的制约.科学通报, 49(16):1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002 [79] 于玉帅, 高原, 杨竹森, 等, 2011.西藏措勤尼雄矿田滚纠铁矿侵入岩LA-ICP-MS锆石U-Pb年龄与地球化学特征.岩石学报, 27(7):1949-1960. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201107004 [80] 张亮亮, 朱弟成, 赵志丹, 等, 2010.西藏北冈底斯巴尔达地区岩浆作用的成因:地球化学、年代学及Sr-Nd-Hf同位素约束.岩石学报, 26(6):1871-1888. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201006020 [81] 张晓倩, 朱弟成, 赵志丹, 等, 2012.西藏措勤麦嘎岩基的锆石U-Pb年代学、地球化学和锆石Hf同位素:对中部拉萨地块早白垩世花岗岩类岩石成因的约束.岩石学报, 28(5):1615-1634. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201205023 [82] 张志平, 董瀚, 吴勇, 等, 2016.西藏改则县错果错地区则弄群火山岩岩石地球化学特征及其构造意义.甘肃地质, 25(4):22-28. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20162017021700043096 [83] 周长勇, 朱弟成, 赵志丹, 等, 2008.西藏冈底斯带西部达雄岩体的岩石成因:锆石U-Pb年龄和Hf同位素约束.岩石学报, 24(2):348-358. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200802014 [84] 朱弟成, 莫宣学, 赵志丹, 等, 2008a.西藏冈底斯带措勤地区则弄群火山岩锆石U-Pb年代学格架及构造意义.岩石学报, 24(3):401-412. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200803001 [85] 朱弟成, 莫宣学, 王立全, 等, 2008b.新特提斯新特提斯演化的热点与洋脊相互作用:西藏南部晚侏罗世-早白垩世岩浆作用推论.岩石学报, 24(2):225-237. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=YSXB200802006&dbname=CJFD&dbcode=CJFQ [86] 朱弟成, 莫宣学, 赵志丹, 等, 2009.西藏南部二叠纪和早白垩世构造岩浆作用与特提斯演化:新观点.地学前缘, 16(2):1-20. doi: 10.3321/j.issn:1005-2321.2009.02.001 [87] 朱弟成, 潘桂裳, 莫宣学, 等, 2006.冈底斯中北部晚侏罗世-早白垩世地球动力学环境:火山岩约束.岩石学报, 22(3):534-546. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200603002 [88] 朱同兴, 庄忠海, 周铭魁, 等, 2006.喜马拉雅山北坡奥陶纪-古近纪构造古地磁新数据.地质通报, 25(1-2):76-82. http://d.old.wanfangdata.com.cn/Periodical/zgqydz200601013