• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    东天山小热泉子矿床流体包裹体及矿床成因

    张文东 吴湘滨 邓小华 毛启贵 张会琼 杨利亚 陈曦 许骏 张岩 王洋

    张文东, 吴湘滨, 邓小华, 毛启贵, 张会琼, 杨利亚, 陈曦, 许骏, 张岩, 王洋, 2018. 东天山小热泉子矿床流体包裹体及矿床成因. 地球科学, 43(9): 3036-3048. doi: 10.3799/dqkx.2018.150
    引用本文: 张文东, 吴湘滨, 邓小华, 毛启贵, 张会琼, 杨利亚, 陈曦, 许骏, 张岩, 王洋, 2018. 东天山小热泉子矿床流体包裹体及矿床成因. 地球科学, 43(9): 3036-3048. doi: 10.3799/dqkx.2018.150
    Zhang Wendong, Wu Xiangbin, Deng Xiaohua, Mao Qigui, Zhang Huiqiong, Yang Liya, Chen Xi, Xu Jun, Zhang Yan, Wang Yang, 2018. Fluid Inclusions Constraints on the Origin of the Xiaorequanzi Deposit in Eastern Tianshan. Earth Science, 43(9): 3036-3048. doi: 10.3799/dqkx.2018.150
    Citation: Zhang Wendong, Wu Xiangbin, Deng Xiaohua, Mao Qigui, Zhang Huiqiong, Yang Liya, Chen Xi, Xu Jun, Zhang Yan, Wang Yang, 2018. Fluid Inclusions Constraints on the Origin of the Xiaorequanzi Deposit in Eastern Tianshan. Earth Science, 43(9): 3036-3048. doi: 10.3799/dqkx.2018.150

    东天山小热泉子矿床流体包裹体及矿床成因

    doi: 10.3799/dqkx.2018.150
    基金项目: 

    国土资源部公益性行业科研专项 201411026

    中国地质调查局项目 1212011140056

    国家自然科学基金项目 41572077

    国家重点基础研究发展计划(973计划)项目 2014CB440803

    中国地质调查局项目 12120114081701

    中国地质调查局项目 DD20160071

    详细信息
      作者简介:

      张文东(1992-), 男, 硕士研究生, 主要从事矿产普查与勘探方面的研究.E-mail:1198807031@qq.com

      通讯作者:

      邓小华, E-mail:dxh198411@126.com

    • 中图分类号: P611

    Fluid Inclusions Constraints on the Origin of the Xiaorequanzi Deposit in Eastern Tianshan

    • 摘要: 小热泉子铜矿是东天山最早发现的铜矿床之一,但其成矿流体性质、演化,以及矿床成因尚不明确.通过对不同成矿期次流体包裹体开展显微测温和激光拉曼分析,结果表明小热泉子成矿可分为VMS成矿期(包含黄铁矿、黄铜矿-闪锌矿阶段)、热液叠加期(包含石英-硫化物、碳酸盐阶段)和表生期.VMS成矿期包裹体以水溶液型为主,少量含CO2包裹体,其均一温度为234~392 ℃,盐度为3.5%~13.3% NaCleqv;热液叠加期包裹体为水溶液型,在122~296 ℃达到均一,盐度为1.4%~12.1% NaCleqv.激光拉曼分析显示包裹体成分以H2O为主,含少量CO2和SO2.小热泉子铜矿早期高温-中高盐度的VMS成矿系统叠加了后期低温-中低盐度的热液系统,其成因类型应为典型的叠加型成矿系统.

       

    • 图  1  中亚造山带构造简图(a)和东天山区域地质及矿床分布(b)

      王京彬等(2006)修改

      Fig.  1.  Tectonic sketch of the Central Asian orogenic belt (a) and regional geological sketch in the East Tianshan, showing deposit distribution (b)

      图  2  小热泉子地区地层柱状图

      Fig.  2.  Stratigraphic histogram of Xiaorequanzi region

      图  3  小热泉子矿区地质简图

      李凤鸣等(2002)刘申态等(2012)修改

      Fig.  3.  Geological sketch of the Xiaorequanzi deposit

      图  4  (a) 小热泉子矿区地质图;(b)小热泉子Ⅰ号矿床7勘探线纵剖面

      李凤鸣等(2002)刘申态等(2012)修改

      Fig.  4.  (a) Geological sketch of Xiaorequanzi deposit; (b) the profile of No.7 exploration line in Xiaorequanzi deposit

      图  5  小热泉子矿床矿石和矿物特征

      a.VMS成矿期的块状铜矿石;b.VMS成矿期的下盘支脉系统中的网脉状铜矿石;c.VMS成矿期的块状锌矿石被热液叠加期的石英-黄铜矿-黄铁矿脉切穿;d.VMS成矿期的黄铁矿阶段,黄铁矿常被黄铜矿交代呈交代残余结构;e.VMS成矿期的黄铜矿-闪锌矿阶段,闪锌矿出溶黄铜矿呈固溶体分离结构;f.VMS成矿期支脉系统中的绢云母化、碳酸盐化等蚀变;g.黄铜矿-闪锌矿阶段发生绿泥石化,后被热液叠加期石英-黄铜矿脉切穿;h.VMS成矿期的浸染状闪锌矿被热液叠加期的方解石脉切穿;i.表生氧化期的铜蓝,交代早期黄铜矿

      Fig.  5.  Photographs showing the geological characteristics of the Xiaorequanzi deposit

      图  6  小热泉子Ⅰ号矿床成矿阶段划分及矿物生成顺序

      Fig.  6.  Mineral paragenesis and ore-forming stages of the Xiaorequanzi deposit

      图  7  小热泉子矿床流体包裹体镜下照片

      a.Ⅰ号矿床VMS成矿期黄铜矿-闪锌矿阶段石英中的W型和C型包裹体共生;b.黄铜矿-闪锌矿阶段石英中的W型包裹体;c.黄铜矿-闪锌矿阶段石英中的富液相W型包裹体(左)和富气相W型包裹体(右)共存;d.黄铜矿-闪锌矿阶段的富气相W型包裹体(临界均一);e.Ⅰ号矿床热液叠加成矿期石英-硫化物阶段石英中的W型包裹体

      Fig.  7.  Photomicrographs of fluid inclusions in Xiaorequanzi deposit

      图  8  小热泉子矿床流体包裹体均一温度-盐度直方图

      Fig.  8.  Histograms of homogenization temperatures and salinities of fluid inclusions of the Xiaorequanzi deposit

      图  9  小热泉子矿床激光拉曼(LRM)图谱

      Fig.  9.  Laser Raman (LRM) atlas from the fluid inclusions of the Xiaorequanzi deposit

      图  10  小热泉子矿床压力估算结果

      底图据Driesner and Heinrich(2007)

      Fig.  10.  Evolution of pressure and salinity in each metallogenic period in Xiaorequanzi deposit

      图  11  小热泉子矿床盐度-温度散点图

      Fig.  11.  The homogenization temperature vs. salinity plot of the Xiaorequanzi deposit

      表  1  小热泉子矿床流体包裹体显微测温数据表

      Table  1.   Microthermometric data of the Xiaorequanzi deposit

      成矿期 成矿阶段 类型 数量
      (个)
      直径
      (μm)
      气液体积比
      (%)
      Tm-CO2
      (℃)
      Tm-cl
      (℃)
      Th-CO2
      (℃)
      Tm-ice
      (℃)
      Th
      (℃)
      盐度(%NaCleqv)
      VMS成矿期 黄铜矿-闪锌矿阶段 W 56 4~6 30~45 -9.7~-2.1 234~392 3.5~13.3
      C 1 5 70 -57.2 5.4 25.1 297 8.5
      热液叠加成矿期 石英-硫化物阶段 W 61 3~7 15~25 -8.3~-0.8 122~296 1.4~12.1
      注:Tm-CO2为固相CO2初熔温度;Tm-cl为笼合物熔化温度;Tm-ice为冰点温度;Th为完全均一温度.
      下载: 导出CSV

      表  2  小热泉子矿床压力和深度估算表

      Table  2.   Data for Pressure and Depth of Xiaorequanzi Deposit

      成矿期次 密度(g/cm3) 压力(MPa) 深度(km)
      VMS成矿期 0.60~0.80 10~20 1.0~2.0
      后期热液叠加期 0.75~0.86 1.5~6.0 0.2~0.6
      下载: 导出CSV

      表  3  小热泉子矿床和典型VMS矿床温度、盐度数据

      Table  3.   Temperature and salinity data from the Xiaorequanzi deposit and VMS deposits

      矿床名 矿石构造 寄主矿物 均一温度(℃) 盐度(%NaCleqv) 文献来源
      小热泉子Ⅰ号矿床 块状矿 石英 234~392 3.5~13.3 本文
      青海玉树尕龙格玛 块状和网脉状 石英、重晶石 176~263 1.1~6.3 王键等,2017
      浙江平水矿床 块状矿 石英 217~328 3.2~5.7 Chen et al., 2015
      新疆阿舍勒矿床 含铜石英脉 石英 191~307 2.7~8.5 Zheng et al., 2013
      四川呷村矿床 块状矿 石英 153~350 1.1~7.2 党院等,2014
      日本小坂矿床 块状矿 石英 225~310 2.5~8.3 Urabe and Sato, 1978
      伊比利亚黄铁矿带块状硫化物矿床 块状矿和网脉状矿 石英 120~380 0.4~12.0 Toscano et al., 1997
      东太平洋海隆14°N海底硫化物矿床 块状矿 石英 160~350 3.2~4.8 Vanko et al., 1991
      下载: 导出CSV
    • [1] Brown, P.E., Hagemann, S.G., 1995.MacFlinCor and Its Application to Fluids in Archean Lode-Gold Deposits.Geochimica et Cosmochimica Acta, 59(19):3943-3952. https://doi.org/10.1016/0016-7037(95)00254-w
      [2] Chen, H., Ni, P., Wang, R.C., et al., 2015.A Combined Fluid Inclusion and S-Pb Isotope Study of the Neoproterozoic Pingshui Volcanogenic Massive Sulfide Cu-Zn Deposit, Southeast China.Ore Geology Reviews, 66:388-402. https://doi.org/10.1016/j.oregeorev.2014.11.002
      [3] Chen, Y.J., Ni, P., Fan, H.R., et al., 2007.Diagnostic Fluid Inclusions of Different Types Hydrothermal Gold Deposits.Acta Petrologica Sinica, 23(9):2085-2108 (in Chinese with English abstract).
      [4] Dang, Y., Chen, M.H., Mao, J.W., et al., 2014.Geochemistry of Ore-Forming Fluid of Gacun-Youre Ore District in Baiyu County, Sichuan Province.Acta Petrologica Sinica, 30(1):221-236 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201401017
      [5] Deng, X.H., Wang, J.B., Pirajno, F., et al., 2016.Re-Os Dating of Chalcopyrite from Selected Mineral Deposits in the Kalatag District in the Eastern Tianshan Orogen, China.Ore Geology Reviews, 77:72-81. https://doi.org/10.1016/j.oregeorev.2016.01.014
      [6] Doyle, M.G., Allen, R.L., 2003.Subsea-Floor Replacement in Volcanic-Hosted Massive Sulfide Deposits.Ore Geology Reviews, 23(3/4):183-222. https://doi.org/10.1016/s0169-1368(03)00035-0
      [7] Driesner, T., Heinrich, C.A., 2007.The System H2O-NaCl.Part Ⅰ:Correlation Formulae for Phase Relations in Temperature-Pressure-Composition Space from 0 to 1 000℃, 0 to 5 000 bar, and 0 to 1 XNaCl.Geochimica et Cosmochimica Acta, 71(20):4880-4901. https://doi.org/10.1016/j.gca.2006.01.033
      [8] Fan, H.R., Hu, F.F., Wilde, S.A., et al., 2011.The Qiyugou Gold-Bearing Breccia Pipes, Xiong'ershan Region, Central China:Fluid-Inclusion and Stable-Isotope Evidence for an Origin from Magmatic Fluids.International Geology Review, 53(1):25-45. https://doi.org/10.1080/00206810902875370
      [9] Franklin, J.M., Gibson, H.L., Jonasson, I.R., et al., 2005.Volcanogenic Massive Sulfide Deposit.Economic Geology, 100th Anniversary Volume: 523-560.
      [10] Galley, A.G., Hannington, M.D., Jonasson, I.R., 2007.Volcanogenic Massive Sulphide Deposits.In: Goodfellow, W.D., ed., Mineral Deposits of Canada: A Synthesis of Major Deposit-Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods.Geological Association of Canada, Mineral Deposits Division, Special Publication, 5: 141-161.
      [11] Hagemann, S.G., Lüders, V., 2003.P-T-X Conditions of Hydrothermal Fluids and Precipitation Mechanism of Stibnite-Gold Mineralization at the Wiluna Lode-Gold Deposits, Western Australia:Conventional and Infrared Microthermometric Constraints.Mineralium Deposita, 38(8):936-952. https://doi.org/10.1007/s00126-003-0351-6
      [12] Hall, D.L., Sterner, S.M., Bodnar, R.J., 1988.Freezing Point Depression of NaCl-KCl-H2O Solutions.Economic Geology, 83(1):197-202. https://doi.org/10.2113/gsecongeo.83.1.197
      [13] Hannington, M.D., de Ronde, C.E.J., Petersen, S., 2005.Seafloor Tectonics and Submarine Hydrothermal Systems.Economic Geology, 100th Anniversary Volume: 111-141.
      [14] Hannington, M.D., Poulsen, K.H., Thompson, J.F.H., et al., 1999.Volcanogenic Gold in the Massive Sulfide Environment.In: Barrie, C.T., Hannington, M.D., eds., Volcanic-Associated Massive Sulfide Deposits: Processes and Examples in Modern and Ancient Settings.Reviews in Economic Geology, 8: 325-356.
      [15] Hedenquist, J.W., Arribas, A., Reynolds, T.J., 1998.Evolution of an Intrusion-Centered Hydrothermal System; Far Southeast-Lepanto Porphyry and Epithermal Cu-Au Deposits, Philippines.Economic Geology, 93(4):373-404. https://doi.org/10.2113/gsecongeo.93.4.373
      [16] Hou, Z.Q., Li, Y.Q., Zhang, Q.L., et al., 2003.End-Members and Mixing of Fluids in Submarine Hydrothermal System:Evidence from Fluid Inclusions in the Baiyinchang and Gacun VMS Deposits.Acta Petrologica Sinica, 19(2):221-234 (in Chinese with English abstract).
      [17] Li, F.M., Wang, Z.S., Hou W.B., et al., 2002.Synthetic Prospecting Model Developed from Xiaorequanzi Copper Deposit in East Tianshan, Xinjiang.Xinjiang Geology, 20(1):38-43 (in Chinese with English abstract).
      [18] Li, H.Q., Chen, F.W., 2002.Radioisotope Dating of Xiaorequanzi Copper-Zinc Deposit in Eastern Xinjiang and Its Implication to Mineralization Origin.Mineral Deposits, 21(S1):401-404 (in Chinese with English abstract).
      [19] Liu, S.T., Lü, X.B., Cao, X.F., et al., 2011.Isotopic Geochemistry of the Xiaorequanzi Copper (Zinc) Deposit in Xinjiang and Its Significance.Geology and Prospecting, 47(4):624-632 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dzykt201104009
      [20] Liu, S.T., Lü, X.B., Cao, X.F., et al., 2012.A Study of Rare Earth and Trace Elements and Microstructure of Sulfide Minerals from the Xiaorequanzi Copper (Zinc) Deposit of Xinjiang.Acta Geoscientia Sinica, 33(2):197-208 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb201202008
      [21] Mao, Y.J., Qin, K.Z., Li, C.S., et al., 2015.A Modified Genetic Model for the Huangshandong Magmatic Sulfide Deposit in the Central Asian Orogenic Belt, Xinjiang, Western China.Mineralium Deposita, 50(1):65-82. https://doi.org/10.1007/s00126-014-0524-5
      [22] Mernagh, T.P., Bastrakov, E.N., Zaw, K., et al., 2007.Comparison of Fluid Inclusion Data and Mineralization Processes for Australian Orogenic Gold and Intrusion-Related Gold Systems.Acta Petrologica Sinica, 23(1):21-32.
      [23] Ohmoto, H., Skinner, B.J., 1985.The Kuroko and Related Volcanogenic Massive Sulfide Deposits.The Economic Geology Publishing Company, Michigan.
      [24] Pirajno, F., 2009.Hydrothermal Processes and Mineral Systems.Springer, Berlin.
      [25] Pirajno, F., 2013.The Geology and Tectonics Settings of China's Mineral Deposits.Springer, Berlin.
      [26] Qin, K.Z., Fang, T.H., Wang, S.L., et al., 2002.Plate Tectonics Division, Evolution and Metallogenic Settings in Eastern Tianshan Mountains, NW-China.Xinjiang Geology, 20(4):302-308 (in Chinese with English abstract).
      [27] Ramboz, C., Pichavant, M., Weisbrod, A., 1982.Fluid Immiscibility in Natural Processes:Use and Misuse of Fluid Inclusion Data.Chemical Geology, 37(1-2):29-48. https://doi.org/10.1016/0009-2541(82)90065-1
      [28] Roedder, E., 1984.Fluid Inclusions.Reviews in Mineralogy, 12:473-484. http://d.old.wanfangdata.com.cn/Periodical/dqkx200802015
      [29] Rui, Z.Y., Liu, Y.L., Wang, L.S., et al., 2002.The Eastern Tianshan Porphyry Copper Belt in Xinjiang and Its Tectonic Framework.Acta Geologica Sinica, 76(1):83-94 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200201011
      [30] Schardt, C., Cooke, D.R., Gemmell, J.B., et al., 2001.Geochemical Modeling of the Zoned Footwall Alteration Pipe, Hellyer Volcanic-Hosted Massive Sulfide Deposit, Western Tasmania, Australia.Economic Geology, 96(5):1037-1054. https://doi.org/10.2113/gsecongeo.96.5.1037
      [31] Shen, P., Pan, H.D., Zhou, T.F., et al., 2014.Petrography, Geochemistry and Geochronology of the Host Porphyries and Associated Alteration at the Tuwu Cu Deposit, NW China:A Case for Increased Depositional Efficiency by Reaction with Mafic Hostrock? Mineralium Deposita, 49(6):709-731. https://doi.org/10.1007/s00126-014-0517-4
      [32] Tornos, F., 2006.Environment of Formation and Styles of Volcanogenic Massive Sulfides:The Iberian Pyrite Belt.Ore Geology Reviews, 28(3):259-307. https://doi.org/10.1016/j.oregeorev.2004.12.005
      [33] Toscano, M., Sáez, R., Almodóvar, G., 1997.Hydrothermal Fluid Evolution during the Genesis of the Aznalcollar Massive Sulphides (Iberian Pyrite Belt):Fluid Inclusion Evidences.Geogaceta, 21:211-214.
      [34] Ulrich, T., Golding, S.D., Kamber, B.S., et al., 2003.Different Mineralization Styles in a Volcanic-Hosted Ore Deposit:The Fluid and Isotopic Signatures of the Mt Morgan Au-Cu Deposit, Australia.Ore Geology Reviews, 22(1-2):61-90. https://doi.org/10.1016/s0169-1368(02)00109-9
      [35] Urabe, T., Sato, T., 1978.Kuroko Deposits of the Kosaka Mine, Northeast Honshu, Japan; Products of Submarine Hot Springs on Miocene Sea Floor.Economic Geology, 73(2):161-179. https://doi.org/10.2113/gsecongeo.73.2.161
      [36] Vanko, D.A., Milby, B.J., Heinzquith, S.W., 1991.Massive Sulfides with Fluid-Inclusion-Bearing Quartz from a Young Seamount on the East Pacific Rise.The Canadian Mineralogist, 29:453-460.
      [37] Wang, D.H., Chen, Y.C., 2001.A Preliminary Study on the Metallogenic Series Type of Fe-Cu-Pb-Zn Ore Deposits Related to Submarine Volcanism and Its Origin.Mineral Deposits, 20(2):112-118 (in Chinese with English abstract).
      [38] Wang, J., Sun, F.Y., Yu, L., et al., 2017.Fluid Inclusions and H-O-S-Pb Isotope Systematics of the Galonggema Cu Deposit in Yushu, Qinghai Province, China.Earth Science, 42(6):941-956 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.074
      [39] Wang, J.B., Wang, Y.W., He, Z.J., 2006.Ore Deposits as a Guide to the Tectonic Evolution in the East Tianshan Mountains, NW China.Geology in China, 33(3):461-469 (in Chinese with English abstract).
      [40] Wang, P., Zhu, Z.X., Zhao, T.Y., et al., 2011.Volcanic Rock Petrochemical Characteristics and Tectonic Significance of the Xiaorequanzi Formation, Queletage, Jueluotage Area of Xinjiang.Xinjiang Geology, 29(4):372-376 (in Chinese with English abstract).
      [41] Wang, X., Gao, J., He, S., et al., 2017.Fluid Inclusion and Geochemistry Studies of Calcite Veins in Shizhu Synclinorium, Central China:Record of Origin of Fluids and Diagenetic Conditions.Journal of Earth Science, 28(2):315-332. https://doi.org/10.1007/s12583-016-0921-7
      [42] Wang, Z.S., Lü, X.B., 2006.Genetic Analysis of Xiaorequanzi Copper-Deposit, Xinjiang.Geological Science and Technology Information, 25(3):68-72 (in Chinese with English abstract).
      [43] Wen, C.Q., Xu, X.H., Mao, Y.S., 2002.A Study on Ore-Forming Process of the Xiaorequanzi Copper Deposit, Xinjiang.Journal of Mineralogy and Petrology, 22(3):29-32 (in Chinese with English abstract).
      [44] Wilkinson, J.J., 2001.Fluid Inclusions in Hydrothermal Ore Deposits.Lithos, 55(1-4):229-272. https://doi.org/10.1016/s0024-4937(00)00047-5
      [45] Xiao, B., Chen, H.Y., Hollings, P., et al., 2017.Magmatic Evolution of the Tuwu-Yandong Porphyry Cu Belt, NW China:Constraints from Geochronology, Geochemistry and Sr-Nd-Hf Isotopes.Gondwana Research, 43:74-91. https://doi.org/10.1016/j.gr.2015.09.003
      [46] Xiao, W.J., Han, C.M., Yuan, C., et al., 2008.Middle Cambrian to Permian Subduction-Related Accretionary Orogenesis of Northern Xinjiang, NW China:Implications for the Tectonic Evolution of Central Asia.Journal of Asian Earth Sciences, 32(2-4):102-117. https://doi.org/10.1016/j.jseaes.2007.10.008
      [47] Yang, K.H., Scott, S.D., 2002.Magmatic Degassing of Volatiles and Ore Metals into a Hydrothermal System on the Modern Sea Floor of the Eastern Manus Back-Arc Basin, Western Pacific.Economic Geology, 97(5):1079-1100. https://doi.org/10.2113/gsecongeo.97.5.1079
      [48] Zaw, K., Gemmell, J.B., Large, R.R., et al., 1996.Evolution and Source of Ore Fluids in the Stringer System, Hellyer VHMS Deposit, Tasmania, Australia:Evidence from Fluid Inclusion Microthermometry and Geochemistry.Ore Geology Reviews, 10(3-6):251-278. https://doi.org/10.1016/0169-1368(95)00026-7
      [49] Zeng, Z.G., Qin, Y.S., Zhai, S.K., 2003.He, Ne and Ar Isotope Compositions of Fluid Inclusions in Massive Sulfides from the Jade Hydrothermal Field, Okinawa Trough.Acta Oceanologica Sinica, 25(4):36-42 (in Chinese with English abstract).
      [50] Zheng, Y., Zhang, L., Chen, Y.J., et al., 2013.Metamorphosed Pb-Zn-(Ag) Ores of the Keketale VMS Deposit, NW China:Evidence from Ore Textures, Fluid Inclusions, Geochronology and Pyrite Compositions.Ore Geology Reviews, 54:167-180. https://doi.org/10.1016/j.oregeorev.2013.03.009
      [51] Zhu, Y.F., An, F., Feng, W.Y., et al., 2016.Geological Evolution and Huge Ore-Forming Belts in the Core Part of the Central Asian Metallogenic Region.Journal of Earth Science, 27(3):491-506. https://doi.org/10.1007/s12583-016-0673-7
      [52] 陈衍景, 倪培, 范宏瑞, 等, 2007.不同类型热液金矿系统的流体包裹体特征.岩石学报, 23(9):2085-2108. doi: 10.3969/j.issn.1000-0569.2007.09.009
      [53] 党院, 陈懋弘, 毛景文, 等, 2014.四川省白玉县呷村-有热矿区成矿流体地球化学.岩石学报, 30(1):221-236. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201401017
      [54] 侯增谦, 李荫清, 张绮玲, 等, 2003.海底热水成矿系统中的流体端员与混合过程:来自白银厂和呷村VMS矿床的流体包裹体证据.岩石学报, 19(2):221-234. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200302003
      [55] 李凤鸣, 王宗社, 侯文斌, 等, 2002.东天山小热泉子铜矿床综合找矿模型的建立.新疆地质, 20(1):38-43. doi: 10.3969/j.issn.1000-8845.2002.01.009
      [56] 李华芹, 陈富文, 2002.东疆小热泉子铜锌矿床成岩成矿作用年代学及矿床成因讨论.矿床地质, 21(S1):401-404. http://d.old.wanfangdata.com.cn/Conference/4400430
      [57] 刘申态, 吕新彪, 曹晓峰, 等, 2011.新疆小热泉子铜(锌)矿床同位素地球化学研究及其意义.地质与勘探, 47(4):624-632. http://d.old.wanfangdata.com.cn/Periodical/dzykt201104009
      [58] 刘申态, 吕新彪, 曹晓峰, 等, 2012.新疆小热泉子铜(锌)矿床硫化物显微结构及稀土、微量元素研究.地球学报, 33(2):197-208. http://d.old.wanfangdata.com.cn/Periodical/dqxb201202008
      [59] 秦克章, 方同辉, 王书来, 等, 2002.东天山板块构造分区、演化与成矿地质背景研究.新疆地质, 20(4):302-308. doi: 10.3969/j.issn.1000-8845.2002.04.002
      [60] 芮宗瑶, 刘玉琳, 王龙生, 等, 2002.新疆东天山斑岩型铜矿带及其大地构造格局.地质学报, 76(1):83-94. http://d.old.wanfangdata.com.cn/Periodical/dizhixb200201011
      [61] 王登红, 陈毓川, 2001.与海相火山作用有关的铁-铜-铅-锌矿产成矿系列类型及成因初探.矿床地质, 20(2):112-118. doi: 10.3969/j.issn.0258-7106.2001.02.003
      [62] 王键, 孙丰月, 禹禄, 等, 2017.青海玉树尕龙格玛VMS型矿床流体包裹体及H-O-S-Pb同位素特征.地球科学, 42(6):941-956 http://www.earth-science.net/WebPage/Article.aspx?id=3589
      [63] 王京彬, 王玉往, 何志军, 2006.东天山大地构造演化的成矿示踪.中国地质, 33(3):461-469. doi: 10.3969/j.issn.1000-3657.2006.03.002
      [64] 王平, 朱志新, 赵同阳, 等, 2011.新疆觉罗塔格地区却勒塔格一带小热泉子组火山岩地球化学特征及构造意义.新疆地质, 29(4):372-376. doi: 10.3969/j.issn.1000-8845.2011.04.003
      [65] 王宗社, 吕新彪, 2006.新疆小热泉子铜矿床成因.地质科技情报, 25(3):68-72. doi: 10.3969/j.issn.1000-7849.2006.03.012
      [66] 温春齐, 徐新煌, 茅燕石, 2002.小热泉子铜矿床成矿过程分析.矿物岩石, 22(3):29-32. doi: 10.3969/j.issn.1001-6872.2002.03.007
      [67] 曾志刚, 秦蕴珊, 翟世奎, 2003.冲绳海槽Jade热液区块状硫化物中流体包裹体的氦、氖、氨同位素组成.海洋学报, 25(4):36-42. doi: 10.3321/j.issn:0253-4193.2003.04.005
    • 加载中
    图(11) / 表(3)
    计量
    • 文章访问数:  4897
    • HTML全文浏览量:  1506
    • PDF下载量:  21
    • 被引次数: 0
    出版历程
    • 收稿日期:  2018-01-13
    • 刊出日期:  2018-09-15

    目录

      /

      返回文章
      返回