Petrogenesis and Mineralization of Yuhai and Sanchakou Copper Deposit: Constraints from Mineral Chemistry of Biotite in Xinjiang, Northwestern China
-
摘要: 黑云母的化学成分对于揭示结晶条件、岩石成因、成矿演化以及含矿性评价等具有重要的指示意义.利用电子探针(EPMA)对新疆玉海和三岔口铜矿中的黑云母进行成分分析,结果表明与成矿相关岩体的黑云母具有富镁贫铁的特征,而无矿化岩体中的黑云母则呈现富铁贫镁的特征.分析结果显示矿化岩体中黑云母为再平衡镁质黑云母,而无矿化岩体中黑云母为原生铁质黑云母;它们的寄主岩石均属于I型花岗岩,形成于与俯冲相关的构造背景,但是与矿化相关岩体的岩浆源区为壳幔混合来源,而无矿岩体的源区为地壳来源,形成过程中有新生地壳组分的混染;两类黑云母的结晶温度为529~677 ℃,寄主岩体的固结压力为1.1~2.8 kbar,均形成于高氧逸度条件;此外,黑云母的Mg/Fe和Fe2+/(Fe2++Mg2+)还可以区分斑岩型铜矿的含矿性.Abstract: Mineral composition of biotite is a significant indicator of revealing the crystallization conditions, petrogenesis, mineralization and evaluation of ore-bearing potential in porphyry copper deposit systems. This study utilizes electron microprobe analyses (EPMA) to determine the mineral composition of biotite in Yuhai and Sanchakou porphyry copper deposits, Xinjiang. The EPMA data shows that the characteristics of biotite are rich in magnesium and poor in iron in ore-bearing intrusions; whereas those in ore-barren intrusions are rich in iron and poor in magnesium. The biotite is mainly composed of re-equilibrated Mg-biotite in ore-bearing intrusions and is primary Fe-biotite in ore-barren intrusions. The host rocks of all the biotite are I-type granite and are formed during subduction. The ore-bearing magma was derived from the mixing of mantle and crust, however, the ore-barren magma was mainly generated from crust with involvement of juvenile crustal components during formation. The crystallization temperature and pressure of biotites are 529-677℃ and 1.1-2.8 kbar, and they formed in the condition of high oxygen fugacity. In addition, the Mg/Fe and Fe2+/(Fe2++Mg2+) of biotites may be used as a tool to discriminate between the ore-bearing and ore-barren intrusions in porphyry copper systems.
-
图 1 东天山地区构造单元划分(a);玉海铜矿床地质简图(b);三岔口铜矿床地质简图(c)
图a据Mao et al.(2005)、王京彬等(2006);图b据张照伟等(2016);图c据郎智君等(1992)
Fig. 1. Sketch showing the tectonic units of the eastern Tianshan (a); geological sketch of Yuhai copper deposit (b) and Sanchakou copper deposit (c)
图 2 三岔口和玉海铜矿区的岩石学和矿物学特征
a.三岔口铜矿花岗闪长斑岩岩石照片;b.花岗闪长斑岩中的长石和黑云母斑晶;c.花岗闪长斑岩中的角闪石和黑云母;d.三岔口花岗闪长斑岩中的浸染状铜矿化;e.玉海铜矿石英闪长岩岩石照片;f.石英闪长岩中的黑云母和长柱状角闪石;g~h.石英闪长岩中的黑云母和针状角闪石;i.玉海石英闪长岩中的浸染状铜矿化;j.玉海铜矿二云母花岗岩岩石照片;k.二云母花岗岩中的暗褐色黑云母;l.二云母花岗岩内包裹在石英中的黑云母;m.二云母花岗岩中的岩浆黑云母和白云母;n.二云母花岗岩中沿长石解理蚀变形成的白云母;o.二云母花岗岩中的石榴子石.Pl.斜长石;Kfs.钾长石;Amp.角闪石;Bi.黑云母;Q.石英;Mt.磁铁矿;Ms.白云母;Grt.石榴子石;Py.黄铁矿;Ccp.黄铜矿
Fig. 2. Photographs showing the characteristics of petrology and mineralogy from Yuhai and Sanchakou copper deposit districts
图 3 云母分类图解(a);黑云母Fe/(Fe+Mg)-AlⅣ图解(b)
图a底图据Foster(1960);图b据Deer et al.(1992)
Fig. 3. The classification diagram of biotite (a); Fe/(Fe+Mg)-AlⅣ diagram of biotite (b)
图 4 黑云母的Fe3+-Fe2+-Mg2+图解(a)和10TiO2-FeO*-MgO图解(b)
图a据Beane(1974);图b据Nachit et al.(2005)
Fig. 4. Fe3+-Fe2+-Mg2+ diagram (a) and 10TiO2-FeO*-MgO diagram (b) of biotite
图 5 白云母成因判别图解
图中黑色点为美国Old Woman-Piute Range的数据,据Miller et al.(1981)
Fig. 5. The genetic discrimination diagram of muscovite
图 6 黑云母的Fe3+/(Fe3++Fe2+)-Mg/(Mg+Fe2++Fe3+)图解(a),FeO*/(FeO*+MgO)-MgO图解(b),以及MgO-FeO*-Al2O3图解(c)
图a据徐克勤等(1982);图b据周作侠(1988);图c据Abdel-Rahman(1994)
Fig. 6. Fe3+/(Fe3++Fe2+)-Mg/(Mg+Fe2++Fe3+) diagram (a), FeO*/(FeO*+MgO)-MgO diagram (b), and MgO-FeO*-Al2O3 diagram (c) of biotite
图 7 黑云母的Ti-Mg/(Mg+Fe)图解(a)和Fe3+-Fe2+-Mg2+图解(b)
图a据Henry et al.(2005);图b据Wones and Eugster(1965)
Fig. 7. Ti-Mg/(Mg+Fe) diagram (a) and Fe3+-Fe2+-Mg2+ diagram (b) of biotite
图 8 黑云母Fe2+/(Fe2++Mg2+)-Mg/Fe图解
数据据傅金宝(1981)、Idrus et al.(2007)、秦克章等(2009)、Boomeri et al.(2010);Li et al.(2012)、Afshooni et al.(2013)、Parsapoor et al.(2015)、Bao et al.(2016)以及Cao et al.(2017)
Fig. 8. Fe2+/(Fe2++Mg2+)-Mg/Fe diagram of biotite
表 1 三岔口-玉海铜矿区云母探针分析结果表(%)
Table 1. Electron microprobe analyses (%) of micas from Yuhai and Sanchakou copper deposit district
岩性 花岗闪长斑岩(三岔口) 石英闪长岩(玉海) 二云母花岗岩(玉海) 样品号 SCK17-1 SCK17-2 SCK17-3 SCK17-4 SCK17-5 SCK17-6 S102-5-1 S3301-9-1 S3301-9-2 YH148-2 YH117-2 YH117-3 YH126-1 YH126-2 YH126-3 YH126-4 YH182-1 YH182-2 YH182-3 YH182-4 YH1-1 YH1-2 YH1-3 YH1-4 YH1-5 YH1-1M YH1-2M YH1-3M SiO2 38.42 38.92 38.13 38.16 38.62 38.39 36.22 35.08 33.79 35.87 35.96 38.16 36.58 38.24 36.11 38.72 37.27 35.90 37.32 37.19 35.15 35.65 35.28 35.75 35.33 45.45 46.10 45.35 TiO2 1.19 1.11 1.14 1.29 1.29 1.24 1.57 2.46 2.01 3.17 1.59 1.87 2.19 2.06 3.34 2.10 2.81 2.64 2.49 2.71 2.61 2.49 2.46 2.60 2.37 0.94 0.81 0.89 Al2O3 15.17 15.18 15.70 15.39 16.17 16.00 17.11 15.45 15.86 15.03 14.82 14.93 14.78 14.16 14.29 14.32 14.44 14.53 14.70 15.03 16.30 16.42 16.74 16.42 16.99 32.50 31.59 31.68 FeO 13.28 13.53 13.79 12.66 13.26 13.42 14.50 20.32 19.31 18.29 16.70 15.10 17.28 16.25 18.02 16.37 18.05 18.77 18.48 17.77 20.14 20.15 19.80 19.86 22.17 4.10 4.82 4.54 MnO 0.08 0.08 0.09 0.10 0.09 0.10 0.21 0.69 0.70 0.35 0.40 0.32 0.27 0.19 0.26 0.20 0.32 0.40 0.36 0.32 1.09 1.16 1.04 1.17 0.89 0.04 0.06 0.05 MgO 17.16 16.67 16.48 16.17 15.66 16.49 18.08 12.82 12.40 14.83 15.66 14.84 15.61 14.84 14.71 15.06 11.84 12.65 12.22 12.08 8.80 9.41 8.71 9.04 8.38 0.79 0.95 0.78 CaO 0.11 0.16 0.20 0.30 0.05 0.03 0.13 0.16 0.54 1.04 0.35 0.07 0.21 0.29 0.59 0.12 0.13 0.05 0.04 0.09 0.00 0.00 0.00 0.00 0.00 0.02 0.02 0.02 Na2O 0.17 0.20 0.18 0.16 0.18 0.27 0.11 0.12 0.26 0.07 0.04 0.14 0.13 0.19 0.13 0.21 0.11 0.04 0.05 0.08 0.10 0.10 0.13 0.11 0.11 0.47 0.36 0.48 K2O 8.92 8.80 8.39 8.66 9.30 8.89 8.04 8.61 7.36 6.71 6.87 8.76 6.99 8.03 6.47 8.50 9.14 8.26 9.71 9.48 10.13 9.78 9.88 10.02 9.61 10.57 10.40 10.43 Cl 0.22 0.00 0.00 0.41 0.00 0.28 0.49 0.00 0.00 0.00 0.00 0.43 0.00 0.00 0.60 0.00 0.00 0.00 0.00 0.11 0.00 0.00 F 0.00 0.01 0.01 0.00 0.01 0.01 0.02 0.03 0.08 0.01 0.01 0.01 0.03 0.03 0.01 0.02 0.01 0.00 0.00 0.02 0.01 0.01 0.03 0.02 0.02 0.00 0.01 0.00 Total 94.67 94.65 94.09 93.22 94.62 95.05 95.99 95.73 92.28 95.37 92.41 94.20 94.44 94.25 93.93 95.60 94.12 93.58 95.37 94.76 94.79 95.16 94.06 94.98 95.85 94.96 95.10 94.21 SiⅣ 5.691 5.764 5.681 5.715 5.724 5.660 5.322 5.372 5.331 5.396 5.534 5.736 5.506 5.757 5.493 5.756 5.718 5.546 5.677 5.666 5.467 5.512 5.515 5.538 5.462 6.180 6.269 6.229 AlⅣ 2.309 2.236 2.319 2.285 2.276 2.340 2.678 2.628 2.669 2.604 2.466 2.264 2.494 2.243 2.507 2.244 2.282 2.454 2.323 2.334 2.533 2.488 2.485 2.462 2.538 1.820 1.731 1.771 AlⅥ 0.339 0.412 0.438 0.431 0.548 0.439 0.286 0.160 0.279 0.061 0.220 0.380 0.129 0.270 0.056 0.266 0.328 0.192 0.312 0.364 0.455 0.504 0.600 0.535 0.558 3.387 3.333 3.358 Ti 0.133 0.124 0.127 0.145 0.144 0.138 0.174 0.284 0.238 0.359 0.184 0.211 0.248 0.234 0.382 0.234 0.325 0.307 0.285 0.310 0.305 0.290 0.290 0.303 0.276 0.096 0.083 0.092 Fe3+ 0.333 0.353 0.366 0.465 0.377 0.381 0.211 0.195 0.274 0.434 0.382 0.410 0.495 0.453 0.513 0.413 0.438 0.461 0.331 0.394 0.394 0.321 0.347 0.335 0.324 0.466 0.548 0.522 Fe2+ 1.311 1.322 1.353 1.120 1.267 1.274 1.571 2.408 2.274 1.866 1.768 1.489 1.681 1.593 1.779 1.622 1.878 1.964 2.021 1.871 2.226 2.285 2.242 2.237 2.542 0.000 0.000 0.000 Mn 0.011 0.010 0.011 0.012 0.011 0.012 0.026 0.090 0.094 0.045 0.052 0.041 0.034 0.024 0.033 0.025 0.042 0.052 0.046 0.041 0.143 0.152 0.137 0.154 0.116 0.005 0.006 0.006 Mg 3.788 3.679 3.661 3.609 3.460 3.624 3.961 2.926 2.916 3.325 3.593 3.326 3.503 3.332 3.336 3.337 2.708 2.913 2.771 2.744 2.041 2.168 2.029 2.086 1.931 0.160 0.193 0.159 Ca 0.018 0.026 0.032 0.049 0.008 0.004 0.020 0.026 0.091 0.168 0.058 0.011 0.034 0.046 0.096 0.019 0.021 0.008 0.006 0.015 0.000 0.000 0.000 0.000 0.001 0.003 0.003 0.003 Na 0.049 0.058 0.051 0.048 0.052 0.076 0.032 0.035 0.079 0.020 0.012 0.042 0.038 0.054 0.037 0.059 0.032 0.013 0.014 0.025 0.031 0.029 0.039 0.034 0.033 0.123 0.095 0.126 K 1.685 1.662 1.594 1.654 1.758 1.671 1.508 1.682 1.481 1.288 1.349 1.681 1.343 1.541 1.255 1.612 1.790 1.628 1.884 1.843 2.011 1.928 1.970 1.980 1.895 1.833 1.804 1.827 OH- 3.943 3.995 3.996 3.895 3.993 3.925 3.990 3.985 3.960 3.998 3.996 3.995 3.862 3.988 3.993 3.991 3.995 3.887 4.000 3.993 3.837 3.994 3.984 3.992 3.991 3.972 3.994 4.000 Cl 0.056 0.000 0.000 0.105 0.000 0.071 0.000 0.000 0.000 0.000 0.000 0.000 0.124 0.000 0.000 0.000 0.000 0.113 0.000 0.000 0.158 0.000 0.000 0.000 0.000 0.026 0.000 0.000 F 0.000 0.005 0.004 0.000 0.007 0.005 0.010 0.015 0.040 0.002 0.004 0.005 0.013 0.012 0.007 0.009 0.005 0.000 0.000 0.007 0.005 0.006 0.016 0.008 0.009 0.002 0.006 0.000 XMg 0.697 0.687 0.681 0.695 0.678 0.686 0.690 0.529 0.534 0.591 0.626 0.637 0.617 0.620 0.593 0.621 0.539 0.546 0.541 0.548 0.438 0.454 0.439 0.448 0.403 0.256 0.260 0.233 Fe2+/(Fe2++Mg) 0.257 0.264 0.270 0.237 0.268 0.260 0.284 0.451 0.438 0.359 0.330 0.309 0.324 0.323 0.348 0.327 0.409 0.403 0.422 0.405 0.522 0.513 0.525 0.517 0.568 0.000 0.000 0.000 Mg/Fe 2.303 2.196 2.130 2.276 2.105 2.190 2.223 1.124 1.144 1.446 1.672 1.752 1.610 1.629 1.456 1.640 1.169 1.201 1.178 1.212 0.779 0.832 0.784 0.811 0.674 0.343 0.352 0.304 AlT 2.648 2.648 2.757 2.717 2.824 2.780 2.964 2.788 2.949 2.665 2.687 2.645 2.623 2.513 2.563 2.510 2.610 2.646 2.635 2.699 2.988 2.992 3.085 2.998 3.096 5.208 5.064 5.129 T(℃) 548 529 532 564 554 550 593 621 595 669 579 605 624 616 677 616 643 637 625 639 616 610 608 616 594 P(kbar) 1.5 1.5 1.8 1.7 2.0 1.9 2.5 1.9 2.4 1.5 1.6 1.5 1.4 1.1 1.2 1.1 1.4 1.5 1.5 1.6 2.5 2.5 2.8 2.6 2.8 H(km) 5.5 5.5 6.8 6.3 7.5 7.0 9.1 7.1 8.9 5.7 6.0 5.5 5.2 4.0 4.6 4.0 5.1 5.5 5.4 6.1 9.3 9.4 10.4 9.5 10.6 注:XMg为Mg/(Mg+Fe);AlT为全铝含量;温度计算公式据 Henry et al.(2005) ;压力计算公式据Uchida et al.(2007) ;样品号YH1-1M、YH1-2M和YH1-3M为白云母. -
[1] Abdel-Rahman, A.F.M., 1994.Nature of Biotites from Alkaline, Calc-Alkaline, and Peraluminous Magmas.Journal of Petrology, 35(2):525-541. https://doi.org/10.1093/petrology/35.2.525 [2] Afshooni, S.Z., Mirnejad, H., Esmaeily, D., et al., 2013.Mineral Chemistry of Hydrothermal Biotite from the Kahang Porphyry Copper Deposit (NE Isfahan), Central Province of Iran.Ore Geology Reviews, 54:214-232. https://doi.org/10.1016/j.oregeorev.2013.04.004 [3] Bao, B., Webster, J.D., Zhang, D.H., et al., 2016.Compositions of Biotite, Amphibole, Apatite and Silicate Melt Inclusions from the Tongchang Mine, Dexing Porphyry Deposit, SE China:Implications for the Behavior of Halogens in Mineralized Porphyry Systems.Ore Geology Reviews, 79:443-462. https://doi.org/10.1016/j.oregeorev.2016.05.024 [4] Beane, R.E., 1974.Biotite Stability in the Porphyry Copper Environment.Economic Geology, 69(2):241-256. https://doi.org/10.2113/gsecongeo.69.2.241 [5] Boomeri, M., Nakashima, K., Lentz, D.R., 2010.The Sarcheshmeh Porphyry Copper Deposit, Kerman, Iran:A Mineralogical Analysis of the Igneous Rocks and Alteration Zones Including Halogen Element Systematics Related to Cu Mineralization Processes.Ore Geology Reviews, 38(4):367-381. https://doi.org/10.1016/j.oregeorev.2010.09.001 [6] Bora, S., Kumar, S., 2015.Geochemistry of Biotites and Host Granitoid Plutons from the Proterozoic Mahakoshal Belt, Central India Tectonic Zone:Implication for Nature and Tectonic Setting of Magmatism.International Geology Review, 57(11-12):1686-1706. https://doi.org/10.1080/00206814.2015.1032372 [7] Cao, M.J., Qin, K.Z., Li, G.M., et al., 2017.Mineralogical Evidence for Crystallization Conditions and Petrogenesis of Ilmenite-Series I-Type Granitoids at the Baogutu Reduced Porphyry Cu Deposit (Western Junggar, NW China):Mössbauer Spectroscopy, EPM and LA-(MC)-ICPMS Analyses.Ore Geology Reviews, 86:382-403. https://doi.org/10.1016/j.oregeorev.2017.02.033 [8] Deer, W.A., Howie, R.A., Zussman, J., 1992.An Introduction to the Rock-Forming Minerals (Second Edition).Longman Scientific and Technical, London. [9] Einali, M., Alirezaei, S., Zaccarini, F., 2014.Chemistry of Magmatic and Alteration Minerals in the Chahfiruzeh Porphyry Copper Deposit, South Iran:Implications for the Evolution of the Magmas and Physicochemical Conditions of the Ore Fluids.Turkish Journal of Earth Sciences, 23(2):147-165. https://doi.org/10.3906/yer-1301-1 [10] Foster, M.D., 1960.Interpretation of the Composition of Trioctahedral Micas.United States Geological Survey, Professional Paper, Washington D.C.. [11] Fu, J.B., 1981.Chemical Composition of Biotite in Porphyry Copper Deposits.Geology and Exploration, 9(1):16-19 (in Chinese with English abstract). [12] Henry, D.J., Guidotti, C.V., Thomson, J.A., 2005.The Ti-Saturation Surface for Low-to-Medium Pressure Metapelitic Biotites:Implications for Geothermometry and Ti-Substitution Mechanisms.American Mineralogist, 90(2-3):316-328. https://doi.org/10.2138/am.2005.1498 [13] Idrus, A., Kolb, J., Meyer, F.M., 2007.Chemical Composition of Rock-Forming Minerals in Copper-Gold-Bearing Tonalite Porphyries at the Batu Hijau Deposit, Sumbawa Island, Indonesia:Implications for Crystallization Conditions and Fluorine-Chlorine Fugacity.Resource Geology, 57(2):102-113. https://doi.org/10.1111/j.1751-3928.2007.00010.x [14] Kesler, S.E., Issigonis, M.J., Brownlow, A.H., et al., 1975.Geochemistry of Biotites from Mineralized and Barren Intrusive Systems.Economic Geology, 70(3):559-567. https://doi.org/10.2113/gsecongeo.70.3.559 [15] Lackey, J.S., Romero, G.A., Bouvier, A.S., et al., 2012.Dynamic Growth of Garnet in Granitic Magmas.Geology, 40(2):171-174. https://doi.org/10.1130/g32349.1 [16] Lang, Z.J., Shi, B., Li, T.D., 1992.Genesis of Copper Deposit in Sanchakou, Hami, Xinjiang.Xinjiang Geology, 10(3):244-252 (in Chinese with English abstract). [17] Li, J.X., Li, G.M., Qin, K.Z., et al., 2012.Mineralogy and Mineral Chemistry of the Cretaceous Duolong Gold-Rich Porphyry Copper Deposit in the Bangongco Arc, Northern Tibet.Resource Geology, 62(1):19-41. https://doi.org/10.1111/j.1751-3928.2011.00178.x [18] Li, X.W., Mo, X.X., Scheltens, M., et al., 2016.Mineral Chemistry and Crystallization Conditions of the Late Cretaceous Mamba Pluton from the Eastern Gangdese, Southern Tibetan Plateau.Journal of Earth Science, 27(4):545-570. https://doi.org/10.1007/s12583-016-0713-5 [19] Lin, W.W., Peng, L.J., 1994.The Estimation of Fe3+ and Fe2+ Contents in Amphibole and Biotite from EPMA Data.Journal of Changchun University of Earth Sciences, 24(2):155-162 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-CCDZ402.004.htm [20] Mao, J.W., Goldfarb, R.J., Wang, Y.T., et al., 2005.Late Paleozoic Base and Precious Metal Deposits, East Tianshan, Xinjiang, China:Characteristics and Geodynamic Setting.Episodes, 28(1):23-30. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ027203778/ [21] Miller, C.F., Stoddard, E.F., Bradfish, L.J., et al., 1981.Composition of Plutonic Muscovite:Genetic Implications.Canadian Mineralogist, 19(1):25-34. [22] Nachit, H., Ibhi, A., Abia, E.H., et al., 2005.Discrimination between Primary Magmatic Biotites, Reequilibrated Biotites and Neoformed Biotites.Comptes Rendus Geoscience, 337(16):1415-1420. https://doi.org/10.1016/j.crte.2005.09.002 [23] Parsapoor, A., Khalili, M., Tepley, F., et al., 2015.Mineral Chemistry and Isotopic Composition of Magmatic, Re-Equilibrated and Hydrothermal Biotites from Darreh-Zar Porphyry Copper Deposit, Kerman (Southeast of Iran).Ore Geology Reviews, 66:200-218. https://doi.org/10.1016/j.oregeorev.2014.10.015 [24] Qin, K.Z., Zhang, L.C., Ding, K.S., et al., 2009.Mineralization Type, Petrogenesis of Ore-Bearing Intrusions and Mineralogical Characteristics of Sanchakou Copper Deposits in Eastern Tianshan.Acta Petrologica Sinica, 25(4):845-861 (in Chinese with English abstract). [25] Selby, D., Nesbitt, B.E., 2000.Chemical Composition of Biotite from the Casino Porphyry Cu-Au-Mo Mineralization, Yukon, Canada:Evaluation of Magmatic and Hydrothermal Fluid Chemistry.Chemical Geology, 171(1-2):77-93. https://doi.org/10.1016/s0009-2541(00)00248-5 [26] Shabani, A.A.T., Lalonde, A.E., Whalen, J.B., 2003.Composition of Biotite from Granitic Rocks of the Canadian Appalachian Orogen:A Potential Tectonomagmatic Indicator? The Canadian Mineralogist, 41(6):1381-1396. https://doi.org/10.2113/gscanmin.41.6.1381 [27] Sun, W.D., Huang, R.F., Li, H., et al., 2015.Porphyry Deposits and Oxidized Magmas.Ore Geology Reviews, 65:97-131. https://doi.org/10.1016/j.oregeorev.2014.09.004 [28] Tang, P., Tang, J.X., Zheng, W.B., et al., 2017.Progress in Study of Mineral Chemistry of Magmatic and Hydrothermal Biotites.Mineral Deposits, 36(4):935-950 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201704010 [29] Uchida, E., Endo, S., Makino, M., 2007.Relationship between Solidification Depth of Granitic Rocks and Formation of Hydrothermal Ore Deposits.Resource Geology, 57(1):47-56. https://doi.org/10.1111/j.1751-3928.2006.00004.x [30] Wang, C., Chen, B., Ma, X.H., et al., 2015.Petrogenesis of Early and Late Paleozoic Plutons in Sanchakou Area of East Tianshan and Their Implications for Evolution of Kangur Suture Zone.Journal of Earth Sciences and Environment, 37(5):52-70 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xagcxyxb201505004 [31] Wang, J.B., Wang, Y.W., He, Z.J., 2006.Ore Deposits as a Guide to the Tectonic Evolution in the East Tianshan Mountains, NW China.Geology in China, 33(3):461-469 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI200603001.htm [32] Wang, X.L., Zhou, J.C., Wan, Y.S., et al., 2013.Magmatic Evolution and Crustal Recycling for Neoproterozoic Strongly Peraluminous Granitoids from Southern China:Hf and O Isotopes in Zircon.Earth and Planetary Science Letters, 366(2):71-82. https://doi.org/10.1016/j.eps1.2013.02.011 [33] Wang, Y.H., Zhang, F.F., 2016.Petrogenesis of Early Silurian Intrusions in the Sanchakou Area of Eastern Tianshan, Northwest China, and Tectonic Implications:Geochronological, Geochemical, and Hf Isotopic Evidence.International Geology Review, 58(10):1294-1310. https://doi.org/10.1080/00206814.2016.1152516 [34] Wang, Y.H., Zhang, F.F., Liu, J.J., 2016.The Genesis of the Ores and Intrusions at the Yuhai Cu-Mo Deposit in Eastern Tianshan, NW China:Constraints from Geology, Geochronology, Geochemistry, and Hf Isotope Systematics.Ore Geology Reviews, 77:312-331. https://doi.org/10.1016/j.oregeorev.2016.03.003 [35] Wang, Y.F., Chen, H.Y., Han, J.S., et al., 2018.Paleozoic Tectonic Evolution of the Dananhu-Tousuquan Island Arc Belt, Eastern Tianshan:Constraints from the Magmatism of the Yuhai Porphyry Cu Deposit, Xinjiang, NW China.Journal of Asian Earth Sciences, 153:282-306. https://doi.org/10.1016/j.jseaes.2017.05.022 [36] Wones, D., Eugster, H., 1965.Stability of Biotite-Experiment Theory and Application.American Mineralogist, 50(9):1228-1272. [37] Xiao, W.J., Windley, B.F., Allen, M.B., et al., 2013.Paleozoic Multiple Accretionary and Collisional Tectonics of the Chinese Tianshan Orogenic Collage.Gondwana Research, 23(4):1316-1341. https://doi.org/10.1016/j.gr.2012.01.012 [38] Xu, K.Q., Sun, N., Wang, D.Z., et al., 1982.Genetic Series of Granitic Rocks in Southeastern China.Acta Petrologica Mineralogica et Analytica, 1(2):1-12 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YKCS198202000.htm [39] Yu, J.H., Zhao, L., Zhou, X., 2004.Mineralogical Characteristics and Origin of Garnet-Bearing Ⅰ-Type Granitoids in Southeastern Fujian Province.Geological Journal of China Universities, 10(3):364-377 (in Chinese with English abstract). [40] Zhang, L., Chen, Z.Y., Tian, Z.J., et al., 2017.Chemical Composition of Biotite and Chlorite in the Uranium-Bearing and Barren Granites, Northern Guangdong Province, South China:Implications for Uranium Mineralization.Earth Science Frontiers, 24(5):62-75 (in Chinese with English abstract). [41] Zhang, W., Lentz, D.R., Thorne, K.G., et al., 2016.Geochemical Characteristics of Biotite from Felsic Intrusive Rocks around the Sisson Brook W-Mo-Cu Deposit, West-Central New Brunswick:An Indicator of Halogen and Oxygen Fugacity of Magmatic Systems.Ore Geology Reviews, 77:82-96. https://doi.org/10.1016/j.oregeorev.2016.02.004 [42] Zhang, Z.W., Zang, Y.S., Wang, Y.L., et al., 2016.Zircon SHRIMP U-Pb Age of the Yuhai Porphyry Copper Deposit in Eastern Tianshan Mountains of Xinjiang and Its Tectonic Implications.Acta Geoscientica Sinica, 37(1):59-68 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQXB201601006.htm [43] Zhou, Y., Liang, X.Q., Cai, Y.F., et al., 2017.Petrogenesis and Mineralization of Xintian-Tungsten Polymetallic Deposit:Constraints from Mineral Chemistry of Biotite from Xitian A-Type Granite, Eastern Hunan Province.Earth Science, 42(10):1647-1657 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.557 [44] Zhou, Z.X., 1988.Chemical Characteristics of Mafic Mica in Intrusive Rocks and Its Geological Meaning.Acta Petrologica Sinica, 4(3):63-73 (in Chinese with English abstract). [45] Zhu, C., Sverjensky, D.A., 1992.F-Cl-OH Partitioning between Biotite and Apatite.Geochimica et Cosmochimica Acta, 56(9):3435-3467. https://doi.org/10.1016/0016-7037(92)90390-5 [46] Zhu, Y.F., An, F., Feng, W.Y., et al., 2016.Geological Evolution and Huge Ore-Forming Belts in the Core Part of the Central Asian Metallogenic Region.Journal of Earth Science, 27(3):491-506. https://doi.org/10.1007/s12583-016-0673-7 [47] 傅金宝, 1981.斑岩铜矿中黑云母的化学组成特征.地质与勘探, 9(1):16-19. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000365294 [48] 郎智君, 师波, 李天德, 1992.新疆哈密三岔口铜矿成因探讨.新疆地质, 10(3):244-252. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000003368488 [49] 林文蔚, 彭丽君, 1994.由电子探针分析数据估算角闪石、黑云母中的Fe3+、Fe2+.长春地质学院学报, 24(2):155-162. http://www.cnki.com.cn/Article/CJFDTotal-CCDZ402.004.htm [50] 秦克章, 张连昌, 丁奎首, 等, 2009.东天山三岔口铜矿床类型、赋矿岩石成因与矿床矿物学特征.岩石学报, 25(4):845-861. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200904010 [51] 唐攀, 唐菊兴, 郑文宝, 等, 2017.岩浆黑云母和热液黑云母矿物化学研究进展.矿床地质, 36(4):935-950. http://d.old.wanfangdata.com.cn/Periodical/kcdz201704010 [52] 王超, 陈斌, 马星华, 等, 2015.东天山三岔口地区早、晚古生代岩体成因及其对康古尔缝合带演化的意义.地球科学与环境学报, 37(5):52-70. doi: 10.3969/j.issn.1672-6561.2015.05.004 [53] 王京彬, 王玉往, 何志军, 2006.东天山大地构造演化的成矿示踪.中国地质, 33(3):461-469. doi: 10.3969/j.issn.1000-3657.2006.03.002 [54] 徐克勤, 孙鼐, 王德滋, 等, 1982.华南两类不同成因花岗岩岩石学特征.岩矿测试, 1(2):1-12. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000003571839 [55] 于津海, 赵蕾, 周旋, 2004.闽东南含石榴子石Ⅰ型花岗岩的矿物学特征及成因.高校地质学报, 10(3):364-377. doi: 10.3969/j.issn.1006-7493.2004.03.007 [56] 张龙, 陈振宇, 田泽瑾, 等, 2017.粤北产铀与不产铀花岗岩中黑云母和绿泥石矿物化学特征及其与铀成矿的关系.地学前缘, 24(5):62-75. http://d.old.wanfangdata.com.cn/Periodical/dxqy201705007 [57] 张照伟, 臧遇时, 王亚磊, 等, 2016.新疆东天山玉海斑岩铜矿锆石SHRIMP U-Pb年龄及构造意义.地球学报, 37(1):59-68. http://d.old.wanfangdata.com.cn/Periodical/dqxb201601007 [58] 周云, 梁新权, 蔡永丰, 等, 2017.湘东锡田燕山期A型花岗岩黑云母矿物化学特征及其成岩成矿意义.地球科学, 42(10):1647-1657. http://earth-science.net/WebPage/Article.aspx?id=3671 [59] 周作侠, 1988.侵入岩的镁铁云母化学成分特征及其地质意义.岩石学报, 4(3):63-73. doi: 10.3321/j.issn:1000-0569.1988.03.007