• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    西南表层岩溶带土壤中砷的迁移规律实验与模拟

    曾斌 韦晓青 邹胜章 李录娟 黄荷

    曾斌, 韦晓青, 邹胜章, 李录娟, 黄荷, 2018. 西南表层岩溶带土壤中砷的迁移规律实验与模拟. 地球科学, 43(11): 4237-4245. doi: 10.3799/dqkx.2018.140
    引用本文: 曾斌, 韦晓青, 邹胜章, 李录娟, 黄荷, 2018. 西南表层岩溶带土壤中砷的迁移规律实验与模拟. 地球科学, 43(11): 4237-4245. doi: 10.3799/dqkx.2018.140
    Zeng Bin, Wei Xiaoqing, Zou Shengzhang, Li Lujuan, Huang He, 2018. Experiment and Simulation on Migration Rule of Arsenic in Soil of Surface Karst Zone in Southwest China. Earth Science, 43(11): 4237-4245. doi: 10.3799/dqkx.2018.140
    Citation: Zeng Bin, Wei Xiaoqing, Zou Shengzhang, Li Lujuan, Huang He, 2018. Experiment and Simulation on Migration Rule of Arsenic in Soil of Surface Karst Zone in Southwest China. Earth Science, 43(11): 4237-4245. doi: 10.3799/dqkx.2018.140

    西南表层岩溶带土壤中砷的迁移规律实验与模拟

    doi: 10.3799/dqkx.2018.140
    基金项目: 

    中国地质科学院岩溶地质研究所基本科研业务费项目 2015016

    详细信息
      作者简介:

      曾斌(1980-), 男, 博士, 讲师, 主要从事环境地质及水文地质方向的教学及研究工作

    • 中图分类号: P599

    Experiment and Simulation on Migration Rule of Arsenic in Soil of Surface Karst Zone in Southwest China

    • 摘要: 岩溶地下河是我国西南地区的重要水源,工业生产过程中产生的砷污染物,除通过落水洞等直接进入并污染地下水外,还会在表层岩溶带溶缝、溶隙内吸附、滞留及富集,并在特定条件下再次迁移,成为"稳定次生污染源".以广西某砷污染事件为例,采用窄缝槽物理模型装置进行砷的动态吸附、解吸实验,并结合地球化学模拟研究砷污染物在表层岩溶带土壤中的迁移规律.实验结果显示表层岩溶带对砷的吸附以物理吸附(扩散过程)为主,相比吸附过程而言解吸速率则显得缓慢,而酸溶液相比去离子水可促进砷的解吸过程.地球化学模拟结果表明土壤矿物中以针铁矿对砷的吸附贡献最大,而酸溶液通过溶蚀针铁矿等矿物削弱对砷的吸附能力.因此在西南岩溶地区,表层岩溶带系统一旦纳入砷污染物,则解吸过程缓慢,易形成砷污染物的滞留、富集;而酸雨作用下砷的解吸、迁移过程加快,则会提高地下水系统的污染风险.

       

    • 图  1  研究区裸露型表层岩溶带发育形态

      Fig.  1.  Development form of exposed surface karst zone in the study area

      图  2  岩溶含水介质分层

      Fig.  2.  Stratification of karst water-bearing medium

      图  3  窄缝槽实验装置(a)及其设计图(b)

      邹胜章等(2012)

      Fig.  3.  (a) Diagram of narrow slot experimental device; (b) design of narrow slot experimental device

      图  4  模拟表层岩溶带土壤对As(Ⅲ)的吸附穿透曲线

      Fig.  4.  Breakthrough curve of As(Ⅲ) in the adsorption experiment

      图  5  模拟表层岩溶带对As(Ⅲ)吸附的动力学过程拟合

      Fig.  5.  Kinetic process fitting of As(Ⅲ) adsorption process

      图  6  解吸实验(使用去离子水)中出水浓度变化曲线

      Fig.  6.  Breakthrough curve of As(Ⅲ) in the desorption experiment with deionized water

      图  7  解吸实验(使用去离子水)中As(Ⅲ)解吸过程的动力学拟合

      Fig.  7.  Kinetic process fitting of As(Ⅲ) desorption process with deionized water

      图  8  解吸实验(使用酸溶液)中出水浓度变化曲线

      Fig.  8.  Breakthrough curve of As(Ⅲ) in the desorption experiment with acidic solution

      图  9  解吸实验(使用酸溶液)中As(Ⅲ)解吸过程的动力学拟合

      Fig.  9.  Kinetic process fitting of As(Ⅲ) desorption process with acidic solution

      图  10  基于地球化学模拟的吸附试验出水浓度变化曲线

      Fig.  10.  Breakthrough curves of As(Ⅲ) in the adsorption experiment based on geochemical modeling

      图  11  解吸实验(使用酸溶液)中土壤pH变化模拟

      Fig.  11.  Simulation of soil pH variation in desorption experiment with acidic solution

      表  1  地球化学模拟中所用参数

      Table  1.   Parameters of soil minerals for geochemical modeling

      参数 伊利石 高岭石 针铁矿
      比表面积(m2/g) 24.2 21.6 54.0
      位点密度(10-4 mol/mol) 4.45 6.30 160.00
      lg KS+(int) 3.53 6.28 7.29
      lg KS-(int) -7.10 -9.28 -8.93
      lg KSAs(Ⅲ)1(int) 4.49 3.97 5.41
      lg KSAs(Ⅲ)2(int) -1.85 -3.66 /
      lg KSAs(Ⅲ)3(int) -11.2 -14.1 /
      注:“/”表示针铁矿对最后两个阶段并无吸附.
      下载: 导出CSV

      表  2  模拟表层岩溶带土壤吸附/解吸过程参数对比

      Table  2.   Comparison of parameters in absorption or desorption kinetic process

      过程 拟合双常数方程 R2 起始吸附/解吸量(mg/kg) 吸附/解吸速率(mg/kg·min-1) 完全吸附/解吸时间(min)
      实验1-吸附过程 lnQt = 0.951 7lnt-5.338 1 1.000 0 0.004 8 0.951 7 999.4
      实验2-解吸过程(去离子水) lnQt=0.792 8lnt-6.454 5 0.998 8 0.001 6 -0.792 8 16 313.1
      实验3-解吸过程(酸溶液) lnQt=0.844 1lnt-5.587 7 0.999 5 0.003 7 -0.844 1 13 489.6
      下载: 导出CSV

      表  3  基于地球化学模拟的不同矿物吸附量及解吸试验(酸溶液)前后的矿物含量变化

      Table  3.   Changes of mineral contents before and after desorption test (acid solution) based on geochemical simulation

      单元 伊利石吸附砷量(10-4 mmol) 蒙脱石吸附砷量(10-4 mmol) 针铁矿吸附砷量(10-4 mmol) 伊利石含量(mg/kg) 蒙脱石含量(mg/kg) 针铁矿含量(mg/kg)
      实验前 实验后 实验前 实验后 实验前 实验后
      0~5 cm 8.059 9.829 40.598 6.936 5.346 5.913 7.015 0.224 0.087
      5~10 cm 10.445 8.255 8.216 6.936 6.929 5.913 5.892 0.224 0.018
      10~5 cm 10.444 8.255 8.184 6.936 6.929 5.913 5.892 0.224 0.018
      15~20 cm 10.444 8.255 8.154 6.936 6.928 5.913 5.892 0.224 0.018
      20~25 cm 10.443 8.256 8.125 6.936 6.928 5.913 5.893 0.224 0.017
      25~30 cm 10.442 8.256 8.099 6.936 6.928 5.913 5.893 0.224 0.017
      30~25 cm 10.442 8.256 8.073 6.936 6.927 5.913 5.893 0.224 0.017
      35~40 cm 10.441 8.257 8.048 6.936 6.927 5.913 5.894 0.224 0.017
      40~45 cm 10.441 8.257 8.025 6.936 6.927 5.913 5.894 0.224 0.017
      45~50 cm 10.441 8.257 8.011 6.936 6.927 5.913 5.894 0.224 0.017
      下载: 导出CSV
    • [1] Chen, H.W., Liu, L., Peng, X.X., et al., 2012.Experiments of Factors Influencing Adsorption of As (Ⅴ) in Water by Granite Red Soil.Earth Science, 37(2):345-349 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201202020
      [2] Chen, Y.X., Li, L.Q., Zhang, J., 1998.Chemical Formations and Transfer of As in Bijiang River.Nonferrous Metals, 50(2):108-114, 7 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800954447
      [3] Deng, Y.M., Wang, Y.X., Li, H.J., et al., 2015.Seasonal Variation of Arsenic Speciation in Shallow Groundwater from Endemic Arsenicosis Area in Jianghan Plain.Earth Science, 40(11):1876-1886 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201511012
      [4] Gao, J., Zheng, T.L., Deng, Y.M., et al., 2017.Indigenous Iron-Reducing Bacteria and Their Impacts on Arsenic Release in Arsenic-Affected Aquifer in Jianghan Plain.Earth Science, 42(5):716-726 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201705007
      [5] Huang, S.B., Wang, Y.X., Liu, C.R., et al., 2013.Hydrochemical and Fluorescent Spectroscopic Evidences of Arsenic Mobilization in Groundwater.Earth Science, 38(5):1091-1098 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201305019
      [6] Jiang, Y.Y., 2012.Analysis of Temporal-Spatial Variation Characteristics and Influencing Factors of Acid Rain in Guangxi during 2004-2011.Journal of Guangxi Academy of Sciences, 28(4):298-301 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXKX201204012.htm
      [7] Jiang, Z.C., 1998.Features of Epikarst Zone in South China and Formation Mechanism.Tropical Geography, 18(4):322-326 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/rddl199804007
      [8] Lu, Z.J., Deng, Y.M., Du, Y., et al., 2017.EEMs Characteristics of Dissolved Organic Matter and Their Implication in High Arsenic Groundwater of Jianghan Plain.Earth Science, 42(5):771-782 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201705013
      [9] Perrin, J., Jeannin, P.Y., Zwahlen, F., 2003.Epikarst Storage in a Karst Aquifer:A Conceptual Model Based on Isotopic Data, Milandre Test Site, Switzerland.Journal of Hydrology, 279(1):106-124. http://www.sciencedirect.com/science/article/pii/S0022169403001719
      [10] Qin, L.M., Huang, K.X., Wang, J., et al., 2011.Characteristics and Tendency of Acid Rain in Hechi City during 2005 to 2010.Journal of Guangxi Academy of Sciences, 27(2):102-104 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxkxyxb201102007
      [11] Smedley, P.L., Kinniburgh, D.G., 2002.A Review of the Source, Behaviour and Distribution of Arsenic in Natural Waters.Applied Geochemistry, 17(5):517-568. doi: 10.1016/S0883-2927(02)00018-5
      [12] Smedley, P.L., Nicolli, H.B., Macdonald, D.M.J., et al., 2002.Hydrogeochemistry of Arsenic and Other Inorganic Constituents in Groundwaters from La Pampa, Argentina.Applied Geochemistry, 17(3):259-284. doi: 10.1016/S0883-2927(01)00082-8
      [13] Su, C.L., Win, H.Wang, Y.X., et al., 2009.Arsenic Adsorption Behavior and Influence Factors in Sediments of Endemic Arsenism Diseased Areas from Datong Basin.Geological Science and Technology Information, 28(3):120-126 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb200903023
      [14] Wang, P., Wang, S.L., Liu, S.Q., et al., 2010.Occurrence, Speciation, Source and Geochemical Cycle of Arsenic.Environmental Science and Technology, 33(7):90-97 (in Chinese with English abstract). http://www.cabdirect.org/abstracts/20103290192.html
      [15] Williams, P.W., 2008.The Role of the Epikarst in Karst and Cave Hydrogeology:A Review.International Journal of Speleology, 37(1):1-10. doi: 10.5038/1827-806X
      [16] Xiong, F., Gan, Y.Q., Duan, Y.H., 2015.Analysis of Relationship between Nitrogen and the Migration and Enrichment of Arsenic in Groundwater in the Jianghan Plain.Safety and Environmental Engineering, 22(2):39-43, 48 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KTAQ201502008.htm
      [17] Ying, Y.M., Xu, C.H., Li, H.H., et al., 2012.Studies on Adsorption of Arsenic Pollutants onto Sediments of the Yellow River Using Laboratory Static Experiments.Research of Environmental Sciences, 25(3):352-356 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkxyj201203018
      [18] Yu, Q., Xie, X.J., Ma, R., et al., 2013.Impact of Groundwater Flow on Arsenic Transport:A Field Observation and Simulation in Datong Basin.Earth Science, 38(4):877-886 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201304022.htm
      [19] Zhang, L.K., Yang, H., 2013.Transport Process of Arsenic in Karst Subterranean Stream and Analysis on the Influence Factors:A Case in Lihu Subterranean Stream of Nandan County, Guangxi.Carsologica Sinica, 32(4):377-383 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZGYR201304003.htm
      [20] Zhang, Z.C., Chen, X., Cheng, Q.B., et al., 2011.Hydrogeology of Epikarst in Karst Mountains-A Case Study of the Chenqi Catchment.Earth and Environment, 39(1):19-25 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dzdqhx201101003
      [21] Zhao, W.L., Chu, X.W., Dong, Y., et al., 2011.Aanalysis on Leakage Pollution Dispersion Type in Karst Aquifer-Taking the Waste Residue Site Pollution for Example.Ground Water, 33(2):6-7, 14 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dixs201102003
      [22] Zou, S.Z., Yu, X.Y., Zhang, G.C., et al., 2012.Cross Action of Mn-Cr (Ⅵ) in Water-Soil-Rock System.Earth Science, 37(2):289-293 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201202011
      [23] 谌宏伟, 柳林, 彭向训, 2012.花岗岩母质红壤吸附水中砷(Ⅴ)的影响因素试验.地球科学, 37(2):345-349. http://earth-science.net/WebPage/Article.aspx?id=2237
      [24] 陈亚雄, 李柳琼, 张娟, 等, 1998.沘江中砷的化学形态及其迁移转化规律.有色金属, 50(2):108-114, 7. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800954447
      [25] 邓娅敏, 王焰新, 李慧娟, 等, 2015.江汉平原砷中毒病区地下水砷形态季节性变化特征.地球科学, 40(11):1876-1886. http://earth-science.net/WebPage/Article.aspx?id=3194
      [26] 高杰, 郑天亮, 邓娅敏, 等, 2017.江汉平原高砷地下水原位微生物的铁还原及其对砷释放的影响.地球科学, 42(5):716-726. http://earth-science.net/WebPage/Article.aspx?id=3576
      [27] 黄爽兵, 王焰新, 刘昌蓉, 等, 2013.含水层中砷活化迁移的水化学与DOM三维荧光证据.地球科学, 38(5):1091-1098. http://earth-science.net/WebPage/Article.aspx?id=2774
      [28] 蒋芸芸, 2012.2004-2011年广西酸雨时空变化特征及影响因素分析.广西科学院学报, 28(4):298-301. doi: 10.3969/j.issn.1002-7378.2012.04.014
      [29] 蒋忠诚, 1998.中国南方表层岩溶带的特征及形成机理.热带地理, 18(4):322-326. doi: 10.3969/j.issn.1001-5221.1998.04.007
      [30] 鲁宗杰, 邓娅敏, 杜尧, 等, 2017.江汉平原高砷地下水中DOM三维荧光特征及其指示意义.地球科学, 42(5):771-782. http://earth-science.net/WebPage/Article.aspx?id=3571
      [31] 覃柳妹, 黄奎贤, 王景, 等, 2011.2005-2010年河池市酸雨变化趋势和特征分析.广西科学院学报, 27(2):102-104. doi: 10.3969/j.issn.1002-7378.2011.02.007
      [32] 苏春利, Win, H., 王焰新, 等, 2009.大同盆地砷中毒病区沉积物中砷的吸附行为和影响因素分析.地质科技情报, 28(3):120-126. http://d.old.wanfangdata.com.cn/Periodical/dzkjqb200903023
      [33] 王萍, 王世亮, 刘少卿, 等, 2010.砷的发生、形态、污染源及地球化学循环.环境科学与技术, 33(7):90-97. http://d.old.wanfangdata.com.cn/Periodical/hjkxyjs201007020
      [34] 熊峰, 甘义群, 段艳华, 2015.江汉平原地下水中氮素与砷迁移富集的相关性研究.安全与环境工程, 22(2):39-43, 48. http://d.old.wanfangdata.com.cn/Periodical/dzktaq201502008
      [35] 应一梅, 许春红, 李海华, 等, 2012.黄河泥沙吸附砷污染物室内静态试验.环境科学研究, 25(3):352-356. http://d.old.wanfangdata.com.cn/Periodical/hjkxyj201203018
      [36] 余倩, 谢先军, 马瑞, 等, 2013.地下水流动对砷迁移的影响:大同盆地试验场的观测与模拟.地球科学, 38(4):877-886. http://earth-science.net/WebPage/Article.aspx?id=2763
      [37] 张连凯, 杨慧, 2013.岩溶地下河中砷迁移过程及其影响因素分析——以广西南丹县里湖地下河为例.中国岩溶, 32(4):377-383. http://d.old.wanfangdata.com.cn/Periodical/zgyr201304003
      [38] 张志才, 陈喜, 程勤波, 等, 2011.喀斯特山体表层岩溶带水文地质特征分析——以陈旗小流域为例.地球与环境, 39(1):19-25. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzdqhx201101003
      [39] 赵伟丽, 褚学伟, 董毓, 等, 2011.岩溶含水层渗漏污染弥散类型分析——以贵州废渣堆场污染为例.地下水, 33(2):6-7, 14. doi: 10.3969/j.issn.1004-1184.2011.02.003
      [40] 邹胜章, 于晓英, 张国臣, 等, 2012.Mn-Cr(Ⅵ)在岩溶水系统内的交互作用.地球科学, 37(2):289-293. http://earth-science.net/WebPage/Article.aspx?id=2228
    • 加载中
    图(11) / 表(3)
    计量
    • 文章访问数:  3226
    • HTML全文浏览量:  1241
    • PDF下载量:  25
    • 被引次数: 0
    出版历程
    • 收稿日期:  2018-08-04
    • 刊出日期:  2018-11-15

    目录

      /

      返回文章
      返回