Experiment and Simulation on Migration Rule of Arsenic in Soil of Surface Karst Zone in Southwest China
-
摘要: 岩溶地下河是我国西南地区的重要水源,工业生产过程中产生的砷污染物,除通过落水洞等直接进入并污染地下水外,还会在表层岩溶带溶缝、溶隙内吸附、滞留及富集,并在特定条件下再次迁移,成为"稳定次生污染源".以广西某砷污染事件为例,采用窄缝槽物理模型装置进行砷的动态吸附、解吸实验,并结合地球化学模拟研究砷污染物在表层岩溶带土壤中的迁移规律.实验结果显示表层岩溶带对砷的吸附以物理吸附(扩散过程)为主,相比吸附过程而言解吸速率则显得缓慢,而酸溶液相比去离子水可促进砷的解吸过程.地球化学模拟结果表明土壤矿物中以针铁矿对砷的吸附贡献最大,而酸溶液通过溶蚀针铁矿等矿物削弱对砷的吸附能力.因此在西南岩溶地区,表层岩溶带系统一旦纳入砷污染物,则解吸过程缓慢,易形成砷污染物的滞留、富集;而酸雨作用下砷的解吸、迁移过程加快,则会提高地下水系统的污染风险.Abstract: Karst underground river is an important water source in Southwest China. In addition to entering and polluting the groundwater directly through the sinkholes, arsenic pollutants produced from the industrial production process will also adsorb, remain, and concentrate in the dissolution cracks and gaps in the surface karst zone, and remigrate under certain conditions to become a "secondary pollution source". Taking an arsenic pollution event in Guangxi as an example, the dynamic adsorption and desorption experiments of arsenic were carried out by using narrow slot physical model device, and the migration rule of arsenic contamination in the soil of surface karst zone was studied, combined with geochemical simulation. The experimental results show that the adsorption of arsenic in the surface karst zone is mainly physical adsorption (diffusion process), and the desorption rate is slow compared with the adsorption process, while the acid solution can promote the desorption process of arsenic compared with deionized water. The results of geochemical simulation show that goethite contributes most to arsenic adsorption in soil minerals, while acid solution weakens the ability of arsenic adsorption by corroding goethite and other minerals. It is concluded that in the karst area of Southwest China, once the surface karst zone system is integrated with arsenic pollutants, the desorption process is slow, and it is easy to form the retention and enrichment of arsenic pollutants; while the accelerated desorption and migration process of arsenic under acid rain will increase the pollution risk of groundwater system.
-
图 3 窄缝槽实验装置(a)及其设计图(b)
Fig. 3. (a) Diagram of narrow slot experimental device; (b) design of narrow slot experimental device
表 1 地球化学模拟中所用参数
Table 1. Parameters of soil minerals for geochemical modeling
参数 伊利石 高岭石 针铁矿 比表面积(m2/g) 24.2 21.6 54.0 位点密度(10-4 mol/mol) 4.45 6.30 160.00 lg KS+(int) 3.53 6.28 7.29 lg KS-(int) -7.10 -9.28 -8.93 lg KSAs(Ⅲ)1(int) 4.49 3.97 5.41 lg KSAs(Ⅲ)2(int) -1.85 -3.66 / lg KSAs(Ⅲ)3(int) -11.2 -14.1 / 注:“/”表示针铁矿对最后两个阶段并无吸附. 表 2 模拟表层岩溶带土壤吸附/解吸过程参数对比
Table 2. Comparison of parameters in absorption or desorption kinetic process
过程 拟合双常数方程 R2 起始吸附/解吸量(mg/kg) 吸附/解吸速率(mg/kg·min-1) 完全吸附/解吸时间(min) 实验1-吸附过程 lnQt = 0.951 7lnt-5.338 1 1.000 0 0.004 8 0.951 7 999.4 实验2-解吸过程(去离子水) lnQt=0.792 8lnt-6.454 5 0.998 8 0.001 6 -0.792 8 16 313.1 实验3-解吸过程(酸溶液) lnQt=0.844 1lnt-5.587 7 0.999 5 0.003 7 -0.844 1 13 489.6 表 3 基于地球化学模拟的不同矿物吸附量及解吸试验(酸溶液)前后的矿物含量变化
Table 3. Changes of mineral contents before and after desorption test (acid solution) based on geochemical simulation
单元 伊利石吸附砷量(10-4 mmol) 蒙脱石吸附砷量(10-4 mmol) 针铁矿吸附砷量(10-4 mmol) 伊利石含量(mg/kg) 蒙脱石含量(mg/kg) 针铁矿含量(mg/kg) 实验前 实验后 实验前 实验后 实验前 实验后 0~5 cm 8.059 9.829 40.598 6.936 5.346 5.913 7.015 0.224 0.087 5~10 cm 10.445 8.255 8.216 6.936 6.929 5.913 5.892 0.224 0.018 10~5 cm 10.444 8.255 8.184 6.936 6.929 5.913 5.892 0.224 0.018 15~20 cm 10.444 8.255 8.154 6.936 6.928 5.913 5.892 0.224 0.018 20~25 cm 10.443 8.256 8.125 6.936 6.928 5.913 5.893 0.224 0.017 25~30 cm 10.442 8.256 8.099 6.936 6.928 5.913 5.893 0.224 0.017 30~25 cm 10.442 8.256 8.073 6.936 6.927 5.913 5.893 0.224 0.017 35~40 cm 10.441 8.257 8.048 6.936 6.927 5.913 5.894 0.224 0.017 40~45 cm 10.441 8.257 8.025 6.936 6.927 5.913 5.894 0.224 0.017 45~50 cm 10.441 8.257 8.011 6.936 6.927 5.913 5.894 0.224 0.017 -
[1] Chen, H.W., Liu, L., Peng, X.X., et al., 2012.Experiments of Factors Influencing Adsorption of As (Ⅴ) in Water by Granite Red Soil.Earth Science, 37(2):345-349 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201202020 [2] Chen, Y.X., Li, L.Q., Zhang, J., 1998.Chemical Formations and Transfer of As in Bijiang River.Nonferrous Metals, 50(2):108-114, 7 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800954447 [3] Deng, Y.M., Wang, Y.X., Li, H.J., et al., 2015.Seasonal Variation of Arsenic Speciation in Shallow Groundwater from Endemic Arsenicosis Area in Jianghan Plain.Earth Science, 40(11):1876-1886 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201511012 [4] Gao, J., Zheng, T.L., Deng, Y.M., et al., 2017.Indigenous Iron-Reducing Bacteria and Their Impacts on Arsenic Release in Arsenic-Affected Aquifer in Jianghan Plain.Earth Science, 42(5):716-726 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201705007 [5] Huang, S.B., Wang, Y.X., Liu, C.R., et al., 2013.Hydrochemical and Fluorescent Spectroscopic Evidences of Arsenic Mobilization in Groundwater.Earth Science, 38(5):1091-1098 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201305019 [6] Jiang, Y.Y., 2012.Analysis of Temporal-Spatial Variation Characteristics and Influencing Factors of Acid Rain in Guangxi during 2004-2011.Journal of Guangxi Academy of Sciences, 28(4):298-301 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXKX201204012.htm [7] Jiang, Z.C., 1998.Features of Epikarst Zone in South China and Formation Mechanism.Tropical Geography, 18(4):322-326 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/rddl199804007 [8] Lu, Z.J., Deng, Y.M., Du, Y., et al., 2017.EEMs Characteristics of Dissolved Organic Matter and Their Implication in High Arsenic Groundwater of Jianghan Plain.Earth Science, 42(5):771-782 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201705013 [9] Perrin, J., Jeannin, P.Y., Zwahlen, F., 2003.Epikarst Storage in a Karst Aquifer:A Conceptual Model Based on Isotopic Data, Milandre Test Site, Switzerland.Journal of Hydrology, 279(1):106-124. http://www.sciencedirect.com/science/article/pii/S0022169403001719 [10] Qin, L.M., Huang, K.X., Wang, J., et al., 2011.Characteristics and Tendency of Acid Rain in Hechi City during 2005 to 2010.Journal of Guangxi Academy of Sciences, 27(2):102-104 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxkxyxb201102007 [11] Smedley, P.L., Kinniburgh, D.G., 2002.A Review of the Source, Behaviour and Distribution of Arsenic in Natural Waters.Applied Geochemistry, 17(5):517-568. doi: 10.1016/S0883-2927(02)00018-5 [12] Smedley, P.L., Nicolli, H.B., Macdonald, D.M.J., et al., 2002.Hydrogeochemistry of Arsenic and Other Inorganic Constituents in Groundwaters from La Pampa, Argentina.Applied Geochemistry, 17(3):259-284. doi: 10.1016/S0883-2927(01)00082-8 [13] Su, C.L., Win, H.Wang, Y.X., et al., 2009.Arsenic Adsorption Behavior and Influence Factors in Sediments of Endemic Arsenism Diseased Areas from Datong Basin.Geological Science and Technology Information, 28(3):120-126 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb200903023 [14] Wang, P., Wang, S.L., Liu, S.Q., et al., 2010.Occurrence, Speciation, Source and Geochemical Cycle of Arsenic.Environmental Science and Technology, 33(7):90-97 (in Chinese with English abstract). http://www.cabdirect.org/abstracts/20103290192.html [15] Williams, P.W., 2008.The Role of the Epikarst in Karst and Cave Hydrogeology:A Review.International Journal of Speleology, 37(1):1-10. doi: 10.5038/1827-806X [16] Xiong, F., Gan, Y.Q., Duan, Y.H., 2015.Analysis of Relationship between Nitrogen and the Migration and Enrichment of Arsenic in Groundwater in the Jianghan Plain.Safety and Environmental Engineering, 22(2):39-43, 48 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KTAQ201502008.htm [17] Ying, Y.M., Xu, C.H., Li, H.H., et al., 2012.Studies on Adsorption of Arsenic Pollutants onto Sediments of the Yellow River Using Laboratory Static Experiments.Research of Environmental Sciences, 25(3):352-356 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkxyj201203018 [18] Yu, Q., Xie, X.J., Ma, R., et al., 2013.Impact of Groundwater Flow on Arsenic Transport:A Field Observation and Simulation in Datong Basin.Earth Science, 38(4):877-886 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201304022.htm [19] Zhang, L.K., Yang, H., 2013.Transport Process of Arsenic in Karst Subterranean Stream and Analysis on the Influence Factors:A Case in Lihu Subterranean Stream of Nandan County, Guangxi.Carsologica Sinica, 32(4):377-383 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZGYR201304003.htm [20] Zhang, Z.C., Chen, X., Cheng, Q.B., et al., 2011.Hydrogeology of Epikarst in Karst Mountains-A Case Study of the Chenqi Catchment.Earth and Environment, 39(1):19-25 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dzdqhx201101003 [21] Zhao, W.L., Chu, X.W., Dong, Y., et al., 2011.Aanalysis on Leakage Pollution Dispersion Type in Karst Aquifer-Taking the Waste Residue Site Pollution for Example.Ground Water, 33(2):6-7, 14 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dixs201102003 [22] Zou, S.Z., Yu, X.Y., Zhang, G.C., et al., 2012.Cross Action of Mn-Cr (Ⅵ) in Water-Soil-Rock System.Earth Science, 37(2):289-293 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201202011 [23] 谌宏伟, 柳林, 彭向训, 2012.花岗岩母质红壤吸附水中砷(Ⅴ)的影响因素试验.地球科学, 37(2):345-349. http://earth-science.net/WebPage/Article.aspx?id=2237 [24] 陈亚雄, 李柳琼, 张娟, 等, 1998.沘江中砷的化学形态及其迁移转化规律.有色金属, 50(2):108-114, 7. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800954447 [25] 邓娅敏, 王焰新, 李慧娟, 等, 2015.江汉平原砷中毒病区地下水砷形态季节性变化特征.地球科学, 40(11):1876-1886. http://earth-science.net/WebPage/Article.aspx?id=3194 [26] 高杰, 郑天亮, 邓娅敏, 等, 2017.江汉平原高砷地下水原位微生物的铁还原及其对砷释放的影响.地球科学, 42(5):716-726. http://earth-science.net/WebPage/Article.aspx?id=3576 [27] 黄爽兵, 王焰新, 刘昌蓉, 等, 2013.含水层中砷活化迁移的水化学与DOM三维荧光证据.地球科学, 38(5):1091-1098. http://earth-science.net/WebPage/Article.aspx?id=2774 [28] 蒋芸芸, 2012.2004-2011年广西酸雨时空变化特征及影响因素分析.广西科学院学报, 28(4):298-301. doi: 10.3969/j.issn.1002-7378.2012.04.014 [29] 蒋忠诚, 1998.中国南方表层岩溶带的特征及形成机理.热带地理, 18(4):322-326. doi: 10.3969/j.issn.1001-5221.1998.04.007 [30] 鲁宗杰, 邓娅敏, 杜尧, 等, 2017.江汉平原高砷地下水中DOM三维荧光特征及其指示意义.地球科学, 42(5):771-782. http://earth-science.net/WebPage/Article.aspx?id=3571 [31] 覃柳妹, 黄奎贤, 王景, 等, 2011.2005-2010年河池市酸雨变化趋势和特征分析.广西科学院学报, 27(2):102-104. doi: 10.3969/j.issn.1002-7378.2011.02.007 [32] 苏春利, Win, H., 王焰新, 等, 2009.大同盆地砷中毒病区沉积物中砷的吸附行为和影响因素分析.地质科技情报, 28(3):120-126. http://d.old.wanfangdata.com.cn/Periodical/dzkjqb200903023 [33] 王萍, 王世亮, 刘少卿, 等, 2010.砷的发生、形态、污染源及地球化学循环.环境科学与技术, 33(7):90-97. http://d.old.wanfangdata.com.cn/Periodical/hjkxyjs201007020 [34] 熊峰, 甘义群, 段艳华, 2015.江汉平原地下水中氮素与砷迁移富集的相关性研究.安全与环境工程, 22(2):39-43, 48. http://d.old.wanfangdata.com.cn/Periodical/dzktaq201502008 [35] 应一梅, 许春红, 李海华, 等, 2012.黄河泥沙吸附砷污染物室内静态试验.环境科学研究, 25(3):352-356. http://d.old.wanfangdata.com.cn/Periodical/hjkxyj201203018 [36] 余倩, 谢先军, 马瑞, 等, 2013.地下水流动对砷迁移的影响:大同盆地试验场的观测与模拟.地球科学, 38(4):877-886. http://earth-science.net/WebPage/Article.aspx?id=2763 [37] 张连凯, 杨慧, 2013.岩溶地下河中砷迁移过程及其影响因素分析——以广西南丹县里湖地下河为例.中国岩溶, 32(4):377-383. http://d.old.wanfangdata.com.cn/Periodical/zgyr201304003 [38] 张志才, 陈喜, 程勤波, 等, 2011.喀斯特山体表层岩溶带水文地质特征分析——以陈旗小流域为例.地球与环境, 39(1):19-25. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzdqhx201101003 [39] 赵伟丽, 褚学伟, 董毓, 等, 2011.岩溶含水层渗漏污染弥散类型分析——以贵州废渣堆场污染为例.地下水, 33(2):6-7, 14. doi: 10.3969/j.issn.1004-1184.2011.02.003 [40] 邹胜章, 于晓英, 张国臣, 等, 2012.Mn-Cr(Ⅵ)在岩溶水系统内的交互作用.地球科学, 37(2):289-293. http://earth-science.net/WebPage/Article.aspx?id=2228