Temporal and Spatial Evolution of Ore-Forming Fluid and Metallogenic Mechanism in the Jinwozi Gold Deposit, Beishan Metallogenic Belt
-
摘要: 金窝子金矿床位于晚古生代塔里木板块与哈萨克斯坦板块俯冲碰撞带南缘的北山裂谷中,属于造山型矿床,目前该矿床成矿流体时空演化及成矿机制尚不明确,利用岩相学、显微测温和激光拉曼光谱分析对不同成矿阶段、不同海拔标高的脉石矿物中的流体包裹体进行了系统研究.依据矿物共生组合及脉体穿插关系,金矿床热液成矿过程可划分为3个阶段,从早到晚依次为:黄铁矿-石英阶段(早阶段)、石英-黄铁矿-多金属硫化物阶段(中阶段)、石英-碳酸盐阶段(晚阶段),金矿化主要发育在中阶段.脉石矿物中流体包裹体发育两种类型:NaCl-H2O包裹体(W型)和CO2-H2O-NaCl包裹体(C型),前两个阶段发育W型和C型包裹体,晚阶段只发育W型包裹体.从早阶段到晚阶段,流体包裹体完全均一温度的峰值分别为200~300 ℃、160~240 ℃、120~180 ℃,盐度依次为1.4%~14.8% NaCleqv、0.4%~14.5% NaCleqv、0.2%~7.6% NaCleqv.从早阶段到晚阶段,流体由CO2-H2O-NaCl体系向NaCl-H2O体系演变,完全均一温度和盐度均呈现出降低趋势,表现为由中温、中低盐度、富CO2的变质流体向中低温、低盐度、贫CO2的大气降水演化的趋势.矿脉垂向上的均一温度和盐度随深度增加表现出"低-高-低"的特点,可能与成矿流体多期次叠加有关.自矿区西南向东北包裹体均一温度逐渐升高,成矿深度逐渐增加,反映了矿区东北部可能为热源中心,表明矿区东北部应具有深部找矿前景.包裹体的物理化学特征及氢氧同位素特征表明,流体的混合可能是金沉淀的主要机制.Abstract: The Jinwozi gold deposit is located in the central Beishan area, southern margin of the subduction-collision zone between the Late Paleozoic Tarim and Kazakhstan plates. The ore genesis of the Jinwozi gold deposit belongs to the orogenic type.However, the temporal and spatial evolution of ore-forming fluid and the metallogenic mechanism remain relatively unclear. The fluid inclusions in quartz from different mineralization stages and depths were analyzed by petrography, microscopic temperature measurement and laser Raman spectrum in this paper.The hydrothermal ore-forming process can be divided into three stages according to mineral assemblages and crosscutting relationships among the veins, from early to late, i.e., pyrite-quartz stage (early stage); quartz-pyrite-polymetallic sulfide stage (middle stage); quartz-carbonate stage (late stage). The gold mineralization mainly occurs in the middle stage.Two types of fluid inclusions are identified based on petrography and laser Raman spectroscopy:NaCl-H2O inclusions (W-type) and CO2-H2O-NaCl inclusions (C-type). Both of the two fluid inclusion types can be observed in the early stage and middle stage quartz; while only the W-type inclusions occur in the late stage.The homogenization temperatures of early stage fluid inclusions range from 200℃ and 300℃, with salinities of 1.4%-14.8% NaCleqv. The fluid inclusions of middle stage are homogenized between 160℃ and 260℃, with salinities of 0.4%-14.5% NaCleqv; and in late stage they are 120-180℃ and of 0.2%-7.6% NaCleqv, respectively.From early to late stage, the ore-forming fluid system evolved from a CO2-H2O-NaCl system to a NaCl-H2O system, with the homogenization temperature and salinities decreasing gradually. The results show that the ore-forming fluid system has evolved from the mesothermal, medium-low salinity, CO2-rich metamorphic water to the mesothermal-epithermal, low salinity and CO2-poor meteoric water. From the shallow to deep of the orebody, the homogenization temperature and salinity firstly increase and then decrease, which might be caused by the multi-superposition of ore-forming fluids. The homogenization temperature and ore-forming depth increase gradually from southwest to northeast area at Jinwozi gold deposit, which indicates that the northeastern intrusion may be a heat source center. Therefore, it is prospected that there will be a good metallogenic potential in the northeastern mining area. The physicochemical and hydrogen-oxygen isotopic data of fluid inclusions show that fluid mixing might be the dominant mechanism of gold deposition.
-
Key words:
- ore deposits /
- fluid inclusion /
- temporal and spatial evolution /
- Jinwozi gold deposit /
- Beishan orogen
-
图 1 北山地区大地构造位置(a)及区域地质简图(b)
图a据Xiao et al.(2010)修改;图b据Zhang et al.(2012b)、苗来成等(2014)修改
Fig. 1. Location of the Beishan area in the south of the Altaid collages (a), geological sketch of the Beishan area (b)
图 3 金窝子矿区含金石英脉平面分布
据张文璟(2015)修改
Fig. 3. The plane distribution of auriferous quartz veins of the Jinwozi gold deposit
图 4 金窝子金矿床野外手标本及镜下特征
a.含金石英脉沿NE-SW向断裂侵入花岗闪长岩, 花岗闪长岩被揉搓拉伸;b.中阶段含多金属硫化物石英脉贯入花岗闪长岩岩体中;c.中阶段含多金属硫化物石英细脉贯入早阶段洁净无矿化石英中;d.中阶段多金属硫化物脉贯入早阶段无矿化石英中;e.乳白色无矿化石英中的烟灰色石英,烟灰色石英颗粒被方解石胶结;f.晚阶段碳酸盐细脉沿微裂隙侵入无矿化石英中;g.花岗闪长岩中的斜长石绢云母化;h.黑云母花岗闪长岩中的黑云母转变为绿泥石和碳酸盐矿物;i.多金属硫化物共生;Q.石英;Py.黄铁矿;Gn.方铅矿;Sp.闪锌矿;Ccp.黄铜矿;Pl.斜长石;Srt.绢云母;Bt.黑云母;Cbn.碳酸盐;Chl.绿泥石
Fig. 4. Photographs and photomicrographs showing geological characteristics of the Jinwozi gold deposit
表 1 金窝子金矿流体包裹体显微测温结果
Table 1. Microthermometric data of fluid inclusions of the Jinwozi gold deposit
成矿阶段 寄主矿物 类型 数量
(个)固态CO2熔化温度(℃) CO2笼合物熔化温度(℃) CO2部分均一温度(℃) 冰点温度
(℃)完全均一温度(℃) 盐度
(% NaCleqv)早 石英 C 12 -60.5~-56.0 3.8~8.8 28.7~30.8(V) 245~319(L) 2.4~10.8 早 石英 C 22 -60.8~-55.3 3.1~8.3 26.6~30.3(L) 248~346(L) 3.3~11.8 早 石英 W 84 -10.8~-0.8 147~326 1.4~14.8 中 石英 C 13 -62.4~-54.9 3.6~8.8 25.9~30.9(L) 258~345(V) 2.4~11.0 中 石英 C 73 -61.8~-54.5 3.4~9.0 24.9~30.9(L) 226~364(L) 2.0~11.3 中 石英 W 357 -10.5~-0.2 101~334 0.4~14.5 晚 方解石 W 50 -4.8~-0.1 101~218 0.2~7.6 注:括号内V指气相,L指液相. 表 2 金窝子金矿4号脉中阶段W型流体包裹体显微测温及相关参数计算结果
Table 2. Microthermometric data of W-type fluid inclusions at different depths of the middle-stage from 4th vein
标高
(m)数量
(个)冰点温度
(℃)完全均一温度(℃) 盐度
(% NaCleqv)1 590 55 -6.7~-0.3 101~334 0.5~10.1 1 550 36 -7.9~-0.2 116~274 0.4~11.6 1 510 35 -7.3~-0.8 136~297 1.4~10.9 1 470 36 -8.5~-0.5 110~328 0.9~12.3 表 3 不同矿脉中阶段流体包裹体显微测温结果
Table 3. Microthermometric data of fluid inclusions in the middle-stage from different veins
矿脉 类型 数量
(个)CO2笼合物熔化温度(℃) CO2部分均一温度(℃) 冰点温度
(℃)完全均一温度(℃) 盐度
(% NaCleqv)CO2密度
(g/cm3)包裹体总密度
(g/cm3)压力
(MPa)静岩深度
(km)4 W 106 -8.5~-0.4 110~328 0.7~12.3 0.79~0.99 20 C 38 3.4~9.0 25.6~30.9 241~364 2.0~11.3 0.53~0.70 0.70~0.92 135~260 5.0~9.6 20 W 58 -8.2~-1.8 153~297 3.1~11.9 0.79~0.96 31 C 15 5.2~8.6 26.3~30.0 240~318 2.8~8.7 0.60~0.69 0.73~0.91 134~279 4.9~10.3 31 W 59 -9.2~-0.8 114~290 1.4~13.1 0.79~0.99 49 C 29 5.1~8.8 24.9~30.9 258~345 2.4~8.8 0.53~0.71 0.68~0.91 145~301 5.4~11.1 49 W 52 -10.5~-0.3 129~310 0.5~14.5 0.81~0.97 -
[1] Ao, S.J., Xiao, W.J., Han, C.M., et al., 2010.Geochronology and Geochemistry of Early Permian Mafic-ultramafic Complexes in the Beishan Area, Xinjiang, NW China:Implications for Late Paleozoic Tectonic Evolution of the Southern Altaids.Gondwana Research, 18(2-3):466-478. https://doi.org/10.1016/j.gr.2010.01.004 [2] Ao, S.J., Xiao, W.J., Han, C.M., et al., 2012.Cambrian to Early Silurian Ophiolite and Accretionary Processes in the Beishan Collage, NW China:Implications for the Architecture of the Southern Altaids.Geological Magazine, 149(4):606-625. https://doi.org/10.1017/s0016756811000884 [3] Bodnar, R.J., 1993.Revised Equation and Table for Determining the Freezing Point Depression of H2O-NaCl Solutions.Geochimica et Cosmochimica Acta, 57(3):683-684. https://doi.org/10.1016/0016-7037(93)90378-a [4] Brown, P.E., Lamb, W.M., 1989.P-V-T Properties of Fluids in the System H2O±CO2±NaCl:New Graphical Presentations and Implications for Fluid Inclusion Studies.Geochimica et Cosmochimica Acta, 53(6):1209-1221. https://doi.org/10.1016/0016-7037(89)90057-4 [5] Chai, P., Sun, J.G., Hou, Z.Q., et al., 2016.Geological, Fluid Inclusion, H-O-S-Pb Isotope, and Ar-Ar Geochronology Constraints on the Genesis of the Nancha Gold Deposit, Southern Jilin Province, Northeast China.Ore Geology Reviews, 72:1053-1071. https://doi.org/10.1016/j.oregeorev.2015.09.027 [6] Chen, B.L., Wu, G.G., Ye, D.J., et al., 2003.An Analysis of Ore-Controlling Structures in the Jinwozi Gold Orefield, Beishan Area, Gansu and Xinjiang.Acta Geoscientica Sinica, 24(4):305-310(in Chinese with English abstract). http://www.oalib.com/paper/1558468 [7] Chen, F.W., Li, H.Q., Cai, H., et al., 1999.The Origin of the Jinwozi Gold Deposit in Eastern Xinjiang—Evidencce from Isotope Geochronology.Geological Review, 45(3):247-254(in Chinese with English abstract). https://www.researchgate.net/publication/286872301_Mineralization_age_of_the_Hongshan_gold_deposit_East_Tianhan_Xinjiang [8] Chen, H.Y., Chen, Y.J., Baker, M.J., 2012a.Evolution of Ore-Forming Fluids in the Sawayaerdun Gold Deposit in the Southwestern Chinese Tianshan Metallogenic Belt, Northwest China.Journal of Asian Earth Sciences, 49:131-144. https://doi.org/10.1016/j.jseaes.2011.05.011 [9] Chen, H.Y., Chen, Y.J., Baker, M.J., 2012b.Isotopic Geochemistry of the Sawayaerdun Orogenic-Type Gold Deposit, Tianshan, Northwest China:Implications for Ore Genesis and Mineral Exploration.Chemical Geology, 310-311:1-11. https://doi.org/10.1016/j.chemgeo.2012.03.026 [10] Chen, Y.J., 2006.Orogenic-Type Deposits and Their Metallogenic Model and Exploration Potential.Geology in China, 33(6):1181-1196(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/zgdizhi200606001 [11] Chen, Y.J., Ni, P., Fan, H.R., et al., 2007.Diagnostic Fluid Inclusions of Different Types Hydrothermal Gold Deposits.Acta Petrologica Sinica, 23(9):2085-2108(in Chinese with English abstract). http://cpfd.cnki.com.cn/Article/CPFDTOTAL-GDKL200711002057.htm [12] Chen, Y.J., Pirajno, F., Sui, Y.H., 2004.Isotope Geochemistry of the Tieluping Silver-Lead Deposit, Henan, China:A Case Study of Orogenic Silver-Dominated Deposits and Related Tectonic Setting.Mineralium Deposita, 39(5-6):560-575. https://doi.org/10.1007/s00126-004-0429-9 [13] Collins, P.L.F., 1979.Gas Hydrates in CO2-Bearing Fluid Inclusions and the Use of Freezing Data for Estimation of Salinity.Economic Geology, 74(6):1435-1444. https://doi.org/10.2113/gsecongeo.74.6.1435 [14] Deng, X.H., Chen, Y.J., Santosh, M., et al., 2017.U-Pb Zircon, Re-Os Molybdenite Geochronology and Rb-Sr Geochemistry from the Xiaobaishitou W (-Mo) Deposit:Implications for Triassic Tectonic Setting in Eastern Tianshan, NW China.Ore Geology Reviews, 80:332-351. https://doi.org/10.1016/j.oregeorev.2016.05.013 [15] Deng, X.H., Santosh, M., Yao, J.M., et al., 2014.Geology, Fluid Inclusions and Sulphur Isotopes of the Zhifang Mo Deposit in Qinling Orogen, Central China:A Case Study of Orogenic-Type Mo Deposits.Geological Journal, 49(4-5):515-533. https://doi.org/10.1002/gj.2559 [16] Guy, A., Schulmann, K., Clauer, N., et al., 2014.Late Paleozoic-Mesozoic Tectonic Evolution of the Trans-Altai and South Gobi Zones in Southern Mongolia Based on Structural and Geochronological Data.Gondwana Research, 25(1):309-337. https://doi.org/10.1016/j.gr.2013.03.014 [17] Jiang, S.H., 2004.Magmatism and Gold Metallogeny in Beishan Mt., Northwestern China (Dissertation).Chinese Academy of Geological Sciences, Beijing (in Chinese with English abstract). [18] Li, D.F., Zhang, L., Chen, H.Y., et al., 2014.Ore Genesis of the Unusual Talate Pb-Zn(-Fe) Skarn-Type Deposit, Altay, NW China:Constraints from Geology, Geochemistry and Geochronology.Geological Journal, 49(6):599-616. https://doi.org/10.1002/gj.2570 [19] Liu, B., Duan, G.X., 1987.The Density and Isochoric Formulae for NaCl-H2O Fluid Inclusions (Salinity≤25wt%) and Their Applications.Acta Mineralogica Sinica, 7(4):345-352(in Chinese with English abstract). http://www.syxb-cps.com.cn/EN/Y2014/V35/I5/867 [20] Liu, W., Li, X.J., Deng, J., 2003.Sources of Ore-Forming Fluids and Metallic Materials in the Jinwozi Lode Gold Deposit, Eastern Tianshan Mountains of China.Science China Earth Sciences, 46(S1):135-153. https://doi.org/10.1360/03dz9034 [21] Miao, L.C., Zhu, M.S., Zhang, F.Q., et al., 2014.Tectonic Setting of Mesozoic Magmatism and Associated Metallogenesis in Beishan Area.Geology in China, 41(4):1190-1204(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201404013 [22] Niu, L., Li, P., Ka, H.E., et al., 2014.Geological Characteristics and Mineralization Conditions of the Jinwozi Gold Deposit, Xinjiang.Geology and Exploration, 50(1):8-17(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dzykt201401002 [23] Pan, X.F., Liu, W., 2006.Fluid Inclusions Characteristics and Ore-Forming Evolution of Jinwozi Gold Deposit.Acta Petrologica Sinica, 22(1):253-263(in Chinese with English abstract). http://www.scirp.org/journal/PaperInformation.aspx?PaperID=61398 [24] Pan, X.F., Liu, W., Hou, Z.Q., 2014.Ore-Forming Fluids as Sampled by Sulfide- and Quartz-Hosted Fluid Inclusions in the Jinwozi Lode Gold Deposit, Eastern Tianshan Mountains of China.Resource Geology, 64(3):183-208. https://doi.org/10.1111/rge.12036 [25] Wang, J., Sun, F.Y., Yu, L., et al., 2017.Fluid Inclusions and H-O-S-Pb Isotope Systematics of the Galonggema Cu Deposit in Yushu, Qinghai Province, China.Earth Science, 42(6):941-956(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.074 [26] Wang, M.F., Cao, X.Z., Zhao, Y.X., et al., 2009.Fulid Inclusion Characteristics of the Jinwozi Gold Deposit and the Prospecting Significance.Contributions to Geology and Mineral Resources Research, 24(4):276-281(in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S1367912014004696 [27] Wang, Q.L., Chen, W., Han, D., et al., 2008.The Age and Mechanism of Formation of the Jinwozi Gold Deposit, Xinjiang.Geology in China, 35(2):286-292(in Chinese with English abstract). https://www.researchgate.net/publication/287846237_The_age_and_mechanism_of_formation_of_the_Jinwozi_gold_deposit_Xinjiang [28] Wang, Y.H., Xue, C.J., Zhang, F.F., et al., 2015.SHRIMP Zircon U-Pb Geochronology, Geochemistry and H-O-Si-S-Pb Isotope Systematics of the Kanggur Gold Deposit in Eastern Tianshan, NW China:Implication for Ore Genesis.Ore Geology Reviews, 68:1-13. https://doi.org/10.1016/j.oregeorev.2015.01.009 [29] Xiao, W.J., Mao, Q.G., Windley, B.F., et al., 2010.Paleozoic Multiple Accretionary and Collisional Processes of the Beishan Orogenic Collage.American Journal of Science, 310(10):1553-1594. https://doi.org/10.2475/10.2010.12 [30] Xiao, W.J., Windley, B.F., Allen, M.B., et al., 2013.Paleozoic Multiple Accretionary and Collisional Tectonics of the Chinese Tianshan Orogenic Collage.Gondwana Research, 23(4):1316-1341. https://doi.org/10.1016/j.gr.2012.01.012 [31] Xiong, S.F., Yao, S.Z., Gong, Y.J., et al., 2016.Ore-Forming Fluid and Thermochemical Sulfate Reduction in the Wusihe Lead-Zinc Deposit, Sichuan Province, China.Earth Science, 41(1):105-120(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.008 [32] Yue, S.W., Deng, X.H., Bagas, L., 2014.Geology, Isotope Geochemistry, and Ore Genesis of the Yindonggou Ag-Au(-Pb-Zn) Deposit, Hubei Province, China.Geological Journal, 49(4-5):442-462. https://doi.org/10.1002/gj.2561 [33] Zhang, J., Chen, Y.J., Su, Q.W., et al., 2016.Geology and Genesis of the Xiaguan Ag-Pb-Zn Orefield in Qinling Orogen, Henan Province, China:Fluid Inclusion and Isotope Constraints.Ore Geology Reviews, 76:79-93. https://doi.org/10.1016/j.oregeorev.2016.01.003 [34] Zhang, L., Chen, H.Y., Chen, Y.J., et al., 2012a.Geology and Fluid Evolution of the Wangfeng Orogenic-Type Gold Deposit, Western Tian Shan, China.Ore Geology Reviews, 49:85-95. https://doi.org/10.1016/j.oregeorev.2012.09.002 [35] Zhang, W.J., 2015.The Metallogenic Characteristics and Deep Prediction of Jinwozi Gold Deposit in Hami, Xinjiang Province (Dissertation).Chang'an University, Xi'an (in Chinese with English abstract). [36] Zhang, W.S., Cao, X.Z., Xu, B.J., 2010.Thrusting Nappe Structure and Its Controlling on Mineralization in Jinwozi Orefield in Hami, Xinjiang.Geological Science and Technology Information, 29(6):29-34(in Chinese with English abstract). [37] Zhang, W., Pease, V., Wu, T.R., et al., 2012b.Discovery of an Adakite-Like Pluton near Dongqiyishan (Beishan, NW China)—Its Age and Tectonic Significance.Lithos, 142-143:148-160. https://doi.org/10.1016/j.lithos.2012.02.021 [38] Zhang, Z.J., Chen, H.Y., Hu, M.Y., et al., 2014.Isotopic Geochemistry of the Jinwozi Gold Deposit in the Eastern Tianshan Orogen, NW China:Implications for the Ore Genesis.Geological Journal, 49(6):574-583. https://doi.org/10.1002/gj.2593 [39] Zheng, Y., Zhang, L., Chen, H.Y., et al., 2014.CO2-Rich Fluid from Metamorphic Devolatilization of the Triassic Orogeny:An Example from the Qiaxia Copper Deposit in Altay, NW China.Geological Journal, 49(6):617-634. https://doi.org/10.1002/gj.2536 [40] Zheng, Y., Zhang, L., Chen, Y.J., et al., 2012.Geology, Fluid Inclusion Geochemistry, and 40Ar/39Ar Geochronology of the Wulasigou Cu Deposit, and Their Implications for Ore Genesis, Altay, Xinjiang, China.Ore Geology Reviews, 49:128-140. https://doi.org/10.1016/j.oregeorev.2012.09.005 [41] Zhou, X.B., Li, J.F., Wang, K.Y., et al., 2016.Geochemical Characteristics of Ore-Forming Fluid in Huanggoushan Gold Deposit, Jilin Province.Earth Science, 41(1):121-130 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.009 [42] 陈柏林, 吴淦国, 叶得金, 等, 2003.甘-新北山金窝子金矿田构造控矿解析.地球学报, 24(4): 305-310. doi: 10.3321/j.issn:1006-3021.2003.04.003 [43] 陈富文, 李华芹, 蔡红, 等, 1999.新疆东部金窝子金矿成因讨论——同位素地质年代学证据.地质论评, 45(3): 247-254. doi: 10.3321/j.issn:0371-5736.1999.03.004 [44] 陈衍景, 2006.造山型矿床、成矿模式及找矿潜力.中国地质, 33(6): 1181-1196. doi: 10.3969/j.issn.1000-3657.2006.06.001 [45] 陈衍景, 倪培, 范宏瑞, 等, 2007.不同类型热液金矿系统的流体包裹体特征.岩石学报, 23(9): 2085-2108. doi: 10.3969/j.issn.1000-0569.2007.09.009 [46] 江思宏, 2004.北山地区岩浆活动与金的成矿作用(博士学位论文).北京: 中国地质科学院. http://cdmd.cnki.com.cn/Article/CDMD-82501-2007213422.htm [47] 刘斌, 段光贤, 1987.NaCl-H2O溶液包裹体的密度式和等容式及其应用.矿物学报, 7(4): 345-352. doi: 10.3321/j.issn:1000-4734.1987.04.010 [48] 苗来成, 朱明帅, 张福勤, 2014.北山地区中生代岩浆活动与成矿构造背景分析.中国地质, 41(4): 1190-1204. doi: 10.3969/j.issn.1000-3657.2014.04.013 [49] 牛亮, 李鹏, 卡哈尔, 等, 2014.新疆金窝子金矿田地质特征及成矿条件分析.地质与勘探, 50(1): 8-17. doi: 10.3969/j.issn.1001-1986.2014.01.002 [50] 潘小菲, 刘伟, 2006.北山金窝子金矿床流体包裹体特征及成矿流体演化.岩石学报, 22(1): 253-263. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200601025 [51] 王键, 孙丰月, 禹禄, 等, 2017.青海玉树尕龙格玛VMS型矿床流体包裹体及H-O-S-Pb同位素特征.地球科学, 42(6): 941-956. http://earth-science.net/WebPage/Article.aspx?id=3589 [52] 王敏芳, 曹新志, 赵渊新, 等, 2009.北山金窝子金矿床流体包裹体特征及找矿意义.地质找矿论丛, 24(4): 276-281. http://d.old.wanfangdata.com.cn/Periodical/dzzklc200904003 [53] 王清利, 陈文, 韩丹, 等, 2008.新疆金窝子金矿床形成时代研究及成因机制讨论.中国地质, 35(2): 286-292. doi: 10.3969/j.issn.1000-3657.2008.02.012 [54] 熊索菲, 姚书振, 宫勇军, 等, 2016.四川乌斯河铅锌矿床成矿流体特征及TSR作用初探.地球科学, 41(1): 105-120. http://earth-science.net/WebPage/Article.aspx?id=3224 [55] 张文璟, 2015.新疆金窝子金矿床成矿特征及深部预测(硕士学位论文).西安: 长安大学. http://cdmd.cnki.com.cn/Article/CDMD-10710-1015802591.htm [56] 张旺生, 曹新志, 徐伯骏, 2010.新疆哈密金窝子矿田逆冲推覆构造及其控矿作用.地质科技情报, 29(6): 29-34. doi: 10.3969/j.issn.1000-7849.2010.06.005 [57] 周向斌, 李剑锋, 王可勇, 等, 2016.吉林荒沟山金矿床成矿流体特征.地球科学, 41(1): 121-130. http://earth-science.net/WebPage/Article.aspx?id=3225