Paleo-Environments and Development Pattern of High-Quality Marine Source Rocks of the Early Cambrian, Northern Tarim Platform
-
摘要: 塔里木盆地下寒武统玉尔吐斯组是国内已发现的最优质海相烃源岩(TOC=29.8%),但针对该层段开展的古环境地球化学研究较匮乏.选取柯坪地区于提希剖面,开展野外勘查、薄片鉴定、主微量元素及总有机碳含量测试,探究富有机质烃源岩形成环境.研究表明,玉尔吐斯组岩石富集了包括V、U、Ni、Ba、Mo、Cu、Zn等微量元素;其底部硅质页岩展现的“负Ce异常、正Y异常、正Eu异常”的左倾稀土配分模式,较低的Ce/Ce*(均值0.45),较高的Y/Ho(均值39.77)和极高的Eu/Eu*(均值35.32)与重晶石、磷结核等,表明塔里木地台北缘在早寒武世初期处于硫化还原和强烈热液活动的海水背景.氧化还原指标U/Al、V/Al、Th/U、V/Sc及Mo-U共变分析,揭示了早寒武世塔里木地台北缘是开阔海;同时,海水经历了“硫化缺氧(玉尔吐斯组A组Th/Uavg=0.070)→次氧化(B组Th/Uavg=1.21;C组Th/Uavg=0.62;D组Th/Uavg=1.21)→硫化缺氧(肖尔布拉克组Th/Uavg=0.13)”的变化过程;并具备较高的古生产力(TOCmax=17.2%,玉尔吐斯组ex-Baavg=8 634.85×10-6)和有利的有机质保存条件.据此,建立了玉尔吐斯组“周期性缺氧事件-热液活动-沿岸上升洋流”背景的缓坡型海相烃源岩发育模式.研究可为塔里木盆地深层-超深层远景油气资源评价与我国西北地区早寒武世古环境演化研究提供重要科学参考.Abstract: The lower Cambrian Yuertusi Formation has been confirmed as the best high-quality source rocks of marine rocks in China, and the source rocks of the Cambrian pre-salt play in the Tarim and crucial research field of the Ediacaran-Cambrian transition. However, little work has been published about the paleo-environments. Yutixi section in Keping is intensively investigated by a multi proxy analysis including thin-sections identification, major elements, trace elements and TOC contents, for revealing the accumulation mechanisms of the sources rocks in this study. Results demonstrate that the samples are rich in trace elements comprising V, U, Ni, Ba, Mo, Cu and Zn. Along with the weakly positive Ce anomalies (Ce/Ce*=0.45), extremely positive Eu anomalies (Eu/Eu*=35.32), Y/Ho (39.77) and barite for samples of basal Yuertusi Fm., the REEs patterns of negative Ce anomalies, positive Y anomalies and positive Eu anomalies verified the drastic hydrothermal activities and anoxic conditions of the Early Cambrian. Specifically, many proxies including U/Al, V/Al, Th/U, V/Sc, and Mo-U covariation ascertained the paleocean in the northern Tarim was an open sea. The paleocean was under sulfide in period of Yuertusi Fm. Group A (Th/Uavg=0.070). Then it changed into suboxic in periods of Yuertusi Fm. Group B (Th/Uavg=1.21), Group C (Th/Uavg=0.62) and Group D (Th/Uavg=1.21) with generally increased oxidation level. Finally it was under sulfide conditions in period of Xiaoerbulake Fm. (Th/Uavg=0.13). In addition, the elevated productivity and well preservation are implied by the high TOC contents (TOCmax=17.2%) and ex-Baavg (8 634.85×10-6) for Yuertusi Fm. Group A. Ultimately, development pattern of the source rocks of the Lower Cambrian Yuertusi Fm., northern Tarim platform is proposed, which is characterized by hydrothermal activities, coastal upwelling and anoxic to sulfide conditions. This study will facilitate both the prospect evaluation of deep and super-deep oil and gas resources in Tarim basin, and studies of Ediacaran-Cambrian paleo-environments transition in NW China.
-
Key words:
- Tarim /
- Cambrian /
- source rocks /
- Paleo-environments development pattern /
- hydrothermal /
- petroleum geology /
-
图 14 塔里木盆地下寒武统玉尔吐斯组“缺氧-热液-洋流”烃源岩发育模式
据朱光有等(2016)修改
Fig. 14. Source rocks pattern, characterized by reduction, hydrothermo and upwelling, of the Lower Cambrian Yuertusi Fm. in northern Tarim platform
-
[1] Adachi, M., Yamamoto, K., Sugisaki, R., 1986. Hydrothermal Chert and Associated Siliceous Rocks from the Northern Pacific Their Geological Significance as Indication of Ocean Ridge Activity. Sedimentary Geology, 47(1-2):125-148. https://doi.org/10.1016/0037-0738(86)90075-8 [2] Algeo, T.J., Morford, J., Cruse, A., 2012. Editorial:New Applications of Trace Metals as Proxies in Marine Paleoenvironments. Chemical Geology, 306-307:160-164. https://doi.org/10.1016/j.chemgeo.2012.03.009. [3] Bau, M., Dulski, P., 1996. Distribution of Yttrium and Rare-Earth Elements in the Penge and Kuruman Iron-Formations, Transvaal Supergroup, South Africa. Precambrian Research, 79(1-2):37-55. https://doi.org/10.1016/0301-9268(95)00087-9 [4] Calvert, S.E., Pedersen, T.F., 2007. Chapter Fourteen Elemental Proxies for Palaeoclimatic and Palaeoceanographic Variability in Marine Sediments:Interpretation and Application. Developments in Marine Geology, 1:567-644. https://doi.org/10.1016/S1572-5480(07)01019-6 [5] Chen, Q.L., Yang, X., Chu, C.L., et al., 2015. Recognition of Depositional Environment of Cambrian Source Rocks in Tarim Basin. Oil and Gas Geology, 36(6):880-887 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz201506002 [6] Dulski, P., 1994. Interferences of Oxide, Hydroxide and Chloride Analyte Species in the Determination of Rare Earth Elements in Geological Samples by Inductively Coupled Plasma-Mass Spectrometry. Fresenius' Journal of Analytical Chemistry, 350(4-5):194-203. https://doi.org/10.1007/bf00322470 [7] Feng, Z.Z., 2005. Lithofacies Paleogeography of the Cambrian and Ordovician, the Tarim Basin. Petroleum Industry Publisher, Beijing (in Chinese). [8] Ganai, J.A., Rashid, S.A., 2015. Rare Earth Element Geochemistry of the Permo-Carboniferous Clastic Sedimentary Rocks from the Spiti Region, Tethys Himalaya:Significance of Eu and Ce Anomalies. Chinese Journal of Geochemistry, 34(2):252-264. https://doi.org/10.1007/s11631-015-0045-7 [9] Ganeshram, R.S., Pedersen, T.F., Calvert, S., et al., 2002. Reduced Nitrogen Fixation in the Glacial Ocean Inferred from Changes in Marine Nitrogen and Phosphorus Inventories. Nature, 415(6868):156-159. https://doi.org/10.1038/415156a [10] Holser, W.T., 1997. Evaluation of the Application of Rare-Earth Elements to Paleoceanography. Palaeogeography, Palaeoclimatology, Palaeoecology, 132(1-4):309-323. https://doi.org/10.1016/s0031-0182(97)00069-2 [11] Kidder, D.L., Krishnaswamy, R., Mapes, R. H., 2003. Elemental Mobility in Phosphatic Shales during Concretion Growth and Implications for Provenance Analysis. Chemical Geology, 198(3-4):335-353. https://doi.org/10.1016/s0009-2541(03)00036-6 [12] Klinkhammer, G.P., Elderfield, H., Edmond, J.M., et al., 1994. Geochemical Implications of Rare Earth Element Patterns in Hydrothermal Fluids from Mid-Ocean Ridges. Geochimica et Cosmochimica Acta, 58(23):5105-5113. https://doi.org/10.1016/0016-7037(94)90297-6 [13] Li, M.J., L, H.F., Mao, F, J., et al., 2018. Geochemical Assessment of Source Rock within a Stratigraphic Geochemical Framework:Taking Termit Basin (Niger) as an Example. Earth Science, 43(10):3603-3615 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201810020 [14] Li, R.J., Zhang, H.A., Qian, Y.X., et al., 2010. The Collision Time of South Tianshan Orogen, NW China. Chinese Journal of Geology, 45(1):57-65 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DZKX201001007.htm [15] Li, Y.F., Fan, T.L., Zhang, J.C., et al., 2015. Geochemical Changes in the Early Cambrian Interval of the Yangtze Platform, South China:Implications for Hydrothermal Influences and Paleocean Redox Conditions. Journal of Asian Earth Sciences, 109:100-123. https://doi.org/10.1016/j.jseaes.2015.05.003 [16] McLennan, S.M., 2001. Relationships between the Trace Element Composition of Sedimentary Rocks and Upper Continental Crust. Geochemistry, Geophysics, Geosystems, 2(4):1021. https://doi.org/10.1029/2000gc000109 [17] Morford, J.L., Emerson, S., 1999. The Geochemistry of Redox Sensitive Trace Metals in Sediments. Geochimica et Cosmochimica Acta, 63(11-12):1735-1750. https://doi.org/10.1016/s0016-7037(99)00126-x [18] Murray, R.W., 1994. Chemical Criteria to Identify the Depositional Environment of Chert:General Principles and Applications. Sedimentary Geology, 90(3-4):213-232. https://doi.org/10.1016/0037-0738(94)90039-6 [19] Nance, W.B., Taylor, S.R., 1976. Rare Earth Element Patterns and Crustal Evolution-I. Australian Post-Archean Sedimentary Rocks. Geochimica et Cosmochimica Acta, 40(12):1539-1551. https://doi.org/10.1016/0016-7037(76)90093-4 [20] Sanders, C.J., Caldeira, P.P., Smoak, J.M., et al., 2014. Recent Organic Carbon Accumulation (~100 Years) along the Cabo Frio, Brazil Upwelling Region. Continental Shelf Research, 75:68-75. https://doi.org/10.1016/j.csr.2013.10.009 [21] Schoepfer, S.D., Shen, J., Wei, H.Y., et al., 2015. Total Organic Carbon, Organic Phosphorus, and Biogenic Barium Fluxes as Proxies for Paleomarine Productivity. Earth-Science Reviews, 149:23-52. https://doi.org/10.1016/j.earscirev.2014.08.017 [22] Tao, G.L., Shen, B.J., Ten, G.E., et al., 2016. Weathering Effects on High-Maturity Organic Matter in a Black Rock Series:A Case Study of the Yuertusi Formation in Kalpin Area, Tarim Basin. Petroleum Geology and Experiment, 38(3):375-381 (in Chinese with English abstract). [23] Taylor, S.R., McLennan, S.M., 1985. The Continental Crust Its Composition and Evolution. Blackwell, Oxford. [24] Tribovillard, N., Algeo, T.J., Baudin, F., et al., 2012. Analysis of Marine Environmental Conditions Based On molybdenum-uranium Covariation-Applications to Mesozoic Paleoceanography. Chemical Geology. 324-325:46-58. https://doi.org/10.1016/j.chemgeo.2011.09.009 [25] Wang, W.Y., Xiao, B., Zhang, S.G.., et al., 1985. Division and Correlation of Cambrian System in Aksu-Wushi District of Xinjiang. Xinjiang Geology, 3(4):59-74 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XJDI198504008.htm [26] Wilde, P., Quinby-Hunt, M. S., Erdtmann, B. D., 1996. The Whole-Rock Cerium Anomaly:A Potential Indicator of Eustatic Sea-Level Changes in Shales of the Anoxic Facies. Sedimentary Geology, 101(1-2):43-53. https://doi.org/10.1016/0037-0738(95)00020-8 [27] Yang, X., Li, H.L., Zhang, Z.P., et al., 2017. Evolution of Neoproterozoic Tarim Basin in Northwestern China and Tectonic Background of the Lower Cambrian Hydrocarbon Source Rocks. Acta Geological Sinica, 91(8):1706-1719 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201708004 [28] Yang, Z.Y., Luo, P., Liu, B., et al., 2017. The Depositional Characteristics of Earliest Cambrian Hydrothermal Fluid:A Case Study of Siliceous Rocks from Yurtus Formation in the Aksu area of Tarim Basin, Northwest China. Earth Science, 44(11):3845-3870 (in Chinese with English abstract). [29] Yao, C.Y., Dong, Y.G., Gao, W.H., 2014. Paleoenvironment and Origin of the Sedimentary Phosphorite of the Yurtus Formation (Early Cambrian, Sugetbrak Phosphorite Deposit, Tarim Basin). Acta Geologica Sinica-English Edition, 88(S2):271-272. https://doi.org/10.1111/1755-6724.12370_13 [30] Yu, B.S., Dong, H.L., Widom, E., et al., 2009. Geochemistry of Basal Cambrian Black Shales and Cherts from the Northern Tarim Basin, Northwest China:Implications for Depositional Setting and Tectonic History. Journal of Asian Earth Sciences, 34(3):418-436. https://doi.org/10.1016/j.jseaes.2008.07.003 [31] Zhang, G.Y., Liu, W., Zhang, L., et al., 2015. Cambrian-Ordovician Prototypic Basin, Paleogeography and Petroleum of Tarim Craton. Earth Science Frontiers, 22(3):269-276 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201503023 [32] Zhang, J.P., Fan, T.L., Algeo, T.J., 2016. Paleo-Marine Environments of the Early Cambrian Yangtze Platform. Palaeogeography, Palaeoclimatology, Palaeoecology, 443:66-79. https://doi.org/10.1016/j.palaeo.2015.11.029 [33] Zhang, X., Zhuang, X.G., Tu, Q.J., et al., 2018. Depositional Process and Mechanism of Organic Matter Accumulation of Lucaogou Shale in Southern Junggar Basin, Northwest China. Earth Science, 43(2):538-550 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201802015 [34] Zhu, G.Y., Chen, F.R., Chen, Z.Y., et al., 2016.Discovery and Basic Characteristics of the High-Quality Source Rocks of the Cambrian Yuertusi Formation in Tarim Basin. Natural Gas Geoscience, 27(1):8-21 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201601002 [35] 陈强路, 杨鑫, 储呈林, 等, 2015.塔里木盆地寒武系烃源岩沉积环境再认识.石油与天然气地质, 36(6):880-887. http://d.old.wanfangdata.com.cn/Periodical/syytrqdz201506002 [36] 冯增昭, 2005.塔里木地区寒武纪和奥陶纪岩相古地理.北京:石油工业出版社. [37] 李美俊, 赖洪飞, 毛凤军, 等, 2018.层序地层格架下烃源岩地球化学研究:以尼日尔Termit盆地为例.地球科学, 43(10):3603-3615. doi: 10.3799/dqkx.2018.223 [38] 李日俊, 张洪安, 钱一雄, 等, 2010.关于南天山碰撞造山时代的讨论.地质科学, 45(1):57-65. doi: 10.3969/j.issn.0563-5020.2010.01.006 [39] 陶国亮, 申宝剑, 腾格尔, 等, 2016.风化作用对高演化黑色岩系有机质影响因素分析——以塔里木盆地柯坪地区玉尔吐斯组为例.石油实验地质, 38(3):375-381. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sysydz201603014 [40] 王务严, 肖兵, 章森桂, 等, 1985.新疆阿克苏-乌什地区寒武系划分与对比.新疆地质. 3(4):59-74. [41] 杨鑫, 李慧莉, 张仲培, 等, 2017.塔里木新元古代盆地演化与下寒武统烃源岩发育的构造背景.地质学报, 91(8):1706-1719. doi: 10.3969/j.issn.0001-5717.2017.08.004 [42] 杨宗玉, 罗平, 刘波, 等, 2017.早寒武世早期热液沉积特征:以塔里木盆地西北缘玉尔吐斯组底部硅质岩系为例.地球科学, 44(11):3845-3870. doi: 10.3799/dqkx.2017.502 [43] 张光亚, 刘伟, 张磊, 等, 2015.塔里木克拉通寒武纪-奥陶纪原型盆地、岩相古地理与油气.地学前缘, 22(3):269-276. [44] 张逊, 庄新国, 涂其军, 等, 2018.准噶尔盆地南缘芦草沟组页岩的沉积过程及有机质富集机理.地球科学, 43(2):538-550. doi: 10.3799/dqkx.2017.603 [45] 朱光有, 陈斐然, 陈志勇, 等, 2016.塔里木盆地寒武系玉尔吐斯组优质烃源岩的发现及其基本特征.天然气地球科学, 27(1):8-21. http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201601002 -
dqkx-45-1-285-Table1-4.pdf