Thermal Maturity of Wufeng-Longmaxi Shale in Sichuan Basin
-
摘要: 上奥陶统五峰组-下志留统龙马溪组海相页岩是四川盆地下古生界主要的烃源岩和页岩气勘探目标,有机质成熟度不仅是油气生成评价的关键,也是页岩品质评价的重要指标之一.下古生界页岩有机质成熟度一直以来是有机岩石学研究的难点与热点问题.由于下古生界缺乏镜质体,先前的研究多是采用沥青反射率转换为等效镜质体反射率的方法,并且由于沥青的局限性和不确定性,使得五峰-龙马溪组页岩的成熟度缺乏统一的认识和系统研究.通过采集四川盆地及其周缘的岩心和露头样品,系统分析了页岩有机显微组分光学反射率特征.结果表明笔石和固体沥青是最主要的两类有机显微组分.根据固体沥青的显微结构形态和光性特征,将固体沥青大体上分为两类:(1)颗粒状-棱角状的充填在孔隙和微裂缝中高反射率焦沥青;(2)以细小不规则表面的有机质颗粒大量分散于粘土矿物基质中的低反射率基质固体沥青.焦沥青与笔石随机反射率均可以表征下古生界页岩有机质成熟度.但焦沥青反射率略低于笔石反射率,并且随着成熟度的增高,笔石反射率的增速大于焦沥青,各向异性也显著增强.相对于固体沥青反射率,笔石随机反射率分布更为集中,更适合作为含笔石页岩有机质成熟度指标.但是笔石反射率与等效镜质体反射率在过成熟阶段的换算关系需要进一步研究.Abstract: The marine shale of Upper Ordovician Wufeng Formation (O3w)-Lower Silurian Longmaxi Formation (S1l) is the main source rock and the target of shale gas exploration in Sichuan Basin.Organic matter maturity is not only the key to evaluate hydrocarbon generation, but also a vital indicator of shale quality evaluation.The maturity of organic matter in Lower Paleozoic shale has always been a difficult and hot issue in organic petrology.However, the previous studies were focused on the conversion of solid bitumen reflectance to equivalent vitrinite reflectance on account of the lack of vitrinite in Lower Paleozoic stratum.And the limitation and uncertainty of bitumen give rise to a lack of uniform understanding and systematic research of Wufeng-Longmaxi shale on thermal maturity.The core and outcrop samples of Wufeng-Longmaxi shale were collected in Sichuan Basin and its periphery areas for optical analysis of organic matter.The macerals and optical characteristics of various organic matter in Wufeng-Longmaxi shale were analyzed.The main macerals organic components are composed of the graptolite fragments and solid bitumen.Two types of solid bitumen have been distinguished in shales, based on optical properties and microstructure characteristics in reflected light:(1) pyrobitumen—a highly reflecting granular and sharp angular bitumen accumulates in intergranular pore spaces and microfractures; (2) matrix solid bitumen—an irregular granular surface and finely organic matter particle widely disseminated in the clay mineral matrix with low reflectance.The random reflectance of pyrobitumen is slightly lower than that of graptolite in the same sample.The increase of graptolite reflectance is faster than that of solid bitumen with the increase of maturity, and anisotropy increases significantly.Both pyrobitumen and graptolite can be used for maturity analysis in Lower Paleozoic shale.Compared to the reflectance of solid bitumen, the random reflectance of graptolite is more suitable as maturity index due to reflectance value show a narrower range.However, its relationship with vitrinite reflectance at overmature stage still needs further study.
-
图 1 四川盆地及其周缘岩心和露头样品分布
上奥陶统五峰组和下志留统龙马溪组下段页岩厚度分布,据郭彤楼和张汉荣(2014)修改
Fig. 1. Sample locations of wells and outcrops investigated in the Upper Ordovician Wufeng and the lower part of Lower Silurian Longmaxi Formation in Sichuan Basin and its periphery
图 2 显微组分照片(油浸, 反射白光, ×50)
a.几丁虫,空腔中可能充填莓球状黄铁矿和固体沥青(NN, 2 609.35 m); b.几丁虫,空腔中充填莓球状黄铁矿(BB, 1 247.1 m); c.非颗粒状笔石可能被沥青浸染(FF-2, 3 860 m); d.非颗粒笔石,典型的纤维状结构和纺锤层(RR-3, 4 515.5 m); e.固体沥青,附着在碳酸盐岩矿物颗粒边缘(FF-1, 3 813.6 m); f.固体沥青颗粒(MM-2, 2 535.31 m); g.颗粒状笔石可能被沥青浸染(CC-2, 3 722.18 m); h.非颗粒笔石,笔石胞管中充填莓球状黄铁矿(KK-1, 2 825.2 m); i.固体沥青,附着在矿物颗粒边缘(FF-2, 3 860 m); j.低反射率固体沥青基质(FF-2, 3 860 m); k.条带状笔石,笔石两边附着物可能为固体沥青(LL, 750 m); l.颗粒状笔石,表面粗糙(CC-1, 3 711.9 m); m.固体沥青,充填于孔隙中(城口庙坝露头); n.颗粒状固体沥青,表现出强烈的各向异性和马赛克结构(石柱漆辽露头); o.条带状笔石(城口庙坝露头); p.非颗粒状笔石(綦江观音桥露头); q.颗粒状笔石(AA, 1 099 m); r.层状藻类体,呈现橙色荧光(AA, 1 099 m); s.非颗粒状笔石(AA, 1 099 m); t.笔石呈现深褐色荧光(城口庙坝露头)
Fig. 2. Microphotographs of macerals (oil immersion, white reflected light, ×50)
图 6 基于页岩固体沥青反射率转换等效镜质体反射率的公式对比
a.加拿大Hudson Bay盆地古生界,据Bertrand and Malo(2012);b.加拿大Gaspe Belt盆地志留系-泥盆系烃源岩,据Bertrand and Malo(2001);c.Schoenherr et al.(2007)综合Jacob(1989)和Landis and Castaño(1995)数据拟合;d.据Landis and Castaño(1995);e.热模拟样品(抚顺第三系和乌鲁木齐二叠系),据丰国秀和陈盛吉(1988);f.四川盆地二叠系-三叠系自然演化样品,据丰国秀和陈盛吉(1988);g.据Jacob(1989).黄色圆点为四川盆地二叠系和三叠系VRo与BRo实测值,据丰国秀和陈盛吉(1988)
Fig. 6. Comparison of formulas for equivalent vitrinite reflectance (solid bitumen)
图 7 牙形石色变指数与笔石最大反射率和镜质体反射率的半定量关系
Fig. 7. Semi-quantitative relationship among conodont alteration index, graptolite maximum reflectance and vitrinite reflectance
图 8 基于笔石反射率转换等效镜质体反射率的公式对比
a.据Bertrand(1990);b.据Bertrand (1993)和Bertrand and Malo(2001, 2012);c.据Petersenet al. (2013);d.据Colţoiet al. (2016);e.GRomax,据曹长群等(2000);f.据曹长群等(2000);g.GRomax,据祝幼华等(1998)
Fig. 8. Formulas of equivalent vitrinite reflectance based on graptolite
图 9 四川盆地五峰-龙马溪组页岩笔石随机反射率分布
红色圆点和黄色三角形分别为此次研究岩心样品和露头样品实测数据,粉色圆点据仰云峰(2016)
Fig. 9. Graptolite random reflectance of the Wufeng-Longmaxi shale in Sichuan Basin
表 1 笔石和固体沥青随机反射率与等效镜质体反射率(岩心样品)
Table 1. Random reflectacne and equivalent vitrinite reflectance for graptolite and solid bitumen (core samples)
样品 地点 层位 岩性 深度
(m)TOC
(%)GRo
(%)标准差 测点 BRo
(%; Type A)标准差 测点 BRo
(%; Type B)标准差 测点 EqVRo-1 EqVRo-2 EqVRo-3 EqVRo-4 EqVRo-5 AA 城口 S1l 页岩 1 099 1.28 1.41 0.08 17 1.36 0.09 8 — — — 1.19 1.35 1.39 1.19 — BB 酉阳 S1l 页岩 1 247.1 0.97 2.73 0.10 41 2.59 0.21 6 — — — — 2.59 2.70 2.65 — CC-1 Si/ 页岩 3 711.9 4.19 2.88 0.15 43 2.64 0.17 22 — — — — 2.73 2.76 2.71 — CC-2 S1l 页岩 3 722.18 6.33 2.86 0.10 34 2.53 0.08 29 — — — — 2.71 2.64 2.57 — DD-1 威远 S1l 页岩 3 575.44 2.44 2.97 0.18 23 2.68 0.20 19 — — — — 2.81 2.80 2.77 — DD-2 S1l 页岩 3 582.52 3.67 3.01 0.09 26 2.65 0.09 6 — — — — 2.85 2.77 2.73 — DD-3 S1l 页岩 3 584.4 3.97 12.97 0.15 18 2.38 0.08 16 - - - - 2.81 2.48 2.39 — EE-1 S1l 页岩 1 269.33 1.21 3.11 0.19 11 2.82 0.06 5 - - - - 2.94 2.95 2.95 — EE-2 Si/ 页岩 — 2.63 3.19 0.10 13 — — — — — — — 3.02 — — — FF-1 S1l 页岩 3 813.6 1.87 3.18 0.15 23 2.71 0.1 22 — — — — 3.01 2.83 2.80 — FF-2 水川 S1l 页岩 3 860 4.00 3.20 0.13 42 2.78 0.12 18 2.05 0.25 9 — 3.03 2.91 2.89 — GG 黔江 S1l 页岩 7 41.3 1.17 3.20 0.12 30 2.59 0.21 6 - - - - 3.03 2.70 2.65 — HH 彭水 S1l 页岩 2 153.29 2.82 3.38 0.09 10 2.68 0.13 7 2.43 0.04 12 — 3.20 2.80 2.77 — JJ-1 S1l 页岩 3 787.2 2.04 3.26 0.10 27 2.9 0.18 10 2.22 0.23 3 — 3.08 3.04 3.05 — JJ-2 丁山 O3W 页岩 3 817.3 3.56 3.40 0.10 27 2.75 0.11 5 — — — — 3.22 2.88 2.86 — KK-1 S1l 页岩 2 825.2 4.67 3.80 0.15 18 3.58 0.14 6 2.72 0.05 3 — 3.59 3.76 3.96 3.58 KK-2 武隆 S1l 页岩 2 829.3 5.37 3.62 0.16 27 - - - 2.62 0.16 24 - 3.42 - - — LL S1l 页岩 750 4.03 4.07 0.15 31 3.59 0.12 6 2.81 0.55 16 — 3.84 3.77 3.98 3.59 MM-1 S1l 页岩 2 516 1.73 3.78 0.29 8 3.28 0.35 36 2.37 0.31 7 — 3.57 3.44 3.55 3.28 MM-2 涪陵 S1l 页岩 2 535.31 4.23 3.72 0.24 22 3.3 0.21 11 2.44 0.33 14 — 3.52 3.46 3.58 3.30 NN Si/ 页岩 2 609.35 4.00 3.85 0.16 25 3.02 0.13 9 2.55 0.15 31 — 3.64 3.16 3.21 3.02 PP-1 S1l 页岩 530.42 1.86 3.71 0.21 62 3.53 0.16 7 2.54 0.3 8 — 3.51 3.71 3.89 3.53 PP-2 S1l 页岩 552.4 0.92 3.61 0.19 8 3.55 0.72 4 — — — — 3.41 3.73 3.92 3.55 QQ 广怀 S1l 页岩 4047 4.17 4.15 0.12 21 3.53 0.32 23 — — — — 3.92 3.71 3.89 3.53 RR-4 S1l 页岩 4 484.2 1.98 — — — 3.11 0.24 30 — — — — — 3.26 3.33 3.11 RR-5 S1l 页岩 4 491.45 2.12 4.36 0.21 10 3.31 0.28 8 — — — — 4.12 3.47 3.60 3.31 RR-1 石柱 S1l 页岩 4 503.15 5.48 4.32 0.15 19 3.75 0.45 14 2.85 0.18 7 — 4.08 3.94 4.20 3.75 RR-2 S1l 页岩 4 505.47 5.79 4.49 0.10 37 — — — — — — — 4.24 — — — RR-3 O3W 页岩 4 515.15 5.01 4.23 0.11 21 — — — 2.84 0.21 20 — 3.99 — — — SS 利川 S1l 页岩 2 811.4 2.89 4.73 0.31 13 3.89 0.53 9 2.78 0.28 4 — 4.46 4.09 4.40 3.89 TT-1 Mill S1l 页岩 3 055 3.80 4.91 0.13 5 3.95 0.32 4 — — — — 4.63 4.16 4.48 3.95 TT-2 S1l 页岩 3 083 6.50 4.89 0.13 19 — — — — — — — 4.61 — — — 注:EqVRo-1的等效公式EqVRo=0.73GRo+0.16( Petersen et al., 2013 );EqVRo-2的等效公式EqVRo=0.937 6GRo+0.027 8(Bertrand and Malo 2001, 2012);EqVRo-3的等效公式EqVRo=(BRo-0.059)/0.936(Bertrand and Malo, 2001);EqVRo-4的等效公式EqVRo=0.811 3BRo1.243 8(Bertrand and Malo, 2012);EqVRo-5:当BRo>3.0%,VRo≈BRo.表 2 笔石和固体沥青随机反射率与等效镜质体反射率(露头样品)
Table 2. Random reflectacne and equivalent vitrinite reflectance for graptolite and solid bitumen (outcrop samples)
样品 露头 地层 岩性 TOC
(%)GRo
(%)标准差 测点 BRo
(%; Type A)标准差 测点 BRo
(%; Type B)标准差 测点 EqVRo-1 EqVRo-2 EqVRo-3 EqVRo-4 EqVRo-5 CKMB S1l 页岩 1.45 1.21 0.05 35 1.16 0.08 6 0.78 0.07 14 1.04 1.16 1.18 0.98 CKMB-Y2 城口庙坝 S1l 页岩 2.13 1.28 0.07 29 1.23 0.09 12 — — — 1.09 1.23 1.25 1.05 CKMB-Y1 S1l 页岩 3.61 1.32 0.08 18 1.21 0.07 9 — — — 1.12 1.27 1.23 1.03 CKHF 城口序坪 S1l 页岩 4.24 2.19 0.12 13 2.01 0.20 29 — — — — 2.08 2.08 1.93 DZBY 道真巴渔 S1l 页岩 3.38 2.49 0.10 37 2.14 0.11 23 — — — — 2.36 2.22 2.09 CKM'F 城口明通 S1l 页岩 2.37 2.54 0.09 30 2.25 0.16 22 — — — — 2.41 2.34 2.22 WXBL 巫溪月鹿 S1l 页岩 5.73 2.55 0.12 16 2.32 0.17 13 — — — — 2.42 2.42 2.31 XYSQ-1 叙永双桥 S1l 页岩 2.89 2.61 0.14 5 2.52 0.23 18 1.88 0.17 3 — 2.47 2.63 2.56 XYSQ-2 S1l 页岩 3.14 2.59 0.07 27 2.47 0.13 13 — 一 一 — 2.46 2.58 2.50 XSTH 习水土河 O3W 页岩 9.02 2.60 0.07 33 2.66 0.02 2 — — — — 2.47 2.78 2.74 XSQIX: 习水骑龙村 S1l 页岩 3.14 2.79 0.11 13 2.64 0.22 18 — — — — 2.64 2.76 2.71 WSSI-Z 万盛石林镇 S1l 页岩 4.65 2.83 0.07 34 2.85 0.32 10 — — — — 2.68 2.98 2.98 QJGYQ 蔡江观音桥 S1l 页岩 3.88 2.83 0.11 28 2.63 0.15 6 1.93 0.25 3 — 2.68 2.75 2.70 YYMB 丙阳毛坝 S1l 页岩 6.45 3.00 0.13 33 2.74 0.15 16 — — — — 2.84 2.86 2.84 WLJK 武隆江口 S1l 页岩 4.22 3.02 0.09 32 2.75 0.11 28 — — — — 2.86 2.88 2.86 NCSQ 南川三泉 S1l 页岩 0.80 3.09 0.22 7 3.01 0 1 — — — — 2.92 3.15 3.19 3.01 XXDH15-1 西乡大河坝 S1l 页岩 2.95 3.18 0.17 19 2.78 0.59 7 — — — — 3.01 2.91 2.89 XXDHH-2 S1l 页岩 2.64 3.12 0.20 18 2.90 0.34 23 — 一 一 — 2.95 3.04 3.05 TJNSH 通江诺水河 S1l 页岩 4.50 3.38 0.14 22 3.21 0.14 5 2.11 0.03 2 — 3.20 3.37 3.46 3.21 WLHY 武隆黄莺 O3W 页岩 3.79 3.40 0.08 23 2.7 0.49 23 — — — — 3.22 2.82 2.79 CNSH 长宁双河 S1l 页岩 3.30 3.64 0.10 21 3.23 0.54 15 — — — — 3.44 3.39 3.49 SZQL 石柱漆辽 S1l 页岩 5.57 3.65 0.10 37 3.06 0.15 9 2.47 0.19 18 — 3.45 3.21 3.26 3.06 注:EqVRo-1、EqVRo-2、EqVRo-3、EqVRo-4和EqVRo-5的注释同表 1. 表 3 基于固体沥青反射率的等效镜质体反射率换算公式
Table 3. Equivalent vitrinite reflectance conversion formulas (solid bitumen)
转换关系式 研究地区 适用条件 来源 EqVRo=0.656 9 BRo+0.336 4(自然样品) 四川盆地含有镜质体和沥青组分的二叠系和三叠系 BRo<5.0% 丰国秀和陈盛吉(1988) EqVRo=0.711 9 BRo+0.308 8(热模拟) 油页岩热模拟(乌鲁木齐二叠系和抚顺第三系) EqVRo=0.679 BRo+0.319 5(校正后) 自然演化和热模拟样品结果拟合 EqVRo=0.618 BRo+0.4 根据世界各地30个同时含有沥青和镜质体的
样品中“低反射”沥青反射率数据VRo<2.5% Jacob (1989) EqVRo=(BRo+0.41)/1.09 加拿大西部和美国南部油砂露头样品 VRo<5.0%
Landis and Castaño (1995)EqVRo=0.668 BRo+0.346 根据BRo与VRo的对比实验结果,引用地质剖面
储层固体沥青反射率与镜质体反射率的实测结果获得VRo<4.0%
碳酸盐岩刘德汉和
史继扬(1994)EqVRo=(BRo+0.244 3)/1.049 5 综合Jacob(1989)和Landis and Castaño (1995)数据获得
South Oman Salt Basin下寒武统碳酸盐岩储层固体沥青应用VRo<5.0% Schoenherr et al. (2007) EqVRo=(BRo+0.03)/0.96 加拿大Gaspe Peninsula东北部古生界海相灰岩地层 灰岩 Bertrand(1990) EqVRo=(BRo-0.13)/0.87 加拿大Gaspe Peniinsula, Mingan Archipelago-Anticosti Island,
Central St.LawrenceLowlands, Mackenzie Area古生界灰岩 Bertrand(1993) 类似于Jacob (1989)
EqVRo=0.277 BRo+0.57西加盆地下侏罗统“Nordegg Member”泥灰岩-钙质泥岩沥青
反射率与从白垩系地层成熟度梯度外推的镜质体反射率获得BRo ≤0.52%
BRo>0.52 %
Ⅰ/Ⅱ含硫烃源岩Riediger (1993) BRomax=-0.519+1.341 VRomax-
0.097 7 (VRomax)2+0.015
1(VRomax)3瑞士Alps二叠系-三叠系 0.2<BRomax<8.0
沥青最大反射率Ferreiro Mählmann and Frey(2012) EqVRo=(BRo-0.059)/0.936 加拿大Gaspe Peninsula泥盆系共存均质镜质体与几丁虫
以几丁虫反射率为中间变量获得二者关系VRo>1.5%
焦沥青
Bertrand and Malo (2001)EqVRo=0.811 3 BRo1.2438
EqVRo=1.250 3 BRo0.904根据加拿大Hudson Bay盆地上古生界海相地层同时
含有镜质体和沥青的样品结合Bertrand(1990, 1993)、
Bertrand et al.(2003)和Bertrand and Malo (2001)数据获得页岩/泥灰岩
灰岩运移沥青Bertrand and Malo(2012) 表 4 基于笔石和镜状体的等效镜质体反射率换算公式
Table 4. Equivalent vitrinite reflectance conversion formulas (graptolite and vitrinite-like maceral)
换算公式 研究地区 适用条件 来源 笔
石lgGRo=1.1 lgEqVRo-0.04 加拿大东部Gaspe地区泥盆系 GRo<3%? Bertrand (1990) EqVRo=0.937 6 GRo+0.027 8或EqVRo=0.968 6 GRo0.9819 加拿大GaspeBelt盆地和HudsonBay盆地古生界页岩 GRo<3% Bertrand and Malo (2001 , 2012) EqVRo=(GRomax+0.322 1)/2.113 下扬子江苏地区钻井奥陶系-志留系牙形石色变指数作为中间变量 GRomax<5.0% 祝幼华等(1998) EqVRo=-0.026 GRo2+0.524 GRo+0.592 5 EqVRo=0.508 9 GRomax+0.406 4 EqVRo=0.416 8 GRomax-0.465 5 塔里木盆地、鄂尔多斯盆地、江苏等地区奥陶系-志留系有机地球化学等综合分析指标为中介 笔石随机反射率0.72%<GRomax<4.27% 5%<GRomax<9.21% 曹长群等(2000) EqVRo=0.73 GRo+0.16 北欧斯堪的纳维亚中寒武系-下志留统以Tmax作为中间变量 GRo<2.2% Petersenet al. (2013) EqVRo=0.785 GRo+0.05 罗马尼亚Moesian Platform志留系同层位Tasmanites荧光 GRo<2.5% Colţoiet al. (2016) 镜
状
体EqVRo=0.461 VLMRo+0.75 爱沙尼亚奥陶系Kukersite油页岩和相近成熟度褐煤热模拟 0.73% < VRo < 2.0% 程顶胜等(1995) EqVRo=1.26 VLMRo+0.21 EqVRo=0.28 VLMRo+1.03 EqVRo=0.81 VLMRo+0.18 塔里木盆地寒武系和奥陶系海相烃源岩自然演化序列石炭系低成熟度海相烃源岩热模拟 VLMRo < 0.75% 0.75% < VLMRo < 1.5% VLMRo>1.5% 刘祖发等(1999) Xiaoet al.(2000) EqVRo=0.533 VLMRo+0.667 爱沙尼亚奥陶系Kukersite油页岩和黄县褐煤热模拟残渣 1.0% < VRo < 2.0% 王飞宇等(1996) EqVRo=0.917 VLMRo+0.181 9 EqVRo=0.845 2 VLMRo+0.375 6 南美Paraná盆地古生界Ponta Grossa组泥盆系钻孔和下泥盆系露头样品 VLMRo≤0.75% 0.75% < VLMRo≤1.50% Schmidtet al. (2015) -
[1] Belaid, A., Krooss, B.M., Littke, R., 2010.Thermal History and Source Rock Characterization of a Paleozoic Section in the Awbari Trough, Murzuq Basin, SW Libya.Marine and Petroleum Geology, 27(3):612-632.doi: 10.1016/j.marpetgeo.2009.06.006 [2] Bernard, S., Wirth, R., Schreiber, A., et al., 2012.Formation of Nanoporous Pyrobitumen Residues during Maturation of the Barnett Shale (Fort Worth Basin).International Journal of Coal Geology, 103:3-11.doi: 10.1016/j.coal.2012.04.010 [3] Bertrand, R., 1990.Correlations among the Reflectances of Vitrinite, Chitinozoans, Graptolites and Scolecodonts.Organic Geochemistry, 15(6):565-574.doi: 10.1016/0146-6380(90)90102-6 [4] Bertrand, R., 1993.Standardization of Solid Bitumen Reflectance to Vitrinite in Some Paleozoic Sequences of Canada.Energy Sources, 15(2):269-287.doi: 10.1080/00908319308909027 [5] Bertrand, R., Héroux, Y., 1987.Chitinozoan, Graptolite, and Scolecodont Reflectance as an Alternative to Vitrinite and Pyrobitumen Reflectance in Ordovician and Silurian Strata, Anticosti Island, Quebec, Canada.AAPG Bulletin, 71(8):951-957.doi: 10.1306/948878f7-1704-11d7-8645000102c1865d [6] Bertrand, R., Lavoie, D., Fowler, M., 2003.Cambrian-Ordovician Shales in the Humber Zone:Thermal Maturation and Source Rock Potential.Bulletin of Canadian Petroleum Geology, 51(3):213-233.doi: 10.2113/51.3.213 [7] Bertrand, R., Malo, M., 2001.Source Rock Analysis, Thermal Maturation and Hydrocarbon Generation in Siluro-Devonian Rocks of the Gaspé Belt Basin, Canada.Bulletin of Canadian Petroleum Geology, 49(2):238-261.doi: 10.2113/49.2.238 [8] Bertrand, R., Malo, M., 2012.Dispersed Organic Matter Reflectance and Thermal Maturation in Four Hydrocarbon Exploration Wells in the Hudson Bay Basin:Regional Implications.Geological Survey of Canada Open File, 7066:1-52.doi: 10.4095/289709 [9] Buchardt, B., Lewan, M.D., 1990.Reflectance of Vitrinite-Like Macerals as a Thermal Maturity Index for Cambrian-Ordovician Alum Shale, Southern Scandinavia.AAPG Bulletin, 74:394-406.doi: 10.1306/0c9b230d-1710-11d7-8645000102c1865d [10] Cao, C.Q., Shang, Q.H., Fang, Y.T., 2000.The Study of Graptolite Reflectance as the Indicator of Source Rock Maturation in Ordovician and Silurian of Tarim Basin, Ordos, Jiangsu Areas.Acta Palaeontologica Sinica, 39(1):151-156 (in Chinese with English abstract). [11] Chen, X., Rong, J.Y., Mitchell, C.E., et al., 2000.Late Ordovician to Earliest Silurian Graptolite and Brachiopod Biozonation from the Yangtze Region, South China, with a Global Correlation.Geological Magazine, 137(6):623-650.doi: 10.1017/s0016756800004702 [12] Cheng, D.S., Hao, S.S., Wang, F.Y., 1995.Reflectance of Vitrinite-Like Macerals, a Possible Thermal Maturity Index for Highly Over-Matured Source Rocks of the Lower Paleozoic.Petroleum Exploratiom and Development, 22(1):25-28 (in Chinese with English abstract). [13] Colţoi, O., Nicolas, G., Safa, P., 2016.The Assessment of the Hydrocarbon Potential and Maturity of Silurian Intervals from Eastern Part of Moesian Platform-Romanian Sector.Marine and Petroleum Geology, 77:653-667.doi: 10.1016/j.marpetgeo.2016.06.024 [14] Dai, J.X., Zou, C.N., Dong, D.Z., et al., 2016.Geochemical Characteristics of Marine and Terrestrial Shale Gas in China.Marine and Petroleum Geology, 76:444-463.doi: 10.1016/j.marpetgeo.2016.04.027 [15] Dai, J.X., Zou, C.N., Liao, S.M., et al., 2014.Geochemistry of the Extremely High Thermal Maturity Longmaxi Shale Gas, Southern Sichuan Basin.Organic Geochemistry, 74:3-12.doi: 10.1016/j.orggeochem.2014.01.018 [16] Feng, G.X., Chen, S.J., 1988.Relationship between the Reflectance of Bitumen and Vitrinite in Rock.Natural Gas Industry, 8(3):20-25 (in Chinese with English abstract). [17] Ferreiro Mählmann, R., Frey, M., 2012.Standardisation, Calibration and Correlation of the Kübler-Index and the Vitrinite/Bituminite Reflectance:An Inter-Laboratory and Field Related Study.Swiss Journal of Geosciences, 105(2):153-170.doi: 10.1007/s00015-012-0110-8 [18] Gentzis, T., Freitas, T.D., Goodarzi, F., et al., 1996.Thermal Maturity of Lower Paleozoic Sedimentary Successions in Arctic Canada.AAPG Bulletin, 80(7):1065-1084.doi: 10.1016/s0264-8172(96)00028-1 [19] Goodarzi, F., Gentzis, T., Harrison, C., et al., 1992.The Significance of Graptolite Reflectance in Regional Thermal Maturity Studies, Queen Elizabeth Islands, Arctic Canada.Organic Geochemistry, 18(3):347-357.doi: 10.1016/0146-6380(92)90075-9 [20] Goodarzi, F., Norford, B.S., 1985.Graptolites as Indicators of the Temperature Histories of Rocks.Journal of the Geological Society, 142(6):1089-1099.doi: 10.1144/gsjgs.142.6.1089 [21] Grobe, A., Urai, J.L., Littke, R., et al., 2016.Hydrocarbon Generation and Migration under a Large Overthrust:The Carbonate Platform under the Semail Ophiolite, Jebel Akhdar, Oman.International Journal of Coal Geology, 168:3-19.doi: 10.1016/j.coal.2016.02.007 [22] Guo, T.L., 2013.Evaluation of Highly Thermally Mature Shale-Gas Reservoirs in Complex Structural Parts of the Sichuan Basin.Journal of Earth Science, 24(6):863-873.doi: 10.1007/s12583-013-0384-4 [23] Guo, T.L., Zhang, H.R., 2014.Formation and Enrichment Mode of Jiaoshiba Shale Gas Field, Sichuan Basin.Petroleum Exploration and Development, 41(1):28-36 (in Chinese with English abstract). [24] Hackley, P.C., Cardott, B.J., 2016.Application of Organic Petrography in North American Shale Petroleum Systems:A Review.International Journal of Coal Geology, 163:8-51.doi: 10.1016/j.coal.2016.06.010 [25] Haeri-Ardakani, O., Sanei, H., Lavoie, D., et al., 2015.Geochemical and Petrographic Characterization of the Upper Ordovician Utica Shale, Southern Quebec, Canada.International Journal of Coal Geology, 138:83-94.doi: 10.1016/j.coal.2014.12.006 [26] Hao, F., Zou, H.Y., Lu, Y.C., 2013.Mechanisms of Shale Gas Storage:Implications for Shale Gas Exploration in China.AAPG Bulletin, 97(8):1325-1346.doi: 10.1306/02141312091 [27] Hartkopf-Fröder, C., K nigshof, P., Littke, R., et al., 2015.Optical Thermal Maturity Parameters and Organic Geochemical Alteration at Low Grade Diagenesis to Anchime Tamorphism:A Review.International Journal of Coal Geology, 150-151:74-119.doi: 10.1016/j.coal.2015.06.005 [28] He, D.F., Li, D.S., Zhang, G.W., et al., 2011.Formation and Evolution of Multi-Cycle Superposed Sichuan Basin, China.Chinese Journal of Geology, 46(3):589-606 (in Chinese with English abstract). [29] Jacob, H., 1989.Classification, Structure, Genesis and Practical Importance of Natural Solid Oil Bitumen ("Migrabitumen").International Journal of Coal Geology, 11(1):65-79.doi: 10.1016/0166-5162(89)90113-4 [30] Jiang, Q., Qiu, N.S., Zhu, C.Q., 2018.Heat Flow Study of the Emeishan Large Igneous Province Region:Implications for the Geodynamics of the Emeishan Mantle Plume.Tectonophysics, 724-725:11-27.doi: 10.1016/j.tecto.2017.12.027 [31] Jin, Z.J., Hu, Z.Q., Gao, B., et al., 2016.Controlling Factors on the Enrichment and High Productivity of Shale Gas in the Wufeng-Longmaxi Formations, Southeastern Sichuan Basin.Earth Science Frontiers, 23(1):1-10 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201601001 [32] Landis, C.R., Castaño, J.R., 1995.Maturation and Bulk Chemical Properties of a Suite of Solid Hydrocarbons.Organic Geochemistry, 22(1):137-149.doi: 10.1016/0146-6380(95)90013-6 [33] Li, X.Q., Zhang, J.Z., Wang, Y., et al., 2016. Accumulation Conditions of Lower Paleozoic Shale Gas from the Southern Sichuan Basin, China. Journalof Natural Gas Geoscience, 1(2):101-108. https://doi.org/10.1016/jj.nggs.2016.05.007 [34] Liang, D.G., Guo, T.L., Chen, J.P., et al., 2008.Some Progresses on Studies of Hydrocarbon Generation and Accumulation in Marine Sedimentary Regions, Southern China (Part 1):Distribution of Four Suits of Regional Marine Source Rocks.Marine Origin Petroleum Geology, 13(2):1-16 (in Chinese with English abstract). [35] Link, C.M., Bustin, R.M., Goodarzi, F., 1990.Petrology of Graptolites and Their Utility as Indices of Thermal Maturity in Lower Paleozoic Strata in Northern Yukon, Canada.International Journal of Coal Geology, 15(2):113-135.doi: 10.1016/0166-5162(90)90007-l [36] Liu, D.H., Shi, J.Y., 1994.Discussion on Unconventional Evaluation Method of High Maturity Carbonate Source Rocks.Petroleum Exploration and Development, 21(3):113-115 (in Chinese). [37] Liu, S.G., Deng, B., Jansa, L., et al., 2018.Multi-Stage Basin Development and Hydrocarbon Accumulations:A Review of the Sichuan Basin at Eastern Margin of the Tibetan Plateau.Journal of Earth Science, 29(2):307-325.doi: 10.1007/s12583-017-0904-8 [38] Liu, S.G., Deng, B., Zhong, Y., et al., 2016.Unique Geological Features of Burial and Superimposition of the Lower Paleozoic Shale Gas across the Sichuan Basin and Its Periphery.Earth Science Frontiers, 23(1):11-28 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201601002 [39] Liu, W.B., Qin, J.Z., Meng, Q.Q., et al., 2008.Reflectance and Content of Sulfur Character of Bitumen in the Feixianguan-Changxing Formation, Northeastern Sichuan.Acta Geologica Sinica, 82(3):373-379 (in Chinese with English abstract). [40] Liu, Z.F., Xiao, X.M., Fu, J.M., et al., 1999.Marine Vitrinite Reflectance as a Maturity Indicator of Lower Palaeozoic Hydrocarbon Source Rocks.Geochimica, 28(6):580-588 (in Chinese with English abstract). [41] Loucks, R.G., Reed, R.M., Ruppel, S.C., et al., 2009.Morphology, Genesis, and Distribution of Nanometer-Scale Pores in Siliceous Mudstones of the Mississippian Barnett Shale.Journal of Sedimentary Research, 79(12):848-861.doi: 10.2110/jsr.2009.092 [42] Lüning, S., Craig, J., Loydell, D.K., et al., 2000.Lower Silurian'Hot Shales' in North Africa and Arabia:Regional Distribution and Depositional Model.Earth-Science Reviews, 49(1-4):121-200.doi: 10.1016/s0012-8252(99)00060-4 [43] Luo, Q.Y., Hao, J.Y., Skovsted, C.B., et al., 2017.The Organic Petrology of Graptolites and Maturity Assessment of the Wufeng-Longmaxi Formations from Chongqing, China:Insights from Reflectance Cross-Plot Analysis.International Journal of Coal Geology, 183:161-173.doi: 10.1016/j.coal.2017.09.006 [44] Luo, Q.Y., Zhong, N.N., Dai, N., et al., 2016.Graptolite-Derived Organic Matter in the Wufeng-Longmaxi Formations (Upper Ordovician-Lower Silurian) of Southeastern Chongqing, China:Implications for Gas Shale Evaluation.International Journal of Coal Geology, 153:87-98.doi: 10.1016/j.coal.2015.11.014 [45] Malinconico, M.A.L., 1993.Reflectance Cross-Plot Analysis of Graptolites from the Anchi-Metamorphic Region of Northern Maine, U.S.A..Organic Geochemistry, 20(2):197-207.doi: 10.1016/0146-6380(93)90038-d [46] Mastalerz, M., Schimmelmann, A., Drobniak, A., et al., 2013.Porosity of Devonian and Mississippian New Albany Shale across a Maturation Gradient:Insights from Organic Petrology, Gas Adsorption, and Mercury Intrusion.AAPG Bulletin, 97(10):1621-1643.doi: 10.1306/04011312194 [47] Mu, C.L., Zhou, K.K., Liang, W., et al., 2011.Early Paleozoic Sedimentary Environment of Hydrocarbon Source Rocks in the Middle-Upper Yangtze Region and Petroleum and Gas Exploration.Acta Geologica Sinica, 85(4):526-532 (in Chinese with English abstract). [48] Nie, H.K., Zhang, J.C., Bao, S.J., et al., 2012.Shale Gas Accumulation Conditions of the Upper Ordovician-Lower Silurian in Sichuan Basin and Its Periphery.Oil & Gas Geology, 33(3):335-345 (in Chinese with English abstract). [49] Petersen, H.I., Schovsbo, N.H., Nielsen, A.T., 2013.Reflectance Measurements of Zooclasts and Solid Bitumen in Lower Paleozoic Shales, Southern Scandinavia:Correlation to Vitrinite Reflectance.International Journal of Coal Geology, 114:1-18.doi: 10.1016/j.coal.2013.03.013 [50] Qiu, N.S., Chang, J., Zuo, Y.H., et al., 2012.Thermal Evolution and Maturation of Lower Paleozoic Source Rocks in the Tarim Basin, Northwest China.AAPG Bulletin, 96(5):789-821.doi: 10.1306/09071111029 [51] Rantitsch, G., 1995.Coalification and Graphitization of Graptolites in the Anchizone and Lower Epizone.International Journal of Coal Geology, 27(1):1-22.doi: 10.1016/0166-5162(94)00017-t [52] Riediger, C., Goodarzi, F., Macqueen, R.W., 1989.Graptolites as Indicators of Regional Maturity in Lower Paleozoic Sediments, Selwyn Basin, Yukon and Northwest Territories, Canada.Canadian Journal of Earth Sciences, 26(10):2003-2015.doi: 10.1139/e89-169 [53] Riediger, C.L., 1993.Solid Bitumen Reflectance and Rock-Eval Tmax as Maturation Indices:An Example from the "Nordegg Member", Western Canada Sedimentary Basin.International Journal of Coal Geology, 22(3-4):295-315.doi: 10.1016/0166-5162(93)90031-5 [54] Sanei, H., Haeri-Ardakani, O., Wood, J.M., et al., 2015.Effects of Nanoporosity and Surface Imperfections on Solid Bitumen Reflectance (BRo) Measurements in Unconventional Reservoirs.International Journal of Coal Geology, 138:95-102.doi: 10.1016/j.coal.2014.12.011 [55] Schmidt, J.S., Araujo, C.V., Souza, I.V.A.F., et al., 2015.Hydrous Pyrolysis Maturation of Vitrinite-Like and Humic Vitrinite Macerals:Implications for Thermal Maturity Analysis.International Journal of Coal Geology, 144-145:5-14.doi: 10.1016/j.coal.2015.03.016 [56] Schoenherr, J., Littke, R., Urai, J.L., et al., 2007.Polyphase Thermal Evolution in the Infra-Cambrian Ara Group (South Oman Salt Basin) as Deduced by Maturity of Solid Reservoir Bitumen.Organic Geochemistry, 38(8):1293-1318.doi: 10.1016/j.orggeochem.2007.03.010 [57] Suárez-Ruiz, I., Flores, D., Mendonça Filho, J.G., et al., 2012.Review and Update of the Applications of Organic Petrology:Part 1, Geological Applications.International Journal of Coal Geology, 99:54-112.doi: 10.1016/j.coal.2012.02.004 [58] Suchý, V., Sýkorová, I., Stejskal, M., et al., 2002.Dispersed Organic Matter from Silurian Shales of the Barrandian Basin, Czech Republic:Optical Properties, Chemical Composition and Thermal Maturity.International Journal of Coal Geology, 53(1):1-25.doi: 10.1016/s0166-5162(02)00137-4 [59] Tenger, T., Shen, B.J., Yu, L.J., et al., 2017.Mechanisms of Shale Gas Generation and Accumulation in the Ordovician Wufeng-Longmaxi Formation, Sichuan Basin, SW China.Petroleum Exploration and Development, 44(1):69-78 (in Chinese with English abstract). doi: 10.1016/S1876-3804(17)30009-5 [60] Tissot, B.P., Welte, D.H., 1984.Petroleum Formation and Occurrence.Springer-Verlag, Berlin. [61] Tricker, P.M., 1992.Chitinozoan Reflectance in the Lower Palaeozoic of the Welsh Basin.Terra Nova, 4(2):231-237.doi: 10.1111/j.1365-3121.1992.tb00477.x [62] Wang, F.Y., He, P., Chen, D.S., et al., 1996.Take Vitrinite-Like Reflectance as the Maturity Indicator for Lower Paleozoic High-Overmature Source Rock.Natural Gas Industry, 16(4):14-18 (in Chinese). [63] Xiao, X.M., Liu, D.H., Fu, J.M., et al., 1991.The Significance of Bitumen Reflectance as a Mature Parameter of Source Rocks.Acta Sedimentologica Sinica, 9(S1):138-146 (in Chinese with English abstract). [64] Xiao, X.M., Wilkins, R.W.T., Liu, D.H., et al., 2000.Investigation of Thermal Maturity of Lower Palaeozoic Hydrocarbon Source Rocks by Means of Vitrinite-Like Maceral Reflectance-A Tarim Basin Case Study.Organic Geochemistry, 31(10):1041-1052.doi: 10.1016/s0146-6380(00)00061-9 [65] Xie, X.N., Hao, F., Lu, Y.C., et al., 2017.Differential Enrichment Mechanism and Key Technology of Shale Gas in Complex Areas of South China.Earth Science, 42(7):1045-1056 (in Chinese with English abstract).doi: 10.3799/dqkx.2017.084 [66] Yang, C., Hesse, R., 1993.Diagenesis and Anchimetamorphism in an Overthrust Belt, External Domain of the Taconian Orogen, Southern Canadian Applachians-Ⅱ.Paleogeothermal Gradients Derived from Maturation of Different Types of Organic Matter.Organic Geochemistry, 20(3):381-403.doi: 10.1016/0146-6380(93)90127-w [67] Yang, Y.F., 2016.Application of Bitumen and Graptolite Reflectance in the Silurian Longmaxi Shale, Southeastern Sichuan Basin.Petroleum Geology & Experiment, 38(4):466-472 (in Chinese with English abstract). [68] Zhai, G.Y., Wang, Y.F., Bao, S.J., et al., 2017.Major Factors Controlling the Accumulation and High Productivity of Marine Shale Gas and Prospect Forecast in Southern China.Earth Science, 42(7):1057-1068 (in Chinese with English abstract).doi: 10.3799/dqkx.2017.085 [69] Zhang, T.W., Ellis, G.S., Ruppel, S.C., et al., 2012.Effect of Organic-Matter Type and Thermal Maturity on Methane Adsorption in Shale-Gas Systems.Organic Geochemistry, 47:120-131.doi: 10.1016/j.orggeochem.2012.03.012 [70] Zhu, C.Q., Hu, S.B., Qiu, N.S., et al., 2018.Geothermal Constraints on Emeishan Mantle Plume Magmatism:Paleotemperature Reconstruction of the Sichuan Basin, SW China.International Journal of Earth Sciences, 107(1):71-88.doi: 10.1007/s00531-016-1404-2 [71] Zhu, C.Q., Rao, S., Yuan, Y.S., et al., 2013.Thermal Evolution of the Main Paleozoic Shale Rocks in the Southeastern Sichuan Basin.Journal of China Coal Society, 38(5):834-839 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/mtxb201305020 [72] Zhu, Y.H., Yang, X.Q., Yin, L., et al., 1998.Study of Reflectance for the Graptolites from Lower Yangtze Region in Jiangsu, E China.Acta Palaeontologica Sinica, 37(3):354-358 (in Chinese with English abstract). [73] Zou, C.N., Yang, Z., Dai, J.X., et al., 2015.The Characteristics and Significance of Conventional and Unconventional Sinian-Silurian Gas Systems in the Sichuan Basin, Central China.Marine and Petroleum Geology, 64:386-402.doi: 10.1016/j.marpetgeo.2015.03.005 [74] 曹长群, 尚庆华, 方一亭, 2000.探讨笔石反射率对奥陶系、志留系烃源岩成熟度的指示作用.古生物学报, 39(1):151-156. doi: 10.3969/j.issn.0001-6616.2000.01.013 [75] 程顶胜, 郝石生, 王飞宇, 1995.高过成熟烃源岩成熟度指标——镜状体反射率.石油勘探与开发, 22(1):25-28. http://www.cnki.com.cn/Article/CJFDTOTAL-TRQG604.003.htm [76] 丰国秀, 陈盛吉, 1988.岩石中沥青反射率与镜质体反射率之间的关系.天然气工业, 8(3):20-25. http://d.old.wanfangdata.com.cn/Conference/55271 [77] 郭彤楼, 张汉荣, 2014.四川盆地焦石坝页岩气田形成与富集高产模式.石油勘探与开发, 41(1):28-36. http://d.old.wanfangdata.com.cn/Periodical/syktykf201401003 [78] 何登发, 李德生, 张国伟, 等, 2011.四川多旋回叠合盆地的形成与演化.地质科学, 46(3):589-606. doi: 10.3969/j.issn.0563-5020.2011.03.001 [79] 金之钧, 胡宗全, 高波, 等, 2016.川东南地区五峰组-龙马溪组页岩气富集与高产控制因素.地学前缘, 23(1):1-10. http://d.old.wanfangdata.com.cn/Periodical/dxqy201601001 [80] 梁狄刚, 郭彤楼, 陈建平, 等, 2008.中国南方海相生烃成藏研究的若干新进展(一)南方四套区域性海相烃源岩的分布.海相油气地质, 13(2):1-16. doi: 10.3969/j.issn.1672-9854.2008.02.001 [81] 刘德汉, 史继扬, 1994.高演化碳酸盐烃源岩非常规评价方法探讨.石油勘探与开发, 21(3):113-115. http://www.cnki.com.cn/Article/CJFDTOTAL-SKYK403.019.htm [82] 刘树根, 邓宾, 钟勇, 等, 2016.四川盆地及周缘下古生界页岩气深埋藏-强改造独特地质作用.地学前缘, 23(1):11-28. http://d.old.wanfangdata.com.cn/Periodical/dxqy201601002 [83] 刘文斌, 秦建中, 孟庆强, 等, 2008.川东北地区飞仙关组-长兴组储层沥青反射率及含硫量特征.地质学报, 82(3):373-379. doi: 10.3321/j.issn:0001-5717.2008.03.012 [84] 刘祖发, 肖贤明, 傅家谟, 等, 1999.海相镜质体反射率用作早古生代烃源岩成熟度指标研究.地球化学, 28(6):580-588. doi: 10.3321/j.issn:0379-1726.1999.06.008 [85] 牟传龙, 周恳恳, 梁薇, 等, 2011.中上扬子地区早古生代烃源岩沉积环境与油气勘探.地质学报, 85(4):526-532. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201104008 [86] 聂海宽, 张金川, 包书景, 等, 2012.四川盆地及其周缘上奥陶统-下志留统页岩气聚集条件.石油与天然气地质, 33(3):335-345. http://d.old.wanfangdata.com.cn/Periodical/syytrqdz201203002 [87] 腾格尔, 申宝剑, 俞凌杰, 等, 2017.四川盆地五峰组-龙马溪组页岩气形成与聚集机理.石油勘探与开发, 44(1):69-78. [88] 王飞宇, 何萍, 程顶胜, 等, 1996.镜状体反射率可作为下古生界高过成熟烃源岩成熟度标尺.天然气工业, 16(4):14-18. http://www.cnki.com.cn/Article/CJFDTOTAL-TRQG604.003.htm [89] 肖贤明, 刘德汉, 傅家谟, 1991.沥青反射率作为烃源岩成熟度指标的意义.沉积学报, 9(S1):138-146. http://www.cnki.com.cn/Article/CJFDTOTAL-CJXB1991S1018.htm [90] 解习农, 郝芳, 陆永潮, 等, 2017.南方复杂地区页岩气差异富集机理及其关键技术.地球科学, 42(7):1045-1056.doi: 10.3799/dqkx.2017.084 [91] 仰云峰, 2016.川东南志留系龙马溪组页岩沥青反射率和笔石反射率的应用.石油实验地质, 38(4):466-472. http://d.old.wanfangdata.com.cn/Periodical/sysydz201604008 [92] 翟刚毅, 王玉芳, 包书景, 等, 2017.我国南方海相页岩气富集高产主控因素及前景预测.地球科学, 42(7):1057-1068.doi: 10.3799/dqkx.2017.085 [93] 朱传庆, 饶松, 袁玉松, 等, 2013.川东南地区古生界主要页岩层系热演化.煤炭学报, 38(5):834-839. http://d.old.wanfangdata.com.cn/Periodical/mtxb201305020 [94] 祝幼华, 杨晓清, 尹玲, 等, 1998.江苏下扬子区笔石反射率研究.古生物学报, 37(3):354-358. http://www.cnki.com.cn/Article/CJFDTOTAL-WSGT803.008.htm