• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    塔里木盆地塔中北坡奥陶系微生物碳酸盐岩储层形成机制与评价

    王玉伟 陈红汉 曹自成 云露

    王玉伟, 陈红汉, 曹自成, 云露, 2019. 塔里木盆地塔中北坡奥陶系微生物碳酸盐岩储层形成机制与评价. 地球科学, 44(2): 559-571. doi: 10.3799/dqkx.2018.121
    引用本文: 王玉伟, 陈红汉, 曹自成, 云露, 2019. 塔里木盆地塔中北坡奥陶系微生物碳酸盐岩储层形成机制与评价. 地球科学, 44(2): 559-571. doi: 10.3799/dqkx.2018.121
    Wang Yuwei, Chen Honghan, Cao Zicheng, Yun Lu, 2019. Forming Mechanism of Ordovician Microbial Carbonate Reservoir in Northern Slope of Tazhong Uplift, Tarim Basin. Earth Science, 44(2): 559-571. doi: 10.3799/dqkx.2018.121
    Citation: Wang Yuwei, Chen Honghan, Cao Zicheng, Yun Lu, 2019. Forming Mechanism of Ordovician Microbial Carbonate Reservoir in Northern Slope of Tazhong Uplift, Tarim Basin. Earth Science, 44(2): 559-571. doi: 10.3799/dqkx.2018.121

    塔里木盆地塔中北坡奥陶系微生物碳酸盐岩储层形成机制与评价

    doi: 10.3799/dqkx.2018.121
    基金项目: 

    国家重点基础研究发展计划973课题 2012CB214804

    国家"十二五"重大科技专项 2008ZX05008-003-30

    详细信息
      作者简介:

      王玉伟(1987-), 男, 博士研究生, 主要从事微生物岩储层、油气成藏机理方面的研究

      通讯作者:

      陈红汉

    • 中图分类号: P618.13

    Forming Mechanism of Ordovician Microbial Carbonate Reservoir in Northern Slope of Tazhong Uplift, Tarim Basin

    • 摘要: 微生物岩储层是当前的研究热点之一.通过对塔中北坡微生物岩样品的岩芯以及铸体薄片的观察,发现研究区域的微生物岩储层以裂缝-孔隙型储层为主.对其进行全直径孔渗性检测发现,微生物岩储层具有较好的天然气储集物性.通过对微生物岩的形成机制及特点的分析,结合应力敏感实验和成像测井资料,总结出微生物岩储集空间发育的优势因素.原生白云石的生成可以促进方解石的溶解,而塔中北坡微生物岩发生早成岩岩溶作用,部分地区叠加晚期深成热液改造,提高了储集物性;有机质含量较丰富不仅可以在埋藏成岩阶段生成有机酸造成溶蚀,还能够降低微生物岩的极限强度从而容易在构造作用下发生断裂形成裂缝,因此塔中北坡微生物岩储集空间主要以次生作用为主.通过岩石压缩系数的测定,得出微生物岩的抗压实能力一般,但藻屑骨架对藻孔的保护有利,抗压实能力最强的是受到热液作用而硅化的微生物岩,其次是白云石化微生物岩.

       

    • 图  1  塔里木盆地塔中北坡构造单元划分及综合柱状图

      Fig.  1.  Structural units and comprehensive histogram of Tazhong uplift, Tarim basin

      图  2  顺南地区凝块石储集空间及SN6井一间房组部分层段成像测井照片

      a, b.凝块石薄片透射光和荧光照片中葛万藻化石,STI井,O2yj,7 706.22 m;c.凝块石岩心样品,STI井,O2yj,7 706.22 m;d, e.凝块石岩心样品及铸体薄片中微裂缝的发育,SN7井,O2yj,6 485.38 m;f.颗粒灰岩铸体薄片照片,SN7井,O2yj,6 491.10 m; g.凝块石铸体薄片中颗粒间残余孔隙,SN7井,O2yj,6 485.45 m;h.凝块石铸体薄片中藻孔大量发育,顺着藻凝块中还有微裂缝的发育,SN7井,O2yj,6 487.36 m;i.凝块石中藻孔的CT照片,SN7井,O2yj;j.凝块石发育层段成像测井照片,SN6井,O2yj

      Fig.  2.  The reservoir space of Shunnan area's thrombolites and parts of the rock section of Yijianfang Formation of Well SN6 imaging logging

      图  3  SN7井一间房组孔隙度-渗透率关系

      Fig.  3.  Porosity and permeability diagram of Yijianfang formation of Well SN4

      图  4  ST1井凝块石应力敏感曲线

      Fig.  4.  The stress sensitivity curves of thrombolites in Well ST1

      图  5  SN1井有机碳含量及泥质含量

      Fig.  5.  Organic carbon content and shale content of Well SN1

      图  6  SN5井及SN7井白云石化照片

      a, b.单偏光照片显示凝块石发育窗格孔,且被选择性白云石化,SN5井,O1p;c, d.左边透射镜对照右边阴极光照片显示凝块当中发生了白云石化作用

      Fig.  6.  Dolomitization photos of Well SN5 and SN7

      图  7  SN6井泥质含量与裂缝发育

      Fig.  7.  Shale content and fracture development of Well SN6

      图  8  SN4井微生物岩成岩作用照片

      a.凝块石中发生硅化现象,SN4井,O1-2y,6 671.98 m;b.凝块石中发育两期构造裂缝,构造裂缝切穿缝合线,沿缝合线伴生自形白云石,SN4井,O1-2y,6 671.15 m;c.凝块石中发生硅化作用,局部有溶蚀重结晶现象,SN4井,O1-2y,6 672.03 m;d.凝块石中发育两期构造裂缝,SN4井,O1-2y,6 671.42 m.照片来源于中石化西北油田分公司

      Fig.  8.  Microbiatediagenesis photos of Well SN4

      图  9  SN4井及SN5井凝块石压缩系数与有效覆盖压力关系曲线

      Fig.  9.  Relation curve of rock compressibility and effective cover pressure of thrombolites in Well SN4 and SN5

      表  1  塔中北坡奥陶系微生物岩发育层段

      Table  1.   Ordovician microbial Formation in northeastern slop of Tazhong uplift

      井号 凝块石发育层段 凝块石发育深度范围
      顺南1井 O2yj 6 531~6 534 m, 6 669~6 674 m
      顺南4井 O2yj、O1-2y 6 361~6 461 m, 6 671~6 672 m
      顺南5井 O2yj、O1p 6 373~6 379 m, 7 172~7 179 m
      顺南6井 O2yj 6 782~6 788 m
      顺南7井 O2yj、O1-2y 6 484~6 485 m, 6 535~6 552 m
      顺托1井 O2yj 7 704~7 708 m
      下载: 导出CSV

      表  2  塔中北坡物性数据统计

      Table  2.   The statistics of reservoir properties of Tazhong uplift

      井号 深度(m) 岩性 地层 孔隙度(%) 渗透率(mD)
      最小值 最大值 平均值 最小值 最大值 平均值
      ST1 7 670.66~7 676.63 砂屑灰岩 O2yj 0.7 3.3 1.9 0.001 1.72 0.306
      ST1 7 704.48~7 708.73 凝块石 O2yj 1.5 4.4 3.1 0.001 0.05 0.017
      SN7 6 426.70~6 429.72 砂屑灰岩 O2yj 0.2 0.9 0.5 0.001 0.06 0.025
      SN7 6 484.42~6 486.12 凝块石 O2yj 3.4 3.5 3.4 0.040 5.84 2.017
      下载: 导出CSV
    • [1] Bosak, T., Souza-Egipsy, V., Corsetti, F.A., et al., 2004.Micrometer-Scale Porosity as a Biosignature in Carbonate Crusts.Geology, 32(9):781-784. https://doi.org/10.1130/g20681.1
      [2] Burne, R.V., Moore, L.S., 1987.Microbialites:Organosedimentary Deposits of Benthic Microbial Communities.Palaios, 2(3):241. https://doi.org/10.2307/3514674
      [3] Chen, H.H., Lu, Z.Y., Cao, Z.C., et al., 2016a.Hydrothermal Alteration of Ordovician Reservoir in Northeastern Slope of Tazhong Uplift, Tarim Basin.Acta Petrolei Sinica, 37(1):35-49(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201601004
      [4] Chen, H.H., Wu, Y., Zhu, H.T., et al., 2016b.Eogenetic Karstification and Reservoir Formation Model of the Middle-Lower Ordovician in the Northeast Slope of Tazhong Uplift, Tarim Basin.Acta Petrolei Sinica, 37(10):1231-1246(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201610003
      [5] Chen, Z.Z., Hao, S.S., Xi, S.L., 1994.Evaluation of Organic Matter Content in Carbonate Source Rock by Using Log Data.Journal of China University of Petroleum, 18(4):16-19(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400453895
      [6] Dupraz, C., Visscher, P.T., Baumgartner, L.K., et al., 2004.Microbe-Mineral Interactions:Early Carbonate Precipitation in a Hypersaline Lake (Eleuthera Island, Bahamas).Sedimentology, 51(4):745-765. https://doi.org/10.1111/j.1365-3091.2004.00649.x
      [7] Fu, H., Han J.H., Meng, W.B., et al., 2017.Formation Mechanism of the Ordovician Karst Carbonate Reservoirs on the Northern Slope of Central Tarim Basin.Natural Gas Industry, 37(3):25-36(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-TRQG201703009.htm
      [8] Gallagher, K.L., 2012.The Role of Sulfate-Reducing Bacteria in Organomineralization and Microbialite Formation: Mechanisms of Mineral Precipitation(Dissertation).University of Connecticut, Connecticut.
      [9] Gehman, H.M.Jr., 1962.Organic Matter in Limestones.Geochimica et Cosmochimica Acta, 26(8):885-897. https://doi.org/10.1016/0016-7037(62)90118-7
      [10] Gong, Y.Y., 2016.The Type of Thrombolite and Research on the Origin of Micropores in the Thrombolite for Cambrian Zhangxia Formation in the Western Shandong Province.China Mining Magazine, 25(Suppl.):386-389(in Chinese with English abstract). doi: 10.1111/sed.12304/full
      [11] Haddad, S.A., Mancini, E.A., 2013.Reservoir Characterization, Modeling, and Evaluation of Upper Jurassic Smackover Microbial Carbonate and Associated Facies in Little Cedar Creek Field, Southwest Alabama, Eastern Gulf Coastal Plain of the United States.AAPG Bulletin, 97(11):2059-2083. https://doi.org/10.1306/07081312187
      [12] Han, X.Y., Tang, L.J., Cao, Z.C., et al., 2018.Characteristics and Formation Mechanism of Composite Flower Structures in Northern Slope of Tazhong Uplift, Tarim Basin.Earth Science, 43(2):525-537(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201802014
      [13] Hao, M.Q., Liu, X.G., Hu, Y.L., et al., 2007.Reservoir Characteristics of Micro-Fractured Ultra Low Permeability Reservoirs.Acta Petrolei Sinica, 28(5):93-98(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SYXB200705018.htm
      [14] He, J., Kang, Y.L., Liu, D.W., et al., 2005.The Stress Sensitivity Research on Porous and Fractured Porous Carbonate Reservoirs.Drilling & Production Technology, 28(2):84-86(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zcgy200502027
      [15] Henry, S.C., 2013.Porosity in Bacterially Induced Carbonates:Focus on Micropores.AAPG Bulletin, 97(11):2103-2111. https://doi.org/10.1306/04231312173
      [16] Hill, D.G., Lombardi, T.E., Martin, J.P., 2004.Fractured Shale Gas Potential in New York.Northeastern Geology & Environment Science, 8(26):1-49. https://www.sciencedirect.com/science/article/abs/pii/S0264817213002201
      [17] Huang, Q.Y., Liu, W., Zhang, Y.Q., et al., 2015.Progress of Research on Dolomitization and Dolomite Reservoir.Advances in Earth Science, 30(5):539-551(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkxjz201505004
      [18] Li, C.L., 2007.A Theoretical Form Ula of Stress Sensitivity Index with Compressibility of Rock.Lithologic Reservoirs, 19(4):95-98(in Chinese with English abstract). http://xueshu.baidu.com/usercenter/paper/show?paperid=e92e533fbdc82af468b2923345be3aca&site=xueshu_se
      [19] Li, L., Li, F.C., Liu, L., et al., 2017.Curvibacter sp. Strain HJ-1 Induced the Formation of Aragonite under the Condition of Low Mg/Ca Ratio.Acta Microbiologica Sinica, 57(3):434-446(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wswxb201703011
      [20] Li, P.J., Chen, H.H., Tang, D.Q., et al., 2017.Coupling Relationship between NE Strike-Slip Faults and Hypogenic Karstification in Middle-Lower Ordovician of Shunnan Area, Tarim Basin, Northwest China.Earth Science, 42(1):93-104(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201701007
      [21] Li, P.W., Jin, T.F., Wang, G.Q., et al., 2013.Microbial Carbonates and Their Significance in the Petroleum Exploration.Geological Science and Technology Information, 32(3):66-74(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DZKQ201303011.htm
      [22] Li, P.W., Luo, P., Chen, M., et al., 2015a.Characteristics and Origin of the Upper Sinian Microbial Carbonate Reservoirs at the Northwestern Margin of Tarim Basin.Oil & Gas Geology, 36(3):416-428(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SYYT201503012.htm
      [23] Li, P.W., Luo, P., Song, J.M., et al., 2015b.Characteristics and Main Controlling Factors of Microbial Carbonate Reservoirs:A Case Study of Upper Sinian-Lower Cambrian in the Northwestern Margin of Tarim Basin.Acta Petrolei Sinica, 36(9):1074-7089(in Chinese with English abstract). doi: 10.1038/aps.2015.44
      [24] Lu, Z.Y., Chen, H.H., Yun, L., et al., 2016.The Coupling Relationship between Hydrothermal Fluids and the Hydrocarbon Gas Accumulation in Ordovician of Shunnan Gentle Slope, Northern Slope of Tazhong Uplift.Earth Science, 41(3):487-498(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201603015.htm
      [25] Perri, E., Gindre-Chanu, L., Caruso, A., et al., 2017.Microbial-Mediated Pre-Salt Carbonate Deposition during the Messinian Salinity Crisis (Calcare Di Base Fm., Southern Italy).Marine and Petroleum Geology, 88:235-250. https://doi.org/10.1016/j.marpetgeo.2017.08.028
      [26] Shang, K., Guo, N., Cao, Z.C., et al., 2017.Main Controlling Factors of Reservoir in Ordovician Yijianfang Formation on the Northern Slope of Middle Tarim Basin.Marine Origin Petroleum Geology, 22(1):39-46(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hxyqdz201701010
      [27] Song, J.M., Liu, S.G., Li, Z.W., et al., 2017.Characteristics and Controlling Factors of Microbial Carbonate Reservoirs in the Upper Sinian Dengying Formation in the Sichuan Basin, China.Oil & Gas Geology, 38(4):741-752(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-TDKX201708006.htm
      [28] Taylor, K.C., Nasr-El-Din, H.A., Mehta, S., 2006.Anomalous Acid Reaction Rates in Carbonate Reservoir Rocks.SPE Journal, 11(4):488-496. https://doi.org/10.2118/89417-pa
      [29] van Lith, Y.Vasconcelos, C., Warthmann, R., et al., 2002.Bacterial Sulfate Reduction and Salinity:Two Controls on Dolomite Precipitation in Lagoa Vermelha and Brejo do Espinho(Brazil).Hydrobiology, 485:35-49. doi: 10.1023/A:1021323425591
      [30] Wang, H.M., Wu, X.P., Qiu, X., et al., 2013.Microbially Induced Carbonate Precipitation:A Review.Microbiology China, 40(1):180-189(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/kjdb201302006
      [31] Wang, Q.R., Chen, H.H., Zhao, Y.T., et al., 2018.Differences of Hydrocarbon Accumulation Periods in Silurian of Tazhong Northern Slope, Tarim Basin.Earth Science, 43(2):577-593 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201802018
      [32] Wang, Y.B., Tong, J.N., Wang, J.S., et al., 2005.The Paleoenvironment Significance of Calcimicrobialite after the Extinction during the End-Permian.Chinese Science Bulletin, 50(6):552-558(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-JXTW20050700B.htm
      [33] Wen, Z.F., Liu, X.D., Zhong, J.H., et al., 2010.Discovery of Microorganism Fossil and Study on Microorganism Induced Calcification in Miocene Stromatolites, Qaidam Basin, China.Acta Geologica Sinica, 84(2):263-271(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201002012
      [34] Xiong, Y., Deng, D., Wang, Z.D., 2016.A New Formula of Rock Compressibility by Consideration of Many Factors.Reservoir Evaluation and Development, 6(5):21-28(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yqzpjykf201605005
      [35] Yin, H.F., Jiang, H.S., Xia, W.C., et al., 2014.The End-Permian Regression in South China and Its Implication on Mass Extinction.Earth-Science Reviews, 137:19-33. https://doi.org/10.1016/j.earscirev.2013.06.003
      [36] Zhang, D.M., Wang, G.P., Lou, X.G., et al., 2011.On Calculating in the Shale Content with Log Curve Combining Method.Well Logging Technology, 35(4):358-362(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJJS201104018.htm
      [37] Zhang, H.Y., He, S.L., Luan, G.H., et al., 2014.Quantitative study of Stress Sensitivity in Ultralow Permeability Fracture Media Reservoir.Chinese Journal of Rock Mechanics and Engineering, 33(1):3349-3354(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSLX2014S1106.htm
      [38] Zhang, H.Y., He, S.L., Luan, G.H., et al., 2015.Experimental Study on Stress Sensitivity of Microfractuure Ultra-Permeability Reservoirs.Journal of Xi'an ShiyouUniversity (Natural Science Edition), 30(1):30-33(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XASY200705013.htm
      [39] Zhao, W.Z., Shen, A.J., Zheng, J.F., et al., 2014.The Porosity Origin of Dolostone Reservoirs in the Tarim, Sichuan and Ordos Basins and Its Implication to Reservoir Prediction.Science China:Earth Sciences, 44(9):1925-1939(in Chinese). doi: 10.1007/s11430-014-4920-6
      [40] Zhao, Z.J., 2015.Indicators of Global Sea-Level Change and Research Methods of Marine Tectonic Sequences:Take Ordovician of Tarim Basin as an Example.Acta Petrolei Sinica, 36(3):262-273(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SYXB201503003.htm
      [41] Zheng, W., Qi, Y.A., Xing, Z.F., et al., 2017.Characteristics and Paleoenvironmental Significance of Microbially Induced Sedimentary Structures (MISSs) in Terrestrial P-T Boundary in Jiyuan, Western Henan Province.Acta Sedimentologica Sinica, 35(6):1121-1132(in Chinese with English abstract). doi: 10.1023/A%3A1008165732542
      [42] 陈红汉, 鲁子野, 曹自成, 等, 2016a.塔里木盆地塔中地区北坡奥陶系热液蚀变作用.石油学报, 37(1):43-63. http://d.old.wanfangdata.com.cn/Periodical/syxb201601004
      [43] 陈红汉, 吴悠, 朱红涛, 等, 2016b.塔中地区北坡中-下奥陶统早成岩岩溶作用及储层形成模式.石油学报, 37(10):1231-1246. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20162016111800101094
      [44] 陈增智, 郝石生, 席胜利, 1994.碳酸盐岩烃源岩有机质丰度测井评价方法.石油大学学报(自然科学版), 18(4):16-19. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400453895
      [45] 傅恒, 韩建辉, 孟万斌, 等, 2017.塔里木盆地塔中北坡奥陶系碳酸盐岩岩溶储层的形成机理.地质勘探, 37(3):25-36. http://d.old.wanfangdata.com.cn/Periodical/trqgy201703004
      [46] 贡云云, 2016.鲁西寒武系张夏组凝块石类型及其微孔隙的成因研究.中国矿业, 25(增刊):386-389. http://d.old.wanfangdata.com.cn/Periodical/zgky2016z1091
      [47] 韩晓影, 汤良杰, 曹自成, 等, 2018.塔中北坡"复合花状"构造发育特征及成因机制.地球科学, 43(2):525-537. http://earth-science.net/WebPage/Article.aspx?id=3740
      [48] 郝明强, 刘先贵, 胡永乐, 等, 2007.微裂缝性特低渗透油藏储层特征研究.石油学报, 28(5):93-98. doi: 10.3321/j.issn:0253-2697.2007.05.017
      [49] 何健, 康毅力, 刘大伟, 等, 2005.孔隙型与裂缝-孔隙型碳酸盐岩储层应力敏感研究.钻采工艺, 28(2):84-86. doi: 10.3969/j.issn.1006-768X.2005.02.027
      [50] 黄擎宇, 刘伟, 张艳秋, 等, 2015.白云石化作用及白云岩储层研究进展.地球科学进展, 30(5):539-551. http://d.old.wanfangdata.com.cn/Periodical/dqkxjz201505004
      [51] 李传亮, 2007.岩石应力敏感指数与压缩系数之间的关系式.岩性油气藏, 19(4):95-98. doi: 10.3969/j.issn.1673-8926.2007.04.017
      [52] 李磊, 李福春, 刘璐, 等, 2017.低Mg/Ca条件下丛毛单胞菌HJ-1菌株诱导文石的形成.微生物学报, 57(3):434-446. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wswxb201703011
      [53] 李培军, 陈红汉, 唐大卿, 等, 2017.塔里木盆地顺南地区中-下奥陶统NE向走滑断裂及其与深成岩溶作用的耦合关系.地球科学, 42(1):93-104. http://earth-science.net/WebPage/Article.aspx?id=3417
      [54] 李朋威, 金廷福, 王果谦, 等, 2013.微生物碳酸盐岩及其油气勘探意义.地质科技情报, 32(3):66-74. http://www.cnki.com.cn/Article/CJFDTotal-DZKQ201303011.htm
      [55] 李朋威, 罗平, 陈敏, 等, 2015a.塔里木盆地西北缘上震旦统微生物碳酸盐岩储层特征与成因.石油与天然气地质, (3):416-428. http://d.old.wanfangdata.com.cn/Periodical/syytrqdz201503010
      [56] 李朋威, 罗平, 宋金民, 等, 2015b.微生物碳酸盐岩储层特征与主控因素——以塔里木盆地西北缘上震旦统-下寒武统为例.石油学报, 36(9):1074-1089. http://www.cqvip.com/QK/95667X/201509/83898866504849534857484853.html
      [57] 鲁子野, 陈红汉, 云露, 等, 2016.塔中顺南缓坡奥陶系热流体活动与天然气成藏的耦合关系.地球科学, 41(3):487-498. http://earth-science.net/WebPage/Article.aspx?id=3265
      [58] 尚凯, 郭娜, 曹自成, 等, 2017.塔里木盆地塔中北坡奥陶系一间房组储集层主控因素分析.海相油气地质, 22(1):39-46. http://d.old.wanfangdata.com.cn/Periodical/hxyqdz201701010
      [59] 宋金民, 刘树根, 李智武, 等, 2017.四川盆地上震旦统灯影组微生物碳酸盐岩储层特征与主控因素.石油与天然气地质, 38(4):741-752. http://d.old.wanfangdata.com.cn/Periodical/syytrqdz201704011
      [60] 王红梅, 吴晓萍, 邱轩, 等, 2013.微生物成因的碳酸盐矿物研究进展.微生物学通报, 40(1):180-189. http://d.old.wanfangdata.com.cn/Periodical/wswxtb201301017
      [61] 王倩茹, 陈红汉, 赵玉涛, 等, 2018.塔中北坡顺托果勒地区志留系油气成藏期差异性分析.地球科学, 43(2):577-593. http://earth-science.net/WebPage/Article.aspx?id=3736
      [62] 王永标, 童金南, 王家生, 等, 2005.华南二叠纪末大绝灭后的钙质微生物岩及古环境意义.科学通报, 50(6):552-558. doi: 10.3321/j.issn:0023-074X.2005.06.009
      [63] 温志峰, 刘显太, 钟建华, 等, 2010.柴达木盆地新近纪叠层石中微生物化石组合的发现与钙化方式研究.地质学报, 84(2):263-271. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201002012
      [64] 熊钰, 邓丹, 王子敦, 等, 2016.考虑多因素影响的岩石压缩系数计算新公式.油气藏评价与开发, 6(5):21-28. doi: 10.3969/j.issn.2095-1426.2016.05.005
      [65] 张德梅, 王桂萍, 娄宪刚, 等, 2011.测井曲线组合法求取泥质含量探讨.测井技术, 35(4):358-362. doi: 10.3969/j.issn.1004-1338.2011.04.013
      [66] 张海勇, 何顺利, 栾国华, 等, 2014.超低渗透裂缝介质储层应力敏感性定量研究.岩石力学与工程学报, 33(1):3349-3354. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2014S1106.htm
      [67] 张海勇, 何顺利, 栾国华, 等, 2015.微裂缝超低渗储层的应力敏感实验研究.西安石油大学学报(自然科学版), 30(1):30-33. doi: 10.3969/j.issn.1673-064X.2015.01.005
      [68] 赵文智, 沈安江, 郑剑锋, 等, 2014.塔里木-四川及鄂尔多斯盆地白云岩孔隙成因探讨及对储层预测的指导意义.中国科学:地球科学, 44(9):1925-1939. http://www.cnki.com.cn/Article/CJFDTotal-JDXK201409005.htm
      [69] 赵宗举, 2015.全球海平面变化指标及海相构造层序研究方法——以塔里木盆地奥陶系为例.石油学报, 36(3):262-273. http://d.old.wanfangdata.com.cn/Conference/7931127
      [70] 郑伟, 齐永安, 邢智峰, 等, 2017.豫西济源二叠纪末-三叠纪初陆相微生物成因构造及其古环境意义.沉积学报, 35(6):1121-1132. http://d.g.wanfangdata.com.cn/Periodical_cjxb201706004.aspx
    • 加载中
    图(9) / 表(2)
    计量
    • 文章访问数:  3774
    • HTML全文浏览量:  1483
    • PDF下载量:  32
    • 被引次数: 0
    出版历程
    • 收稿日期:  2018-12-02
    • 刊出日期:  2019-02-15

    目录

      /

      返回文章
      返回