• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    柴北缘从大洋俯冲到陆陆碰撞:来自开屏沟造山带M型橄榄岩的证据

    蔡鹏捷 许荣科 郑有业 陈鑫 刘嘉 俞军真

    蔡鹏捷, 许荣科, 郑有业, 陈鑫, 刘嘉, 俞军真, 2018. 柴北缘从大洋俯冲到陆陆碰撞:来自开屏沟造山带M型橄榄岩的证据. 地球科学, 43(8): 2875-2892. doi: 10.3799/dqkx.2018.112
    引用本文: 蔡鹏捷, 许荣科, 郑有业, 陈鑫, 刘嘉, 俞军真, 2018. 柴北缘从大洋俯冲到陆陆碰撞:来自开屏沟造山带M型橄榄岩的证据. 地球科学, 43(8): 2875-2892. doi: 10.3799/dqkx.2018.112
    Cai Pengjie, Xu Rongke, Zheng Youye, Chen Xin, Liu Jia, Yu Junzhen, 2018. From Oceanic Subduction to Continental Collision in North Qaidam: Evidence from Kaipinggou Orogenic M-Type Peridotite. Earth Science, 43(8): 2875-2892. doi: 10.3799/dqkx.2018.112
    Citation: Cai Pengjie, Xu Rongke, Zheng Youye, Chen Xin, Liu Jia, Yu Junzhen, 2018. From Oceanic Subduction to Continental Collision in North Qaidam: Evidence from Kaipinggou Orogenic M-Type Peridotite. Earth Science, 43(8): 2875-2892. doi: 10.3799/dqkx.2018.112

    柴北缘从大洋俯冲到陆陆碰撞:来自开屏沟造山带M型橄榄岩的证据

    doi: 10.3799/dqkx.2018.112
    基金项目: 

    教育部长江学者和创新团队发展计划 IRT14R54

    中国地质调查局项目 12120113032800

    详细信息
      作者简介:

      蔡鹏捷(1988-), 男, 博士研究生, 主要从事造山带橄榄岩地球化学研究

      通讯作者:

      许荣科

    • 中图分类号: P597

    From Oceanic Subduction to Continental Collision in North Qaidam: Evidence from Kaipinggou Orogenic M-Type Peridotite

    • 摘要: 造山带幔源(M型)橄榄岩虽然在高压/超高压变质带分布不多,但由于其来自俯冲板块上覆的岩石圈地幔,因此是研究俯冲隧道内俯冲板片与地幔楔之间相互作用的重要对象,对于还原超高压变质带的演化有重要意义.柴北缘鱼卡榴辉岩-片麻岩区边部附近的开屏沟存在一套橄榄岩,其岩石类型、成因、时代等都缺乏研究.对开屏沟橄榄岩全岩的主量和微量元素及铂族元素、橄榄石主量元素、锆石U-Pb年龄和Hf同位素进行了研究.结果显示,其全岩具有高的Mg#、Mg/Si和Ni值,同时表现出亏损难溶的HFSE和HREE,轻微富集LILE和LREE中与流体活动性相关的元素;橄榄石具有较高的Fo值(90.11~92.77)与NiO含量(0.32%~0.45%)、低的CaO含量(< 0.02%);PGEs的球粒陨石标准化配分模式与交代橄榄岩和残留橄榄岩近似;两组变质锆石年龄为459.5±3.6 Ma和417.5±2.7 Ma,对应的εHft)值为-0.71~9.45和-11.96~-1.20,分别反映了洋壳流体(或早期大陆俯冲板片流体)和陆壳流体交代的性质和时限.开屏沟橄榄岩来源于俯冲带上覆地幔楔,遭受了不同来源流体不同程度的交代作用而获得地壳特征,同时为柴北缘大洋俯冲到陆陆碰撞的构造演化提供了新证据.

       

    • 图  1  柴北缘造山带及毗邻区域地质图(a)与开屏沟地区地质简图(b)

      朱小辉等(2014)张建新等(2015)修改

      Fig.  1.  Geological sketch of the North Qaidam orogen and adjacent areas in northern Tibet (a) and geological sketch of the Kaipinggou area (b)

      图  2  柴北缘造山带开屏沟橄榄岩的野外(a, b)和显微镜下照片(c~f)

      a.野外辉长岩侵入超基性岩; b.蛇纹石化橄榄岩; c.斑状蛇纹石内残留橄榄石(单偏光); d.孤岛状残留的橄榄石(正交偏光); e.蛇纹石化单斜辉石(正交偏光); f.蛇纹石内金红石包体(单偏光). Ol.橄榄岩, Cpx.单斜辉石, Srp.蛇纹石, Rut.金红石, Spl.尖晶石.据Whitney and Evans(2010)

      Fig.  2.  Photographs showing field occurrence (a, b) and microscope (c-f) for peridotites at Kaipinggou in the Qaidam orogen

      图  3  柴北缘造山带开屏沟橄榄岩球粒陨石标准化稀土元素配分模式(a)和原始地幔标准化微量元素蛛网图(b)

      原始地幔及球粒陨石标准化值据McDonough and Sun(1995)

      Fig.  3.  Chondrite normalized REE pattern (a) and PM-normalized trace element spider diagram (b) for peridotite at Kaipinggou in the Qaidam orogen

      图  4  开屏沟橄榄岩铂族元素球粒陨石标准化配分模式

      底图据Su et al.(2016);标准化值据McDonough and Sun(1995)

      Fig.  4.  Chondrite-normalized PGE pattern for peridotite at Kaipinggou

      图  5  柴北缘造山带开屏沟橄榄岩锆石CL图像

      括号外数值表示年龄, 括号内数值表示锆石Hf同位素组成

      Fig.  5.  Zircon CL images for peridotite at Kaipinggou in the Qaidam orogen

      图  6  柴北缘造山带开屏沟橄榄岩锆石U-Pb年龄谐和图

      Fig.  6.  Zircon U-Pb concordia diagrams for peridotite at Kaipinggou in the Qaidam orogen

      图  7  柴北缘造山带开屏沟橄榄岩锆石中矿物包裹体的代表照片和拉曼光谱

      Zrn.锆石;Ol.橄榄石;Cpx.单斜辉石;Cal.方解石.据Whitney and Evans (2010)

      Fig.  7.  Representative photographs and raman spectra of mineral inclusions in zircon for peridotite at Kaipinggou in the Qaidam orogen

      图  8  柴北缘造山带开屏沟橄榄岩全岩Mg/Si-LOI(a)和Mg#-LOI(b)图解

      Fig.  8.  Plots of Mg/Si-LOI (a) and Mg#-LOI (b) for peridotite at Kaipinggou in the Qaidam orogen

      图  9  柴北缘造山带开屏沟橄榄岩全岩Mg/Si-Mg#(a)和Ni-Mg#(b)图解

      Chen et al.(2015)

      Fig.  9.  Plots of Mg/Si- Mg# (a) and Ni-Mg# (b) for peridotite at Kaipinggou in the Qaidam orogen

      图  10  柴北缘造山带开屏沟橄榄岩内橄榄石NiO-Fo(a)和CaO-Fo(b)图解

      Su et al. (2016)

      Fig.  10.  Plots of NiO-Fo (a) and CaO-Fo (b) of peridot from peridotite at Kaipinggou in the Qaidam orogen

      图  11  柴北缘造山带开屏沟橄榄岩锆石Th-U图解(a)和稀土元素球粒陨石标准化配分图(b)

      Fig.  11.  Zircon Th-U plot (a) and chondrite-normalized REE pattern (b) for peridotite at Kaipinggou in the Qaidam orogen

      图  12  柴北缘造山带开屏沟橄榄岩锆石176Hf/177Hf-176Lu/177Hf图解(a)和εHf(t)-t图解(b)

      Fig.  12.  Plots of 176Hf/177Hf-176Lu/177Hf (a) and εHf(t)-t (b) of zircon from peridotite at Kaipinggou in the Qaidam orogen

      图  13  壳幔相互作用流体与上覆地幔交代的柴北缘造山模式

      Chen et al.(2017)修改

      Fig.  13.  Crust-mantle interaction through metasomatic reaction of the overlying mantle wedge peridotite with fluids in North Qaidam

      表  1  开屏沟造山带橄榄岩主量元素(%)和微量元素(10-6)分析结果

      Table  1.   Major elements (%) and trace elements (10-6) results for peridotite at Kaipinggou in the Qaidam orogen

      样品P73Bb0-1P73Bb1-1P73Bb2-1P73Bb3-1P73Bb6-1P73Bb8-1P73Bb9-1
      SiO237.2839.1136.9537.8038.2038.8838.22
      TiO20.040.020.030.020.040.030.04
      Al2O31.041.041.081.114.211.982.01
      Fe2O36.527.227.197.976.134.784.78
      FeO2.952.453.202.753.803.203.20
      MnO0.130.110.110.100.150.100.11
      MgO34.8337.0435.4036.3033.9635.0734.30
      CaO2.810.201.790.883.462.273.10
      Na2O0.100.130.490.100.250.130.10
      K2O0.020.010.030.020.020.030.05
      P2O50.020.010.010.010.010.020.02
      LOI13.3011.7412.7912.079.0912.4913.06
      H2O+10.0611.2010.3111.078.9011.3111.02
      H2O-0.730.580.610.610.780.790.74
      S199.28276.48782.55473.76425.15636.73675.33
      La0.250.100.180.150.140.290.47
      Ce0.580.230.400.280.280.590.96
      Pr0.0680.0260.0450.0280.0380.0680.110
      Nd0.280.0990.160.120.180.310.47
      Sm0.0710.0230.0460.0290.0550.0720.11
      Eu0.0180.007 90.0510.0520.0330.0360.048
      Gd0.0760.0260.0590.0360.0920.1100.120
      Tb0.0140.004 10.009 10.006 30.0170.0200.023
      Dy0.0950.0380.0470.0350.1200.1200.160
      Ho0.0180.0060.0130.0080.0270.0300.036
      Er0.0550.0260.0430.0330.0790.100.10
      Tm0.0100.0060.0070.0050.0130.0200.019
      Yb0.0690.0470.0560.0370.0850.1400.130
      Lu0.0120.0080.0110.0090.0160.0210.021
      ΣREE1.620.641.140.831.171.942.79
      LREE1.270.480.890.670.731.382.18
      HREE0.350.160.240.170.440.560.61
      LREE/HREE3.632.973.653.931.642.443.55
      (La/Yb)N2.491.422.232.731.081.452.40
      (La/Sm)N2.242.702.503.261.552.542.61
      (Gd/Yb)N0.900.450.850.790.870.660.76
      δEu0.720.972.964.911.411.221.23
      Li1.981.900.981.041.071.001.18
      Be0.0240.0090.1500.1500.0150.0380.026
      Sc6.226.716.907.2410.607.207.32
      V34.331.629.229.542.036.737.0
      Cr5 8056 0264 7874 7774 5965 9485 874
      Co124124116126109105103
      Ni1 9611 9382 1472 1081 6422 1102 070
      Cu15.606.405.972.561.2827.7039.40
      Zn53.049.645.444.346.435.439.6
      Ga1.741.911.331.302.402.202.28
      Rb0.790.150.360.270.180.921.47
      Sr60.75.598.866.411.832.255.2
      Y0.530.220.390.240.720.840.94
      Zr0.920.660.480.380.561.493.25
      Nb0.1400.0520.0960.0880.0550.1300.170
      Sn0.1000.1000.1300.0960.0570.0940.110
      Cs0.0940.0220.0540.0370.0440.2400.330
      Ba71.128.523.324.14.113.039.6
      Hf0.0310.0270.0180.0140.0220.0570.10
      Ta0.008 90.003 60.003 60.003 60.005 40.007 90.012 0
      Tl0.0330.0340.0430.0380.0200.0490.059
      Pb0.930.541.731.950.691.392.39
      Th0.0960.0250.0500.0290.0210.0900.150
      U0.190.060.140.120.040.790.95
      下载: 导出CSV

      表  2  开屏沟造山带橄榄岩中橄榄石主量元素含量(%)

      Table  2.   Contents of major elements (%) of olivine for peridotite at Kaipinggou in the Qaidam orogen

      样品Olv-1Olv-2Olv-3Olv-4Olv-5Olv-6Olv-7Olv-8Olv-9Olv-10Olv-11Olv-12Olv-13Olv-14Olv-15Olv-16Olv-17
      Na2O0.030.000.010.000.000.030.010.000.000.000.000.010.000.000.000.030.02
      SiO238.6738.6438.5437.7938.1238.5637.4338.3438.2138.1938.2138.4138.3038.5039.0039.4138.92
      TiO20.010.000.000.000.000.000.000.000.010.020.020.000.020.010.020.000.02
      CaO0.010.010.000.010.010.000.000.000.010.000.010.000.010.020.010.000.00
      ZrO20.020.000.000.000.000.000.000.000.020.000.000.000.000.000.000.000.00
      FeO9.379.829.759.839.469.349.749.679.819.369.389.459.437.357.427.458.14
      CoO0.030.000.000.000.000.020.010.000.000.050.050.000.000.040.040.000.00
      Al2O30.000.010.000.000.000.000.000.000.000.030.040.020.030.000.000.070.03
      MgO50.9950.1951.1050.8951.0250.8951.9051.0051.0051.1451.0951.1451.1952.8952.1851.9351.50
      K2O0.000.000.000.000.000.000.000.000.000.010.000.000.000.000.000.000.00
      Cr2O30.000.030.010.000.000.000.010.020.000.000.000.000.000.000.000.000.00
      MnO0.160.200.170.150.160.150.170.160.150.140.150.160.140.160.160.180.16
      NiO0.320.390.390.430.360.380.400.410.450.380.360.390.400.380.400.350.36
      ZnO0.010.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.00
      Total99.6199.3099.9899.1199.1599.3999.6799.6199.6699.3299.3299.5999.5399.3799.2499.4399.14
      Si0.960.960.950.940.950.960.930.950.950.950.950.950.950.950.960.970.96
      Ti0.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.00
      Al0.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.00
      Cr0.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.00
      Fe2+0.190.200.200.210.200.190.200.200.200.190.190.200.200.150.150.150.17
      Mn0.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.00
      Mg1.881.861.881.891.891.881.921.891.891.891.891.891.891.941.911.901.90
      Ni0.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.01
      Ca0.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.00
      Total3.043.043.053.063.053.043.073.053.053.053.053.053.053.053.043.033.04
      Fo90.6690.1190.3490.2290.5890.6690.4790.3990.2690.6990.6790.6190.6392.7792.6192.5591.85
      Fa9.339.879.659.769.419.329.519.609.739.309.329.389.357.227.377.448.13
      Tp0.160.20.170.150.160.150.160.160.150.140.150.160.140.160.160.180.16
      下载: 导出CSV

      表  3  开屏沟造山带橄榄岩铂族元素含量(10-6)

      Table  3.   Concentrations of PGE (10-6) for peridotite at Kaipinggou in the Qaidam orogen

      样品OsIrRuRhPtPdPd/IrPt/Pt*
      KP010.660.825.611.657.0412.615.40.26
      KP021.750.605.550.762.332.173.60.31
      KP030.960.892.033.9154.450.656.90.66
      KP040.571.593.702.402.080.940.60.24
      KP050.380.402.830.9210.08.3620.90.62
      注:${\rm{Pt/P}}{{\rm{t}}^*} = \left({{\rm{Pt}}/8.3} \right) \times \sqrt {\left({{\rm{Rh/1}}{\rm{.6}}} \right) \times \left({{\rm{Pd/4}}{\rm{.4}}} \right)} .$
      下载: 导出CSV

      表  4  开屏沟造山带橄榄岩锆石U-Pb同位素测试结果

      Table  4.   Zircon LA-ICPMS U-Pb isotope data for peridotite at Kaipinggou in the Qaidam orogen

      点号元素含量Th/U同位素比值年龄(Ma)
      PbThU207Pb/206Pb1σ207Pb/235U1σ206Pb/238U1σ207Pb/235U1σ206Pb/238U1σ
      1267.51 494.91 797.00.830.055 680.001 200.523 730.011 500.067 740.000 67427.67.7422.64.1
      264.2264.1436.50.610.053 250.001 680.493 260.015 480.067 170.000 92407.110.5419.15.6
      373.9305.4455.90.670.060 850.002 030.570 080.019 050.067 780.000 86458.112.3422.75.2
      4294.71 381.21 849.30.750.053 600.001 250.490 180.011 390.066 010.000 68405.07.8412.14.1
      5127.3286.11 382.40.210.055 330.001 400.505 880.012 890.066 100.000 82415.78.7412.65.0
      6268.11 225.41 495.90.820.061 790.001 390.579 510.012 440.067 760.000 71464.18.0422.74.3
      7226.7596.92 370.60.250.057 730.001 170.528 750.010 660.066 150.000 70431.07.1412.94.2
      8426.11 640.73 073.10.530.055 910.001 170.516 960.010 600.066 670.000 63423.17.1416.13.8
      9267.41 012.02 104.00.480.053 600.001 030.497 150.009 460.067 020.000 74409.86.4418.24.5
      10179.7638.0815.20.780.057 750.003 470.538 530.030 550.067 010.001 08437.520.2418.16.5
      1169.7166.2339.10.490.063 330.009 370.554 700.063 910.067 290.002 77448.141.8419.816.7
      12122.6419.2638.50.660.052 610.004 850.493 860.045 090.067 120.001 31407.530.7418.87.9
      13729.22 494.54 573.50.550.052 860.002 230.494 290.020 060.066 750.000 88407.813.6416.55.3
      14121.1434.6898.10.480.056 380.001 490.574 820.014 470.073 960.000 80461.19.3460.04.8
      15458.42 393.41 753.91.360.057 530.001 430.591 910.014 510.074 320.000 61472.19.3462.13.7
      16203.31 018.4910.41.120.056 170.001 670.559 130.016 560.072 310.000 76451.010.8450.14.6
      17179.8446.71 386.70.320.053 770.002 730.544 930.026 550.073 530.001 15441.717.5457.46.9
      18144.747.32 236.10.020.060 440.003 030.633 260.030 340.075 600.001 05498.118.9469.86.3
      19139.1326.91 325.40.250.060 290.005 310.622 270.049 120.074 720.001 12491.330.8464.56.7
      20168.1481.91 011.90.480.055 510.002 940.567 350.029 640.073 330.001 05456.319.2456.26.3
      21294.5101.34 961.50.020.055 570.002 080.573 110.021 040.073 870.000 88460.013.6459.45.3
      22770.71 177.94 372.40.270.071 700.001 171.188 830.027 380.119 990.002 52795.412.7730.514.5
      23702.9992.2901.11.100.091 140.001 683.256 070.063 500.256 410.002 751470.615.11471.414.1
      24794.9753.31 852.60.410.095 430.001 593.067 780.062 240.230 740.003 011424.715.51338.415.8
      25243.4406.8680.80.600.072 600.001 561.692 730.037 630.168 290.001 981005.814.21002.710.9
      26446.7138.51 309.90.110.098 000.001 553.849 260.068 810.282 530.003 151603.114.41604.115.8
      27179.5348.41 368.60.250.059 150.001 260.696 920.015 350.085 050.000 98536.99.2526.25.8
      28159.1154.7723.60.210.071 650.001 701.696 920.060 480.168 750.004 021007.422.81005.222.2
      29220.11 058.12 274.80.470.063 230.001 220.772 790.014 740.088 470.000 85581.48.4546.55.0
      30279.7721.41 076.70.670.067 760.001 451.099 460.029 630.116 040.001 66753.114.3707.79.6
      31352.1398.9563.00.710.094 950.001 753.612 240.069 600.274 420.002 531552.215.31563.212.8
      32239.5333.31 060.00.310.067 530.001 591.335 340.035 400.142 170.001 80861.215.4856.910.2
      33351.4601.41 256.60.480.072 350.001 331.537 930.032 240.152 800.001 53945.712.9916.68.6
      34229.0305.31 129.50.270.067 770.001 441.295 190.030 260.137 530.001 35843.613.4830.77.7
      3576.794.8363.50.260.073 030.002 101.395 960.040 910.137 950.001 28887.217.3833.07.3
      36240.5413.2795.70.520.069 950.001 421.490 310.032 390.153 650.001 44926.413.2921.48.1
      37462.5766.11 682.10.460.069 240.001 191.434 960.026 670.149 590.001 40903.611.1898.77.8
      38205.0386.2691.30.560.067 280.001 421.349 860.029 070.145 190.001 36867.512.6873.97.6
      39253.7407.4884.20.460.061 180.002 791.196 340.056 490.140 630.001 98798.926.1848.211.2
      40225.9362.0538.80.670.068 540.003 411.345 880.062 150.141 700.002 20865.826.9854.312.4
      41155.8282.0309.90.910.069 730.004 141.388 780.080 950.142 530.002 67884.234.4859.015.1
      42147.4191.2515.00.370.069 930.003 581.527 380.078 720.156 460.002 55941.431.6937.114.2
      43917.2438.46253.10.070.070 750.002 371.419 640.048 460.143 570.002 15897.220.3864.812.1
      下载: 导出CSV

      表  5  开屏沟造山带橄榄岩锆石微量元素(10-6)分析结果

      Table  5.   Trace elements (10-6) results of zircon for peridotite at Kaipinggou in the Qaidam orogen

      点号TiNbLaCePrNdSmEuGdTmYbLuYHfTa
      137.215.56.671856.2843.638.717.91131141 0741853 49727 8076.64
      211.78.020.00025.20.0701.152.830.41413.940.241376.797630 0474.46
      33.319.550.04730.30.0451.183.240.59518.044.746182.61 13928 7145.03
      415.320.80.80488.30.5406.9110.83.2259.31141 1762142 89927 9907.78
      59.259.100.0216.610.1032.8710.50.16491.73753 6135549 02834 1886.12
      614.511.50.8901160.7677.279.864.0045.51081 1572262 52230 3314.86
      721.811.90.06516.80.1813.0511.70.271043323 0815068 56736 8778.88
      837.912.526.11149.9266.254.16.852051661 5152445 57128 8376.88
      915.212.87.0411141.7910.18.173.2939.891.39941872 16429 6576.96
      1017.96.600.00085.50.0403.766.911.4336.276.28201622 17838 2603.59
      1138.45.400.0006.490.0731.737.790.00058.61291 2832283 98837 9642.00
      1228.18.480.00029.20.0001.8911.60.24158.31141 0881913 43838 7654.58
      1314.515.44.501544.1530.525.43.501011151 2112203 85539 79010.4
      1438.37.500.21722.210.2534.2211.50.50977.51871 7282784 80531 4965.64
      1550.610.42.631102.4630.934.08.981381831 8213635 80722 0364.52
      1628.54.910.10097.00.80013.121.76.1293.91091 0692063 60026 0192.34
      1720.86.482.2920.31.7011.818.00.7221022272 2143866 73339 9414.95
      188.172.126.4415.51.499.954.550.15718.346.949796.11 44442 9465.65
      1927.35.000.83614.40.7972.6212.50.67179.52462 3154116 82042 6914.20
      2019.55.370.00015.70.0642.169.920.32490.01901 8263155 88435 7733.57
      2132.529.60.0484.980.0360.323.273.7340.71061 2002553 11659 27813.2
      229.613.490.04743.90.0251.023.500.80016.868.08121661 52633 2262.72
      2330.66.242.1435.94.6233.026.77.1678.764.05981052 49135 2865.79
      2457926.93.6440.32.7525.932.82.911631831 6692846 18526 1866.10
      2528.74.140.00040.40.2635.1612.01.8378.71371 3342454 23629 6002.66
      2613.54.811.1518.70.8689.5717.41.461021111 0772063 62629 9622.47
      2733.316.797.734046.620753.21.8593.51171 1061943 67034 1198.72
      2813.23.322.2112.12.5324.749.31.332682422 0603449 66734 1691.36
      2923.87.890.16617.80.2202.684.200.31423.640.142890.51 11328 1323.51
      3020.815.50.41332.10.3495.2012.70.91373.41111 0191773 56831 4766.56
      3115.824.83.2558.01.389.4111.20.48770.51331 2482184 07535 14211.7
      3233.412.70.00029.30.2114.029.570.78768.51069881723 39230 3655.26
      3316.73.140.00041.40.0952.174.150.84424.546.95071041 24735 6292.64
      349.103.590.04420.00.85310.720.94.501041331 3662564 24121 3631.34
      3547.13.700.00056.30.2858.9710.54.2653.396.79991982 80024 4561.49
      3622.62.590.1465.310.2174.9211.30.20563.51231 1542093 76140 0871.10
      3715.912.84.1132.03.8924.022.81.3994.03183 1335268 64749 21913.2
      3859216.61915051477864651226983072 65742011 36329 8678.34
      3945.410.20.1711240.3499.8018.33.8979.91371 2932173 73125 6105.17
      4019.016.90.62157.00.8109.0016.95.7367.01191 1802073 02332 13211.4
      4126.013.41.4337.70.7616.099.870.69152.093.58431382 54027 7436.33
      4214.87.500.05213.20.1612.313.991.0026.655.25961211 28531 2142.77
      4360.25.080.04940.90.4556.4412.71.8962.474.06781072 16332 8663.10
      下载: 导出CSV

      表  6  开屏沟造山带橄榄岩锆石Lu-Hf同位素

      Table  6.   Zircon Lu-Hf isotope data for peridotite at Kaipinggou in the Qaidam orogen

      点号176Yb/
      177Hf
      2σ176Lu/
      177Hf
      2σ176Hf/
      177Hf
      2σt
      (Ma)
      (176Hf/
      177Hf)i
      εHf(0)2σεHf (t)2σtDM1tDM2f
      10.032 2920.000 3150.001 2050.000 0070.282 3310.000 0244220.282 322-16.060.84-7.130.841 3071 833-0.96
      20.022 7850.000 1390.000 9010.000 0050.282 3180.000 0284160.282 311-16.520.98-7.510.981 3151 857-0.97
      30.009 3070.000 1010.000 4410.000 0070.282 2230.000 0164220.282 219-19.890.56-10.760.561 4302 062-0.99
      40.008 0410.000 0450.000 3460.000 0020.282 1880.000 0174190.282 185-21.110.60-11.960.611 4742 137-0.99
      50.015 0440.000 0760.000 6950.000 0030.282 4950.000 0204180.282 489-10.270.72-1.200.721 0621 458-0.98
      60.019 9120.000 1460.000 8730.000 0060.282 3330.000 0204120.282 326-16.000.69-6.980.691 2941 824-0.97
      70.045 1590.000 1320.001 7560.000 0050.282 3110.000 0144120.282 297-16.760.48-7.990.481 3551 887-0.95
      80.044 9660.000 6870.001 7640.000 0280.282 2470.000 0284120.282 233-19.031.00-10.261.011 4472 030-0.95
      90.013 7260.000 1990.000 6420.000 0080.282 3800.000 0184220.282 375-14.330.64-5.240.641 2201 714-0.98
      100.033 3190.000 1560.001 2650.000 0060.282 3440.000 0224180.282 334-15.590.79-6.640.791 2911 804-0.96
      110.023 1670.000 1350.000 9910.000 0050.282 2380.000 0214190.282 230-19.360.75-10.310.751 4302 036-0.97
      120.003 4630.000 1710.000 1980.000 0070.282 2430.000 0144180.282 241-19.180.51-9.940.511 3942 012-0.99
      130.008 0540.000 0330.000 4420.000 0020.282 2610.000 0174160.282 258-18.530.58-9.400.581 3781 976-0.99
      140.008 4880.000 0780.000 3880.000 0040.282 7250.000 0224570.282 721-2.140.777.930.77735909-0.99
      150.061 9120.000 2020.002 8270.000 0110.282 7150.000 0224640.282 690-2.490.786.980.78800975-0.92
      160.022 5280.000 2520.000 9020.000 0060.282 4850.000 0154560.282 478-10.590.53-0.710.531 0811 458-0.97
      170.016 8850.000 2630.000 8130.000 0110.282 5580.000 0264620.282 551-8.020.922.020.929771 289-0.98
      180.021 0690.000 1850.001 2280.000 0080.282 7730.000 0364590.282 763-0.411.279.451.27683814-0.96
      190.008 2780.000 1770.000 3860.000 0080.282 7060.000 0234590.282 703-2.800.827.320.82761950-0.99
      200.041 8910.000 6490.002 5710.000 0440.282 7680.000 0454580.282 745-0.621.618.811.61716854-0.92
      210.005 8370.000 0340.000 2830.000 0020.282 5890.000 0104620.282 587-6.920.373.290.379201 209-0.99
      下载: 导出CSV
    • [1] Chen, R.X., Zheng, Y.F., Hu, Z.C., 2012.Episodic Fluid Action during Exhumation of Deeply Subducted Continental Crust:Geochemical Constraints from Zoisite-Quartz Vein and Host Metabasite in the Dabie Orogen.Lithos, 155(2):146-166. https://doi.org/10.1016/j.lithos.2012.08.023
      [2] Chen, R.X., Li, H.Y., Zheng, Y.F., et al., 2017.Crust-Mantle Interaction in a Continental Subduction Channel:Evidence from Orogenic Peridotites in North Qaidam, Northern Tibet.Journal of Petrology, 58(2):191-226. https://doi.org/10.1093/petrology/egx011
      [3] Chen, Y., Su, B., Guo, S., 2015.The Dabie-Sulu Orogenic Peridotites:Progress and Key Issues.Science China Earth Sciences, 58(10):1679-1699. https://doi.org/10.1007/s11430-015-5148-9
      [4] Chen, Y., Ye, K., Su, B., et al., 2013.Metamorphism and Metasomatism of Orogenic Peridotites from Dabie-Sulu UHP Terrane.Chinese Science Bulletin, 58(23):2294-2299 (in Chinese).
      [5] Churikova, T., Dorendorf, F., Wörner, G., 2001.Sources and Fluids in the Mantle Wedge below Kamchatka, Evidence from across-Arc Geochemical Variation.Journal of Petrology, 42(8):1567-1593. https://doi.org/10.1093/petrology/42.8.1567
      [6] Deschamps, F., Godard, M., Guillot, S., et al., 2013.Geochemistry of Subduction Zone Serpentinites:A Review.Lithos, 178(18):96-127. https://doi.org/10.1016/j.lithos.2013.05.019
      [7] Griffin, W.L., Wang, X., Jackson, S.E., et al., 2002.Zircon Chemistry and Magma Mixing, SE China:In-Situ Analysis of Hf Isotopes, Tonglu and Pingtan Igneous Complexes.Lithos, 61(3-4):237-269. https://doi.org 10.1016/s024-4937(02)00082-8
      [8] Hu, Z.C., Zhang, W., Liu, Y.S., et al., 2015."Wave" Signal-Smoothing and Mercury-Removing Device for Laser Ablation Quadrupole and Multiple Collector ICPMS Analysis:Application to Lead Isotope Analysis.Analytical Chemistry, 87(2):1152-1157. https://doi.org/10.1021/ac503749k
      [9] Li, H.Y., Chen, R.X., Zheng, Y.F., et al., 2016.The Crust-Mantle Interaction in Continental Subduction Channels:Zircon Evidence from Orogenic Peridotite in the Sulu Orogen.Journal of Geophysical Research Solid Earth, 121(2):687-712. https://doi.org/10.1002/2015jb012231
      [10] Li, X.P., Zhang, L.F., Wilde, S.A., et al., 2010.Zircons from Rodingite in the Western Tianshan Serpentinite Complex:Mineral Chemistry and U-Pb Ages Define Nature and Timing of Rodingitization.Lithos, 118(1-2):17-34. https://doi.org/10.1016/j.lithos.2010.03.009
      [11] Liu, Y.S., Zong, K.Q., Kelemen, P.B., et al., 2008.Geochemistry and Magmatic History of Eclogites and Ultramafic Rocks from the Chinese Continental Scientific Drill Hole:Subduction and Ultrahigh-Pressure Metamorphism of Lower Crustal Cumulates.Chemical Geology, 247(1-2):133-153. https://doi.org/10.1016/j.chemgeo.2007.10.016
      [12] Louvel, M., Sanchez-Valle, C., Malfait, W.J., et al., 2013.Zr Complexation in High Pressure Fluids and Silicate Melts and Implications for the Mobilization of HFSE in Subduction Zones.Geochimica et Cosmochimica Acta, 104:281-299. https://doi.org/10.1016/j.gca.2012.11.001
      [13] Ludwig, K.R., 2003.User'sManual for ISOPLOT 3.00:A Geochronological Toolkit for Microsoft Excel.Berkeley Geochronology Center Special Publication, Berkeley.
      [14] Manning, C.E., 2004.The Chemistry of Subduction-Zone Fluids.Earth and Planetary Science Letters, 223(1-2):1-16. https://doi.org/10.1016/j.epsl.2004.04.030
      [15] McDonough, W.F., Sun, S.S., 1995.The Composition of the Earth.Chemical Geology, 120(3-4):223-253. https://doi.org/10.1016/0009-2541(94)00140-4
      [16] Scambelluri, M., Pettke, T., Rampone, E., et al., 2014.Petrology and Trace Element Budgets of High-Pressure Peridotites Indicate Subduction Dehydration of Serpentinized Mantle(Cima Di Gagnone, Central Alps, Switzerland).Journal of Petrology, 55(3):459-498. https://doi.org/10.1093/petrology/egt068
      [17] Shi, R.D., Yang, J.S., Wu, C.L., et al., 2006.Island Arc Volcanic Rocks in the North Qaidam UHP Belt, Northern Tibet Plateau:Evidence for Ocean-continent Subduction Preceding Continent-Continent Subduction.Journal of Asian Earth Sciences, 28(2-3):151-159. https://doi.org/10.1016/j.jseaes.2005.09.019
      [18] Söderlund, U., Patchett, P.J., Vervoort, J.D., et al., 2004.The176Lu Decay Constant Determined by Lu-Hf and U-Pb Isotope Systematics of Precambrian Mafic Intrusions.Earth and Planetary Science Letters, 219(3-4):311-324. https://doi.org/10.1016/s0012-821x(04)00012-3
      [19] Song, S.G., Su, L., Niu, Y.L., et al., 2009.Two Types of Peridotite in North Qaidam UHPM Belt and Their Tectonic Implications for Oceanic and Continental Subduction:A Review.Journal of Asian Earth Sciences, 35(3-4):285-297. https://doi.org/10.1016/j.jseaes.2008.11.009
      [20] Song, S.G., Wang, M.J., Wang, C., et al., 2015.Magmatism during Continental Collision, Subduction, Exhumation and Mountain Collapse in Collisional Orogenic Belts and Continental Net Growth:A Perspective.Science China Earth Sciences, 58(8):1284-1304. https://doi.org/10.1007/s11430-015-5102-x
      [21] Song, S.G., Zhang, L.F., Niu, Y.L., et al., 2005.Geochronology of Diamond-Bearing Zircons from Garnet Peridotite in the North Qaidam UHPM Belt, Northern Tibetan Plateau:A Record of Complex Histories from Oceanic Lithosphere Subduction to Continental Collision.Earth and Planetary Science Letters, 234(1-2):99-118. https://doi.org/10.1016/j.epsl.2005.02.036
      [22] Su, B., Chen, Y., Guo, S., et al., 2016.Origins of Orogenic Dunites:Petrology, Geochemistry, and Implications.Gondwana Research, 29(1):41-59. https://doi.org/10.1016/j.gr.2015.08.001
      [23] Wang, M.J., Song, S.G., Niu, Y.L., et al., 2014.Post-Collisional Magmatism:Consequences of UHPM Terrane Exhumation and Orogen Collapse, N.Qaidam UHPM Belt, NW China.Lithos, 210-211:181-198. https://doi.org 10.1016/j.lithos.2014.10.006
      [24] Whitney, D.L., Evans, B.W., 2010.Abbreviations for Names of Rock-Forming Minerals.American Mineralogist, 95(1):185-187. https://doi.org/10.2138/am.2010.3371
      [25] Xiong, Q., Zheng, J.P., Griffin, W.L., et al., 2012.Decoupling of U-Pb and Lu-Hf Isotopes and Trace Elements in Zircon from the UHP North Qaidam Orogen, NE Tibet(China):Tracing the Deep Subduction of Continental Blocks.Lithos, 155(15):125-145. https://doi.org/10.1016/j.lithos.2012.08.022
      [26] Yang, J.S., Xu, Z.Q., Song, S.G., et al., 2001.Discovery of Coesite in the North Qaidam Early Palaeozoic Ultrahigh Pressure (UHP) Metamorphic Belt, NW China.Comptes Rendus de l'Académie des Sciences-Series ⅡA-Earth and Planetary Science, 333(11):719-724. https://doi.org/10.1016/s1251-8050(01)01718-9
      [27] Yu, S.Y., Zhang, J.X., Li, H.K., et al., 2013.Geochemistry, Zircon U-Pb Geochronology and Lu-Hf Isotopic Composition of Eclogites and Their Host Gneisses in the Dulan Area, North Qaidam UHP Terrane:New Evidence for Deep Continental Subduction.Gondwana Research, 23(3):901-919. https://doi.org/10.1016/j.gr.2012.07.018
      [28] Yu, S.Y., Zhang, J.X., Sun, D.Y., et al., 2015.Anatexis of Ultrahigh-Pressure Eclogite during Exhumation in the North Qaidam Ultrahigh-Pressure Terrane:Constraints from Petrology, Zircon U-Pb Dating, and Geochemistry.Geological Society of America Bulletin, 127(9-10):1290-1312. https://doi.org/10.1130/b31162.1
      [29] Zha, X.F., Gu, P.Y., Dong, Z.C., et al., 2016.Geological Record of Tectono-Thermal Event at Early Paleozoic and Its Tectonic Setting in West Segment of the North Qaidam.Earth Science, 41(4):586-604 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.048
      [30] Zhang, G.B., Zhang, L.F., Song, S.G., et al., 2009.UHP Metamorphic Evolution and SHRIMP Geochronology of a Coesite-Bearing Meta-Ophiolitic Gabbro in the North Qaidam, NW China.Journal of Asian Earth Sciences, 35(3-4):310-322. https://doi.org/10.1016/j.jseaes.2008.11.013
      [31] Zhang, J.X., Yu, S.Y., Li, Y.S., et al., 2015.Subduction, Accretion and Closure of Proto-Tethyan Ocean:Early Paleozoic Accretion/Collision Orogeny in the Altun-Qilian-North Qaidam Orogenic System.Acta Petrologica Sinica, 31(12):3531-3554 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201512003.htm
      [32] Zhang, J.X., Yu, S.Y., Mattinson, C.G., 2017.Early Paleozoic Polyphase Metamorphism in Northern Tibet, China.Gondwana Research, 41:267-289. https://doi.org/10.1016/j.gr.2015.11.009
      [33] Zhang, Y.J., Sun, F.Y., Xu, C.H., et al., 2016.Geochronology, Geochemistry and Zircon Hf Isotopes of the Tanjianshan Granite Porphyry Intrusion in Dachaidan Area of the North Margin of Qaidam Basin, NW China.Earth Science, 41(11):1830-1844 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.127
      [34] Zheng, J.P., Griffin, W.L., O'Reilly, S.Y., et al., 2006.A Refractory Mantle Protolith in Younger Continental Crust, East-Central China:Age and Composition of Zircon in the Sulu Ultrahigh-Pressure Peridotite.Geology, 34(9):705-708. https://doi.org/10.1130/g22569.1
      [35] Zheng, Y.F., 2012.Metamorphic Chemical Geodynamics in Continental Subduction Zones.Chemical Geology, 328:5-48. https://doi.org/10.1016/j.chemgeo.2012.02.005
      [36] Zheng, Y.F., Chen, R.X., Zhang, S.B., et al., 2007.Zircon Lu-Hf Isotope Study of Ultrahigh-Pressure Eclogite and Granitic Gneiss in the Dabie Orogen.Acta Petrologica Sinica, 23(2):317-330 (in Chinese with English abstract). http://www.oalib.com/paper/1493354
      [37] Zhu, X.H., Chen, D.L., Liu, L., et al., 2014.Geochronology, Geochemistry and Significance of the Early Paleozoic Back-Arc-Type Ophiolite in Lvliangshan Area, North Qaidam.Acta Petrologica Sinica, 30(3):822-834 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201403021
      [38] Zong, K.Q., Klemd, R., Yuan, Y., et al., 2017.The Assembly of Rodinia:The Correlation of Early Neoproterozoic(ca.900 Ma) High-Grade Metamorphism and Continental Arc Formation in the Southern Beishan Orogen, Southern Central Asian Orogenic Belt(CAOB).Precambrian Research, 290:32-48. https://doi.org/10.1016/j.precamres.2016.12.010
      [39] 陈意, 叶凯, 苏斌, 等, 2013.大别-苏鲁造山带橄榄岩的变质和交代过程.科学通报, 58(23):2294-2299. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HYC201405070000001798
      [40] 查显锋, 辜平阳, 董增产, 等, 2016.柴北缘西段早古生代构造-热事件及其构造环境.地球科学, 41(4):586-604. https://doi.org/10.3799/dqkx.2016.048
      [41] 张建新, 于胜尧, 李云帅, 等, 2015.原特提斯洋的俯冲、增生及闭合:阿尔金-祁连-柴北缘造山系早古生代增生/碰撞造山作用.岩石学报, 31(12):3531-3554. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201512003
      [42] 张延军, 孙丰月, 许成瀚, 等, 2016.柴北缘大柴旦滩间山花岗斑岩体锆石U-Pb年代学、地球化学及Hf同位素.地球科学, 41(11):1830-1844. https://doi.org/10.3799/dqkx.2016.127
      [43] 郑永飞, 陈仁旭, 张少兵, 等, 2007.大别山超高压榴辉岩和花岗片麻岩中锆石Lu-Hf同位素研究.岩石学报, 23(2):317-330. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200702012
      [44] 朱小辉, 陈丹玲, 刘良, 等, 2014.柴北缘绿梁山地区早古生代弧后盆地型蛇绿岩的年代学、地球化学及大地构造意义.岩石学报, 30(3):822-834. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201403021
    • 加载中
    图(13) / 表(6)
    计量
    • 文章访问数:  5259
    • HTML全文浏览量:  1240
    • PDF下载量:  28
    • 被引次数: 0
    出版历程
    • 收稿日期:  2018-04-27
    • 刊出日期:  2018-08-15

    目录

      /

      返回文章
      返回