Genesis and Geodynamic Settings of the Eocene Lamprophyres from Jinshajiang-Red River Tectonic Belt, Ludian, Western Yunnan Province
-
摘要: 前人对金沙江-红河构造带上的煌斑岩研究工作主要集中在南段哀牢山地区.对构造带中段鲁甸地区新发现的煌斑岩脉进行了锆石U-Pb年代学和全岩地球化学研究.结果表明,煌斑岩形成时代为始新世末期,与滇西新生代富碱斑岩高峰期一致.鲁甸煌斑岩具有高钾、富碱、高Mg#,富集大离子亲石元素(LILE)和轻稀土元素(LREE),亏损高场强元素(HFSE,尤其是Ta-Nb-Ti)的特征.其岩浆源区为受俯冲流体和熔体交代的岩石圈地幔,源区组分为含金云母的尖晶石相方辉橄榄岩.结合同期的镁铁质火山岩和富碱斑岩研究成果,滇西区域的岩石圈地幔富集过程可能为元古宙时期与罗迪尼亚超大陆聚合相关的俯冲作用.始新世时期,在印度和亚洲大陆碰撞过程中,金沙江-红河构造带的富集岩石圈地幔发生拆沉或对流减薄,软流圈物质上涌,引发富集的岩石圈地幔部分熔融,形成本期煌斑岩岩浆作用.Abstract: Researches on the lamprophyres from the Jinshajiang-Red River tectonic belt are mainly concentrated in the southern Ailaoshan area.The zircon U-Pb geochronology and the whole rock geochemistry of the newly discovered Ludian lamprophyres located in the middle segment of the belt are applied in this paper.Zircon U-Pb dating proves Eocene emplacement age of Ludian lamprophyres, which is consistent with the peak age of the Cenozoic magmatism in the Jingshajiang-Red River alkali-rich intrusion belt.Geochemical data indicate that Ludian lamprophyres have the characteristics of high K2O, high (K2O + Na2O) and Mg#, low TiO2, being enriched in LILE and LREE, depleted in HFSE (especially Ta-Nb-Ti).The source of the Ludian lamprophyres should be the lithosphere mantle which had been enriched by subduction-related fluids and melts, and the source should be phlogopite bearing spinel harzburgite.Combined with the study of coeval mafic lava and felsic intrusion, we put forward that the mantle in western Yunnan might have been enriched by the Protozoic subduction related to the assembly of the Rodinia supercontinent.In the Eocene, following the collision between Indian and Asia, the continental lithosphere in the Jingshajiang-Red River tectonic belt underwent convective thinning or delamination, which induced rising of the asthenosphere, and then partial melting of the enriched lithosphere mantle which generated the lamprophyre melt.
-
Key words:
- lamprophyres /
- Jingshajiang-Red River tectonic belt /
- enriched mantle /
- petrogenesis /
- Ludian /
- western Yunnan /
- geochronology /
- geochemistry
-
图 1 区域地质构造简图(a)和金沙江-红河构造带区域构造简图(b)
底图据He et al.(2016).年龄数据来源:北衙(和文言等,2014;Lu et al., 2015);马厂箐(贾丽琼等,2013;徐恒等,2015);小水井(符德贵等,2010);镇沅(陈福川等,2015);白马寨(管涛等,2006);大坪(王江海等,2001;Chen et al., 2014)
Fig. 1. Simplified geological map of study area (a) and simplified geological map of Jinshajiang-Red River tectonic belt (b)
图 5 鲁甸煌斑岩TAS分类图解(a)和nK/n(K+Na)-nK/nAl图解(b)
图a据Rock(1987);CAL.钙碱性煌斑岩,UML.超基性煌斑岩,AL.碱性煌斑岩,LL.钾镁煌斑岩.图b据路凤香等(1991);金沙江-红河构造带煌斑岩数据来自黄智龙和王联魁(1996),管涛等(2006), 贾丽琼等(2013),和文言等(2014)
Fig. 5. TAS diagram (a) and nK/n(K+Na)-nK/nAl diagram (b) of Ludian lamprophyres
图 6 鲁甸煌斑岩K2O-Na2O图解
金沙江-红河构造带煌斑岩数据来源同图 5;金沙江-红河构造带富碱斑岩数据来自Lu et al.(2013);金沙江-红河构造带镁铁质火山岩数据来自Huang et al.(2010)
Fig. 6. K2O-Na2O diagram for Ludian lamprophyres
图 7 鲁甸煌斑岩球粒陨石标准化稀土元素配分模式(a)和原始地幔标准化微量元素蛛网图(b)
金沙江-红河构造带煌斑岩、富碱斑岩和镁铁质火山岩数据来源同图 5和6;标准化数据引自Sun and McDonough (1989)
Fig. 7. The chondrite-normalized REE pattern (a) and the PM-normalized trace element spider diagram (b) for Ludian lamprophyres
图 8 鲁甸煌斑岩的Ce/Yb-Sm图解(a)和La/Sm-La图解(b)
图a底图据Guo et al.(2005);图b数据来源同图 5
Fig. 8. Ce/Yb-Sm diagram (a) and La/Sm-La diagram (b) for Ludian lamprophyres
图 9 鲁甸煌斑岩的Zr/Hf-Nb/Ta图解(a)和TiO2-TFe2O3图解(b)
图a据Sun and McDonough (1989);CC.陆壳平均值,PM.原始地幔平均值.图b据Lu et al.(2015);数据来源同图 6
Fig. 9. Zr/Hf-Nb/Ta diagram (a) and TiO2-TFe2O3 diagram (b) for Ludian lamprophyres
图 10 煌斑岩的Rb/Sr-Ba/Rb图解(a)和Dy/Yb-La/Yb图解(b)
图b据和文言等(2014);数据来源同图 5和6
Fig. 10. Rb/Sr-Ba/Rb diagram (a) and Dy/Yb-La/Yb diagram (b) for Ludian lamprophyres
图 11 鲁甸煌斑岩的Nb/Zr-Th/Zr图解(a)和Ba/La-La/Yb图解(b)
图b底图据朱弟成等(2006)
Fig. 11. Nb/Zr-Th/Zr diagram (a) and Ba/La-La/Yb diagram (b) for Ludian lamprophyres
表 1 鲁甸煌斑岩锆石U-Pb测年结果
Table 1. Zircon U-Pb ages for Ludian lamprophyres
测点号 元素含量(10-6) Th/U 同位素比值 年龄(Ma) Pb Th U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 1 375 865 660 1.31 0.071 2 0.002 3 1.521 2 0.048 5 0.154 6 0.001 8 0.049 3 0.001 2 939 20 927 10 2 212 1 283 1 820 0.70 0.051 3 0.001 8 0.306 4 0.011 4 0.043 1 0.000 5 0.013 6 0.000 4 271 9 272 3 3 475 1 135 1 239 0.92 0.071 0 0.002 2 0.913 0 0.039 2 0.091 4 0.002 0 0.055 5 0.001 2 659 21 564 12 4 1 011 2 238 1 780 1.26 0.083 1 0.001 9 1.750 6 0.040 3 0.152 2 0.001 4 0.051 7 0.001 1 1 027 15 913 8 5 176 8 589 7 227 1.19 0.047 0 0.002 1 0.044 2 0.002 0 0.006 8 0.000 1 0.002 4 0.000 1 44 2 44 1 8 1 051 1 604 2 819 0.57 0.071 5 0.003 1 1.327 1 0.040 7 0.136 0 0.001 9 0.051 0 0.002 0 858 18 822 11 9 170 9 827 9 471 1.04 0.048 2 0.002 2 0.035 7 0.001 6 0.005 4 0.000 1 0.001 8 0.000 1 36 2 35 0 10 600 2 161 7 247 0.30 0.048 1 0.001 4 0.254 1 0.007 8 0.038 1 0.000 5 0.012 4 0.000 4 230 6 241 3 11 878 1 656 2 094 0.79 0.066 7 0.001 8 1.325 8 0.037 1 0.143 6 0.001 7 0.044 3 0.001 1 857 16 865 10 12 367 2 690 2 964 0.91 0.049 4 0.001 9 0.270 1 0.009 9 0.039 9 0.000 5 0.012 7 0.000 3 243 8 252 3 14 242.6 225 2 651 0.08 0.051 7 0.002 2 0.296 2 0.013 7 0.041 5 0.000 6 0.052 7 0.002 3 263 11 262 4 15 292 290 1 559 0.19 0.058 7 0.002 5 0.703 9 0.032 8 0.087 4 0.001 2 0.041 2 0.001 6 541 20 540 7 16 115.6 4 151 6 294 0.66 0.048 3 0.002 9 0.043 9 0.002 9 0.006 6 0.000 1 0.002 4 0.000 1 44 3 42 1 17 215 1 309 2 038 0.64 0.049 6 0.002 8 0.260 2 0.015 9 0.038 3 0.000 5 0.013 6 0.000 5 235 13 242 3 18 1 400 1 980 2 209 0.90 0.076 6 0.003 8 2.128 7 0.119 6 0.202 6 0.002 6 0.067 8 0.001 8 1 158 39 1 189 14 19 300 18 923 10 451 1.81 0.051 3 0.003 1 0.043 8 0.002 9 0.006 3 0.000 1 0.002 3 0.000 1 44 3 40 1 22 553 1 172 1 141 1.03 0.068 3 0.002 7 1.345 9 0.058 1 0.143 3 0.002 0 0.051 1 0.001 4 866 25 863 11 26 1 367 2 503 1 902 1.32 0.077 7 0.002 1 2.148 1 0.058 2 0.199 4 0.002 2 0.062 3 0.001 4 1 164 19 1 172 12 27 138 1 052 1 176 0.90 0.051 3 0.002 6 0.280 1 0.013 9 0.039 4 0.000 5 0.012 6 0.000 4 251 11 249 3 表 2 鲁甸煌斑岩岩石化学分析(%)和稀土元素(10-6)分析结果
Table 2. Chemical analysis (%) and rare earth elements (10-6) results for the samples of Ludian lamprophyres
样品号 HB-01-H1 HB-02-H1 HB-02-H2 HB-03-H1 HB-04-H1 HB-05-H1 HB-06-H1 HB-07-H1 SiO2 52.91 57.33 56.75 57.57 56.89 56.2 56.72 55.96 TiO2 0.78 0.74 0.82 0.73 0.73 0.74 0.70 0.71 Al2O3 11.16 12.98 13.05 12.61 12.92 12.04 12.62 13.34 Fe2O3 1.58 1.63 1.40 1.54 1.09 1.16 1.69 1.64 FeO 6.77 5.65 5.85 5.58 6.25 6.25 5.90 5.89 MnO 0.10 0.14 0.14 0.13 0.14 0.13 0.14 0.14 MgO 8.28 7.15 6.68 7.20 7.46 8.64 8.31 7.82 CaO 5.42 5.60 6.09 5.78 5.84 5.67 6.29 6.44 Na2O 1.56 2.70 2.63 2.64 2.61 2.25 2.54 2.62 K2O 3.84 3.58 3.52 3.55 3.57 3.36 3.05 3.52 P2O5 0.33 0.35 0.38 0.34 0.32 0.32 0.33 0.37 LOI 5.80 1.14 1.77 1.44 1.20 2.24 0.84 0.69 Total 98.53 98.99 99.08 99.11 99.02 99.00 99.13 99.14 Sc 18.6 21.9 21.5 21.0 22.8 22.3 21.9 24.6 Ti 4 660 4 912 4 927 4 742 4 833 4 788 4 176 4 694 V 147 180 165 162 176 178 157 178 Cr 269 479 261 256 534 617 511 685 Mn 776 1 212 1 102 1 141 1 256 1 079 1 127 1 233 Co 33.3 34.9 31.9 33.1 36.1 34.7 35.6 39.6 Ni 246 246 219 243 252 253 307 280 Cu 81.0 71.0 67.9 57.6 69.0 59.6 56.5 67.5 Zn 57.8 83.1 83.2 81.4 87.8 63.2 77.1 75.2 Ga 16.0 17.0 16.1 16.7 17.2 16.5 14.2 15.8 Ge 7.93 7.82 6.32 6.56 7.86 7.62 6.89 7.49 Rb 186 152 139 146 151 161 123 156 Sr 575 1 113 915 1 080 1 064 694 715 901 Y 23.5 27.6 26.2 26.4 27.2 26.0 24.6 24.5 Zr 228 254 125 135 244 231 204 216 Nb 9.82 9.99 9.98 9.88 10.1 9.39 8.54 8.60 Cs 17.8 14.2 11.8 15.2 14.2 21.9 8.10 9.00 Ba 846 1 065 946 1 080 1 052 877 754 894 La 24.0 29.4 27.2 28.9 28.4 24.6 22.1 22.6 Ce 48.1 62.2 57.8 60.9 60.3 51.2 46.4 47.0 Pr 5.98 7.99 7.42 7.81 7.76 6.46 5.87 5.94 Nd 23.9 32.1 29.8 31.5 30.8 25.8 23.8 24.0 Sm 4.96 6.30 5.96 6.11 6.05 5.47 5.08 5.09 Eu 1.09 1.51 1.45 1.45 1.43 1.27 1.19 1.25 Gd 4.21 5.22 5.04 5.05 5.02 4.67 4.37 4.39 Tb 0.71 0.87 0.84 0.84 0.85 0.82 0.76 0.75 Dy 4.09 5.01 4.88 4.85 4.97 4.73 4.44 4.41 Ho 0.83 1.01 0.97 0.97 0.98 0.94 0.89 0.87 Er 2.37 2.88 2.73 2.73 2.81 2.69 2.55 2.52 Tm 0.36 0.42 0.40 0.39 0.41 0.40 0.37 0.37 Yb 2.30 2.70 2.48 2.51 2.63 2.54 2.40 2.35 Lu 0.35 0.41 0.37 0.37 0.40 0.39 0.36 0.36 Hf 3.47 3.90 2.33 2.58 3.76 3.54 3.10 3.25 Ta 0.69 0.72 0.70 0.70 0.72 0.67 0.60 0.62 Pb 22.3 29.0 27.2 29.1 29.0 20.4 26.1 24.5 Th 8.88 8.72 8.08 8.84 8.98 8.25 7.47 8.00 U 3.04 3.21 2.68 2.98 3.11 2.87 2.62 2.76 -
[1] Chen, F.C., Wang, Q.F., Li, G.J., et al., 2015.40Ar-39Ar Chronological and Geochemical Characteristics of Zhenyuan Lamprophyres in Ailaoshan Belt, Western Yunnan.Acta Petrologica Sinica, 31(11):3203-3216 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201511004 [2] Chen, J.L., Xu, J.F., Wang, B.D., et al., 2010.Origin of Cenozoic Alkaline Potassic Volcanic Rocks at Konglongxiang, Lhasa Terrane, Tibetan Plateau:Products of Partial Melting of a Mafic Lower-Crustal Source.Chemical Geology, 273(3-4):286-299.https://doi.org/10.13039/501100002367 doi: 10.1016/j.chemgeo.2010.03.003 [3] Chen, X.F., Zeng, P.S., Zhang, X.T., et al., 2015.Petrology and Geochemistry of the Zhuopan Alkaline Complex in Yongping, Yunnan Province:Constraints on Petrogenesis and Tectonic Setting.Acta Petrologica Sinica, 31(9):2597-2608 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201509010 [4] Chen, Y.H., Yao, S.Z., Pan, Y.M., 2014.Geochemistry of Lamprophyres at the Daping Gold Deposit, Yunnan Province, China:Constraints on the Timing of Gold Mineralization and Evidence for Mantle Convection in the Eastern Tibetan Plateau.Journal of Asian Earth Sciences, 93:129-145.https://doi.org/10.13039/501100004613 doi: 10.1016/j.jseaes.2014.07.033 [5] Defant, M.J., Drummond, M.S., 1990.Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere.Nature, 347(6294):662-665. https://doi.org/10.1038/347662a0 [6] Deng, J., Wang, Q.F., Li, G.J., et al., 2014.Cenozoic Tectono-Magmatic and Metallogenic Processes in the Sanjiang Region, Southwestern China.Earth-Science Reviews, 138:268-299. https://doi.org/10.1016/j.earscirev.2014.05.015 [7] Dong, F.L., Mo, X.X., Yu, X.H., et al., 2007.Trace Elements Geochemical and Nd-Sr-Pb Isotopes Characteristics of the Zhuopan Alkaline Complex in Yongping, Yunnan Province and Its Geological Significance.Acta Petrologica Sinica, 23(5):986-994 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200705012 [8] Elliott, T., Plank, T., Zindler, A., et al., 1997.Element Transport from Slab to Volcanic Front at the Mariana Arc.Journal of Geophysical Research:Solid Earth, 102(B7):14991-15019.https://doi.org/10.1029/97jb00788 doi: 10.1029/97JB00788 [9] Foley, S.F., Wheller, G.E., 1990.Parallels in the Origin of the Geochemical Signatures of Island Arc Volcanics and Continental Potassic Igneous Rocks:The Role of Residual Titanates.Chemical Geology, 85(1-2):1-18.https://doi.org/10.1016/0009-2541(90)90120-v doi: 10.1016/0009-2541(90)90120-V [10] Fu, D.G., Zhou, Y.M., Zhang, C.Q., et al., 2010.Geological Characteristics of Lamprophyres and Their Relations with Gold Mineralization of the Xiaoshuijing Gold Deposit in Central Yunnan Province.Geology and Exploration, 46(3):414-425 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dzykt201003007 [11] Gong, W., Jiang, X.D., 2017.Thermal Evolution History and Its Genesis of the Ailao Shan-Red River Fault Zone in the Ailao Shan and Day Nui Con Voi Massif during Oligocene-Early Miocene.Earth Science, 42(2):223-239.https://doi.org/10.3799/dqkx.2017.017 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201702005 [12] Guan, T., Huang, Z.L., Xu, C., et al., 2006.40Ar-39Ar Dating and Geochemical Characteristics of Lamprophyres in the Baimazhai Nickel Deposit, Yunnan Province.Acta Petrologica Sinica, 22(4):873-883 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200604011 [13] Guo, F., Fan, W.M., Wang, Y.J., et al., 2004.Origin of Early Cretaceous Calc-Alkaline Lamprophyres from the Sulu Orogen in Eastern China:Implications for Enrichment Processes beneath Continental Collisional Belt.Lithos, 78(3):291-305. https://doi.org/10.1016/j.lithos.2004.05.001 [14] Guo, X.F., Wang, Y.J., Liu, H.C., et al., 2016.Zircon U-Pb Geochronology of the Cenozoic Granitic Mylonite along the Ailaoshan-Red River Shear Zone:New Constraints on the Timing of the Sinistral Shearing.Journal of Earth Science, 27(3):435-443. https://doi.org/10.1007/s12583-016-0678-2 [15] Guo, Z.F., Hertogen, J., Liu, J.Q., et al., 2005.Potassic Magmatism in Western Sichuan and Yunnan Provinces, SE Tibet, China:Petrological and Geochemical Constraints on Petrogenesis.Journal of Petrology, 46(1):33-78. https://doi.org/10.1093/petrology/egh061 [16] He, W.Y., Mo, X.X., Yang, L.Q., et al., 2016.Origin of the Eocene Porphyries and Mafic Microgranular Enclaves from the Beiya Porphyry Au Polymetallic Deposit, Western Yunnan, China:Implications for Magma Mixing/Mingling and Mineralization.Gondwana Research, 40:230-248. https://doi.org/10.1016/j.gr.2016.09.004 [17] He, W.Y., Mo, X.X., Yu, X.H., et al., 2014.Genesis and Geodynamic Settings of Lamprophyres from Beiya, Western Yunnan:Constraints from Geochemistry, Geochronology and Sr-Nd-Pb-Hf Isotopes.Acta Petrologica Sinica, 30(11):3287-3300 (in Chinese with English abstract). https://www.researchgate.net/publication/279029919_Genesis_and_geodynamic_settings_of_lamprophyres_from_Beiya_Western_Yunnan_Constraints_from_geochemistry_geochronology_and_Sr-Nd-Pb-Hf_isotopes [18] Hou, Z.Q., 2003.The Himalayan Yulong Porphyry Copper Belt:Product of Large-Scale Strike-Slip Faulting in Eastern Tibet.Economic Geology, 98(1):125-145.https://doi.org/10.2113/98.1.125 https://www.researchgate.net/publication/247864181_The_Himalayan_Yulong_Porphyry_Copper_Belt_Product_of_Large-Scale_Strike-Slip_Faulting_in_Eastern_Tibet [19] Huang, X.L., Niu, Y., Xu, Y.G., et al., 2010.Mineralogical and Geochemical Constraints on the Petrogenesis of Post-Collisional Potassic and Ultrapotassic Rocks from Western Yunnan, SW China.Journal of Petrology, 51(8):1617-1654. https://doi.org/10.1093/petrology/egq032 [20] Huang, Z.L., Wang, L.K., 1996.Geochemistry of Lamprophyresin Laowangzhai Gold Deposit, Yunnan Province.Geochemistry, 25(3):249-255 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX603.005.htm [21] Jia, L.Q., Mo, X.X., Dong, G.C., et al., 2013.Genesis of Lamprophyres from Machangqing, Western Yunnan:Constraints from Geochemistry, Geochronology and Sr-Nd-Pb-Hf Isotopes.Acta Petrologica Sinica, 29(4):1247-1260 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201304012 [22] Leloup, P.H., Lacassin, R., Tapponnier, P., et al., 1995.The Ailao Shan-Red River Shear Zone (Yunnan, China), Tertiary Transform Boundary of Indochina.Tectonophysics, 251(1-4):3-84. https://doi.org/10.1016/0040-1951(95)00070-4 [23] Lin, B., Wang, L.Q., Tang, J.X., et al., 2017.Zircon U-Pb Geochronology of Ore-Bearing Porphyries in Baomai Deposit, Yulong Copper Belt, Tibet.Earth Science, 42(9):1454-1471 (in Chinese with English abstract).https://doi.org/10.3799/dqkx.2017.517 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201709002 [24] Liu, B., Liu, H., Zhang, C.Q., et al., 2015.Geochemistry and Geochronology of Porphyries from the Beiya Gold-Polymetallic Orefield, Western Yunnan, China.Ore Geology Reviews, 69:360-379. https://doi.org/10.1016/j.oregeorev.2015.03.004 [25] Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008.In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard.Chemical Geology, 257(1-2):34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004 [26] Liu, Z., Liao, S.Y., Wang, J.R., et al., 2017.Petrogenesis of Late Eocene High Ba-Sr Potassic Rocks from Western Yangtze Block, SE Tibet:A Magmatic Response to the Indo-Asian Collision.Journal of Asian Earth Sciences, 135:95-109.https://doi.org/10.13039/501100001809 doi: 10.1016/j.jseaes.2016.12.030 [27] Lu, F.X., Shu, X.X., Zhao, C.H., 1991.A Suggestion on Classification of Lamprophyres.Geological Science and Technology Information, 10:55-62. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000361729 [28] Lu, Y.J., Campbell McCuaig, T., Li, Z.X., et al., 2015.Paleogene Post-Collisional Lamprophyres in Western Yunnan, Western Yangtze Craton:Mantle Source and Tectonic Implications.Lithos, 233:139-161.https://doi.org/10.13039/501100001809 doi: 10.1016/j.lithos.2015.02.003 [29] Lu, Y.J., Kerrich, R., Cawood, P.A., et al., 2012.Zircon SHRIMP U-Pb Geochronology of Potassic Felsic Intrusions in Western Yunnan, SW China:Constraints on the Relationship of Magmatism to the Jinsha Suture.Gondwana Research, 22(2):737-747. https://doi.org/10.1016/j.gr.2011.11.016 [30] Lu, Y.J., Kerrich, R., Mccuaig, T.C., et al., 2013.Geochemical, Sr-Nd-Pb, and Zircon Hf-O Isotopic Compositions of Eocene-Oligocene Shoshonitic and Potassic Adakite-Like Felsic Intrusions in Western Yunnan, SW China:Petrogenesis and Tectonic Implications.Journal of Petrology, 54(7):1309-1348. https://doi.org/10.1093/petrology/egt013 [31] Miller, C., Schuster, R., Klötzli, U., et al., 1999.Post-Collisional Potassic and Ultrapotassic Magmatism in SW Tibet:Geochemical and Sr-Nd-Pb-O Isotopic Constraints for Mantle Source Characteristics and Petrogenesis.Journal of Petrology, 40(9):699-715. [32] Rock, N.M.S., 1987.The Nature and Origin of Lamprophyres:An Overview.Geological Society, London, Special Publications, 30(1):191-226.https://doi.org/10.1144/gsl.sp.1987.030.01.09 doi: 10.1144/GSL.SP.1987.030.01.09 [33] Sun, S. S., McDonough, W. F., 1989. Chemical and IsotopicSystematics of Oceanic Basalts: Implications for Mantle Composition and Processes. In: Saunder, A. D., Norry, M. J., eds., Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 42(1): 313-345. https: //doi. org/10. 1144/gsl. sp. 1989. 042. 01. 19 [34] Taylor, S.R., McLennan, S.M., 1985.The Continental Crust:Its Composition and Evolution, An Examination of the Geochemical Record Preserved in Sedimentary Rocks.Blackwell Scientific Publication, Boston. [35] Turner, S.P., 2002.On the Time-Scales of Magmatism at Island-Arc Volcanoes.Philosophical Transactions of the Royal Society of London, Mathematical, Physical and Engineering Sciences, 360(1801):2853-2871. doi: 10.1098/rsta.2002.1060 [36] Wang, J.H., Qi, L., Yin, A., et al., 2001.Emplacement Age and PGE Geochemistry of Lamprophyres in the Laowangzhai Gold Geposit, Yunnan, SW China.Science in China(Series D), 31(S1):122-127 (in Chinese). [37] Wang, J.H., Yin, A., Harrison, T.M., et al., 2001.A Tectonic Model for Cenozoic Igneous Activities in the Eastern Indo-Asian Collision Zone.Earth and Planetary Science Letters, 188(1-2):123-133.https://doi.org/10.1016/s0012-821x(01)00315-6 doi: 10.1016/S0012-821X(01)00315-6 [38] Wang, X.F., Metcalfe, I., Jian, P., et al., 2000.The Jinshajiang-Ailaoshan Suture Zone, China:Tectonostratigraphy, Age and Evolution.Journal of Asian Earth Sciences, 18(6):675-690.https://doi.org/10.1016/s1367-9120(00)00039-0 doi: 10.1016/S1367-9120(00)00039-0 [39] Xu, H., Cui, Y.L., Zhang, M.H., et al., 2015.Geochemistry and Geochronology of the Lamprophyres in the Bijiashan Ore Deposit, Dali City, Yunnan Province.Implications for Source Region and Diagenetic Environment.Journal of Mineralogy and Petrology, 35(3):41-51 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/kwys201503007 [40] Zhao, X., Mo, X.X., Yu, X.H., et al., 2003.Mineralogical Characteristics and Petrogenesis of Deep-Derived Xenoliths in Cenozoic Syenite-Porphyry in Liuhe, Western Yunnan Province.Earth Science Frontiers, 10(3):93-104. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy200303009 [41] Zhu, D.C., Pan, G.T., Mo, X.X., et al., 2006.Late Jurassic-Early Cretaceous Geodynamic Setting in Middle-Northern Gangdese:New Insights from Volcanic Rocks.Acta Petrologica Sinica, 22(3):534-546 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=70d049d7459b40ec056365e05bd370bb&encoded=0&v=paper_preview&mkt=zh-cn [42] 陈福川, 王庆飞, 李龚健, 等, 2015.滇西哀牢山镇沅煌斑岩40Ar-39Ar年代学和地球化学特征.岩石学报, 31(11):3203-3216. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201511004 [43] 陈喜峰, 曾普胜, 张雪亭, 等, 2015.云南永平卓潘碱性杂岩体岩石学和地球化学特征及成因研究.岩石学报, 31(9):2597-2608. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201509010 [44] 董方浏, 莫宣学, 喻学惠, 等, 2007.云南永平卓潘新生代碱性杂岩体的元素地球化学和Nd-Sr-Pb同位素特征及地质意义.岩石学报, 23(5):986-994. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200705012 [45] 符德贵, 周云满, 张长青, 等, 2010.滇中小水井金矿煌斑岩特征及与金矿化的关系.地质与勘探, 46(3):414-425. http://d.old.wanfangdata.com.cn/Periodical/dzykt201003007 [46] 宫伟, 姜效典, 2017.哀牢山-红河断裂带哀牢山-大象山段渐新世-早中新世热史演化及成因.地球科学, 42(2):223-239.https://doi.org/10.3799/dqkx.2017.017 http://earth-science.net/WebPage/Article.aspx?id=3430 [47] 管涛, 黄智龙, 许成, 等, 2006.云南白马寨镍矿区煌斑岩40Ar-39Ar定年和地球化学特征.岩石学报, 22(4):873-883. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200604011 [48] 和文言, 莫宣学, 喻学惠, 等, 2014.滇西北衙煌斑岩的岩石成因及动力学背景:年代学、地球化学及Sr-Nd-Pb-Hf同位素约束.岩石学报, 30(11):3287-3300. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201411014 [49] 黄智龙, 王联魁.1996.云南老王寨金矿区煌斑岩的地球化学.地球化学, 25(3)249-255. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600048565 [50] 贾丽琼, 莫宣学, 董国臣, 等, 2013.滇西马厂箐煌斑岩成因:地球化学、年代学及Sr-Nd-Pb-Hf同位素约束.岩石学报, 29(4):1247-1260. http://d.old.wanfangdata.com.cn/Conference/7958115 [51] 林彬, 王立强, 唐菊兴, 等, 2017.西藏玉龙铜矿带包买矿床含矿斑岩锆石U-Pb年代学.地球科学, 42(9):1454-1471.https://doi.org/10.3799/dqkx.2017.517 http://earth-science.net/WebPage/Article.aspx?id=3651 [52] 路凤香, 舒小辛, 赵崇贺, 1991.有关煌斑岩分类的建议.地质科技情报, 10:55-62. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000361729 [53] 王江海, 漆亮, 尹安, 等, 2001.云南老王寨金矿区煌斑岩的侵位年龄和铂族元素地球化学.中国科学(D辑), 31(S1):122-127. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK200101277827 [54] 徐恒, 崔银亮, 张苗红, 等, 2015.云南大理笔架山矿区煌斑岩地球化学、年代学及其对源区和成岩环境的指示.矿物岩石, 35(3):41-51. http://d.old.wanfangdata.com.cn/Periodical/kwys201503007 [55] 赵欣, 莫宣学, 喻学惠等, 2003.滇西六合地区新生代正长斑岩中深源包体的矿物学特征与成因意义.地学前缘, 10(3):93-104. doi: 10.3321/j.issn:1005-2321.2003.03.009 [56] 朱弟成, 潘桂棠, 莫宣学, 等, 2006.冈底斯中北部晚侏罗世-早白垩世地球动力学环境:火山岩约束.岩石学报, 22(3):534-546. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200603002