The Discovery of Early-Middle Ordovician Granitic Gneiss from the Giant Lincang Batholith in Sanjiang Area of Western Yunnan and Its Geological Implications
-
摘要: 前人对"三江"地区临沧花岗岩基早古生代的岩浆事件研究极少.在双江地区临沧花岗岩基中首次识别出早古生代花岗质片麻岩.采用LA-ICP-MS锆石U-Pb定年、微区原位Hf同位素分析,结合全岩地球化学特征,对2件花岗质片麻岩样品进行了系统的研究.获得锆石U-Pb年龄分别为476.9±1.9 Ma、465.7±1.9 Ma,表明这些花岗质片麻岩形成于早-中奥陶世.花岗质片麻岩SiO2含量为70.67%~74.03%,K2O/Na2O值皆大于1,为1.04~1.55,属过铝质S型花岗岩.岩石微量元素特征显示其富集大离子亲石元素Rb、Th、U,亏损高场强元素Nb、Ta、Ti和Zr等,轻重稀土分异明显,轻稀土相对富集、重稀土亏损,具有明显的负Eu异常.2件样品锆石εHf(t)均为负值(-7.2~-0.7,均值-3.0),Hf同位素地壳模式年龄(tDMC)均值基本一致(1 639 Ma、1 630 Ma),说明花岗质片麻岩可能来源于古老地壳物质的部分熔融.综合分析表明,花岗质片麻岩是由原特提斯洋向东俯冲消减而引起的古老地壳物质部分熔融形成,是原特提斯俯冲消减的岩浆事件响应;说明在早奥陶世昌宁-孟连洋就存在俯冲消减,昌宁-孟连特提斯演化历史最早可以追溯到早奥陶世.Abstract: There are little research on the Early Paleozoic magma events of the giant Lingcang batholith in Sangjiang area.Early Paleozoic granitic gneiss was recognized for the first time from the Lincang batholith in Shuangjiang area of western Yunnan.LA-ICP-MS U-Pb dating and Hf isotopic analysis of zircons, combined with geochemical characteristics of two granitic gneiss samples are applied in this paper.The zircon U-Pb ages of 476.9±1.9 Ma and 465.7±1.9 Ma are obtained from two samples, which indicates that two granitic gneisses were formed in Middle-Late Ordovician.SiO2 content of the granitic gneisses ranges from 70.67% to 74.03%.The K2O/Na2O ratio is greater than 1, ranging from 1.04 to 1.55, and belonging to peraluminous S-type granitoids.They also enriched in LILEs (Rb, Th and U), but strongly depleted in HFSEs (Nb, Ta, Ti and Zr), showing strongly fractionated REE pattern, with apparently negative Eu anomalies.Their zircons have negative εHf(t) values (-7.2 to -0.7, average -3.0), and Hf isotope crust model ages (tDMC) are basically the same (average 1 639 Ma, 1 630 Ma).It is suggested that granitic gneiss may have originated from partial melting of ancient crustal materials.Based on the above analyses, granitic gneiss is formed by partial melting of ancient crustal materials that was caused by the eastward subduction of the Paleo-Tethys, and is the response of the magmatic events during subduction of the Paleo-Tethys.It shows that there was subduction in the Changning-Menglian ocean in the Early Ordovician, and the evolution history of the Tethys in the Changning-Menglian combination can be traced back to the Early Ordovician.
-
图 1 云南双江县花岗质片麻岩地质简图
图b据王保弟等(2013)修改.Ⅰ1-1.腾冲-盈江岩浆弧;Ⅰ2.潞西-三台山结合带;Ⅰ3.保山-镇康地块;Ⅱ1-1.昌宁-孟连结合带;Ⅱ2-1.临沧-勐海岩浆弧;Ⅲ1.南澜沧江结合带;Ⅴ.思茅地块;Ⅵ1-1.盈江岩浆弧;Ⅶ1.哀牢山结合带
Fig. 1. Geological sketch map for granitic gneiss from Shuangjiang area of western Yunnan
图 5 花岗质片麻岩TAS图解(a)和K2O-SiO2图解(b)
图a据Middlemost (1994);图b中实线据Peccerillo and Taylor (1976),虚线据Middlemost (1985)
Fig. 5. TAS diagram (a) and K2O-SiO2 diagram (b) for granitic gneiss
图 6 花岗质片麻岩球粒陨石标准化REE配分模式(a)和原始地幔标准化微量元素蛛网图(b)
标准化数值据Sun and McDonough(1989)
Fig. 6. Chondrite-normalized REE pattern (a) and primitive mantle-normalized trace element spider diagram (b) for granitic gneiss
图 7 花岗质片麻岩C/MF-A/MF(a)和Rb/Sr-Rb/Ba(b)图解
图a据Altherr et al.(2000);A.变质泥岩部分熔融;B.变质杂砂岩部分熔融;C.基性岩的部分熔融.图b据Sylvester(1998)
Fig. 7. C/MF-A/MF diagram (a) and Rb/Sr-Rb/Ba diagram (b) of granitic gneiss
表 1 花岗质片麻岩锆石U-Pb年龄分析结果
Table 1. Zircon U-Pb dating results for granitic gneiss
测点号 元素含量(10-6) Th/U 同位素比值 年龄(Ma) Th U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ D5279-01 81 106 0.76 0.062 8 0.002 6 1.136 0 0.047 3 0.130 7 0.002 0 702 88.9 771 22.5 792 11.2 D5279-02 95 518 0.18 0.053 9 0.001 6 0.578 9 0.016 3 0.077 7 0.000 7 365 66.7 464 10.5 482 4.1 D5279-03 117 408 0.29 0.056 6 0.001 6 0.605 1 0.017 1 0.077 2 0.000 9 476 93.5 480 10.8 480 5.4 D5279-04 99 274 0.36 0.056 6 0.001 5 0.608 9 0.016 9 0.077 7 0.000 8 472 93.5 483 10.7 482 5.0 D5279-05 88 516 0.17 0.054 7 0.001 4 0.586 0 0.015 4 0.077 3 0.000 9 467 57.4 468 9.9 480 5.1 D5279-06 80 366 0.22 0.056 0 0.001 7 0.598 5 0.016 9 0.077 4 0.000 7 454 64.8 476 10.8 480 4.4 D5279-07 162 444 0.36 0.066 7 0.001 7 1.117 4 0.038 1 0.120 1 0.002 7 828 52.9 762 18.3 731 15.6 D5279-08 73 573 0.13 0.056 5 0.001 5 0.609 0 0.017 4 0.077 7 0.001 0 472 57.4 483 11.0 482 6.0 D5279-09 83 561 0.15 0.055 6 0.001 6 0.598 3 0.019 0 0.077 9 0.001 4 435 66.7 476 12.1 484 8.6 D5279-10 71 515 0.14 0.058 3 0.001 4 0.621 7 0.015 5 0.077 1 0.000 9 539 51.8 491 9.7 479 5.3 D5279-11 95 780 0.12 0.064 2 0.001 3 0.976 7 0.021 0 0.109 7 0.001 0 750 44.4 692 10.8 671 5.9 D5279-12 75 373 0.20 0.055 0 0.001 9 0.581 6 0.020 9 0.076 4 0.001 0 413 77.8 466 13.4 475 6.0 D5279-13 75 443 0.17 0.056 1 0.001 6 0.596 4 0.016 7 0.077 0 0.000 7 457 63.0 475 10.6 478 4.3 D5279-14 72 477 0.15 0.057 8 0.001 3 0.613 6 0.014 0 0.076 9 0.000 7 520 50.0 486 8.8 477 4.3 D5279-15 144 905 0.16 0.056 2 0.001 2 0.600 3 0.013 6 0.077 2 0.000 7 461 46.3 477 8.6 479 4.4 D5279-16 94 426 0.22 0.056 0 0.001 5 0.587 9 0.016 2 0.076 1 0.000 7 450 59.3 470 10.3 473 4.2 D5279-17 86 377 0.23 0.054 3 0.001 9 0.573 8 0.021 3 0.076 6 0.000 8 389 81.5 460 13.8 476 4.7 D5279-18 96 425 0.23 0.054 9 0.001 7 0.573 0 0.016 9 0.075 9 0.000 7 409 68.5 460 11.0 472 4.1 D5279-19 78 427 0.18 0.055 7 0.001 4 0.588 1 0.015 7 0.076 5 0.000 8 439 52.8 470 10.1 475 4.6 D5279-20 97 454 0.21 0.057 9 0.001 5 0.615 9 0.018 3 0.077 1 0.001 2 524 55.5 487 11.5 479 7.4 D5279-21 98 411 0.24 0.057 6 0.001 5 0.616 3 0.021 0 0.076 8 0.001 4 522 59.3 487 13.2 477 8.7 D5279-22 110 399 0.28 0.056 8 0.001 6 0.604 6 0.018 1 0.076 9 0.001 1 483 63.0 480 11.4 478 6.8 D5279-23 68 413 0.16 0.058 9 0.001 8 0.619 8 0.018 7 0.076 0 0.000 7 565 68.5 490 11.7 472 4.3 D5279-24 65 351 0.19 0.056 7 0.001 6 0.600 5 0.017 3 0.076 2 0.000 7 480 64.8 478 11.0 474 4.1 D5279-25 63 407 0.15 0.057 5 0.001 8 0.608 8 0.018 7 0.076 2 0.000 7 509 66.7 483 11.8 473 4.0 D5279-26 137 410 0.33 0.056 4 0.002 0 0.602 3 0.021 8 0.076 9 0.000 8 478 77.8 479 13.8 477 5.0 D5279-27 69 417 0.17 0.056 0 0.001 5 0.592 8 0.015 4 0.076 3 0.000 6 450 59.3 473 9.8 474 3.8 D5279-28 80 879 0.09 0.056 4 0.001 2 0.605 4 0.015 3 0.077 1 0.001 1 478 48.1 481 9.7 479 6.9 D5279-29 142 471 0.30 0.066 6 0.001 5 1.311 2 0.029 8 0.141 5 0.001 0 833 48.1 851 13.1 853 5.5 D3104-01 187 477 0.39 0.057 1 0.001 4 0.602 3 0.015 6 0.075 8 0.000 8 498 53.7 479 9.9 471 4.7 D3104-02 222 1 280 0.17 0.056 8 0.001 3 0.591 7 0.012 8 0.074 9 0.000 6 483 48.1 472 8.2 466 3.7 D3104-03 132 365 0.36 0.057 8 0.001 9 0.611 5 0.019 9 0.076 2 0.000 9 524 72.2 485 12.6 473 5.4 D3104-04 87 218 0.40 0.067 5 0.002 0 1.357 4 0.038 6 0.145 4 0.001 4 854 65.7 871 16.6 875 8.1 D3104-05 205 2 404 0.09 0.057 2 0.001 2 0.600 5 0.014 4 0.075 7 0.001 1 498 48.1 478 9.1 470 6.4 D3104-06 65 209 0.31 0.056 2 0.002 0 0.578 2 0.020 8 0.074 9 0.001 0 461 81.5 463 13.4 466 5.7 D3104-07 89 636 0.14 0.056 5 0.001 6 0.589 6 0.021 9 0.074 8 0.001 3 472 97.2 471 14.0 465 7.8 D3104-08 217 412 0.53 0.057 2 0.001 6 0.592 6 0.017 9 0.074 7 0.000 9 502 64.8 473 11.4 464 5.1 D3104-09 117 363 0.32 0.058 0 0.001 7 0.599 0 0.017 9 0.074 8 0.000 8 528 66.7 477 11.4 465 4.7 D3104-10 357 996 0.36 0.056 7 0.001 5 0.590 4 0.015 5 0.075 3 0.001 0 480 83.3 471 9.9 468 5.9 D3104-11 138 611 0.23 0.056 4 0.001 7 0.596 1 0.020 8 0.076 4 0.001 5 478 100.9 475 13.2 475 8.9 D3104-12 258 307 0.84 0.056 0 0.001 6 0.582 4 0.017 2 0.075 2 0.000 6 450 67.6 466 11.0 467 3.7 D3104-13 71 1 358 0.05 0.110 3 0.001 7 4.160 4 0.071 1 0.272 4 0.002 6 1806 27.6 1 666 14.0 1 553 13.1 D3104-14 168 740 0.23 0.056 9 0.001 3 0.586 9 0.014 8 0.074 4 0.000 7 487 51.8 469 9.5 463 4.4 D3104-15 277 1 458 0.19 0.055 8 0.001 1 0.576 2 0.012 1 0.074 6 0.000 7 455 10.2 462 7.8 464 3.9 D3104-16 138 1 034 0.13 0.056 4 0.001 3 0.581 5 0.015 2 0.074 5 0.001 0 477 51.8 465 9.8 463 6.3 D3104-17 116 265 0.44 0.059 9 0.002 2 0.621 0 0.025 2 0.074 8 0.001 2 598 79.6 490 15.8 465 7.3 D3104-18 131 620 0.21 0.054 2 0.001 2 0.561 7 0.014 7 0.075 0 0.001 1 389 51.8 453 9.5 466 6.8 D3104-19 63 252 0.25 0.055 9 0.001 8 0.578 1 0.018 7 0.074 7 0.000 7 455 70.4 463 12.0 465 4.2 D3104-20 135 463 0.29 0.053 3 0.001 6 0.556 0 0.017 8 0.075 4 0.001 0 343 68.5 449 11.6 468 6.2 D3104-21 211 1 565 0.13 0.055 0 0.001 2 0.573 1 0.013 0 0.075 3 0.001 0 413 48.1 460 8.4 468 5.7 D3104-22 107 282 0.38 0.053 7 0.001 8 0.553 0 0.018 9 0.074 3 0.000 7 367 75.9 447 12.4 462 4.4 D3104-23 204 1 352 0.15 0.055 6 0.001 2 0.576 6 0.013 2 0.074 8 0.000 9 435 46.3 462 8.5 465 5.2 D3104-24 114 348 0.33 0.055 4 0.001 6 0.574 6 0.017 0 0.075 0 0.000 8 432 64.8 461 11.0 466 4.8 D3104-25 146 289 0.51 0.059 1 0.001 8 0.616 1 0.019 0 0.075 1 0.000 7 572 64.8 487 12.0 467 4.4 D3104-26 244 526 0.46 0.053 1 0.001 5 0.550 6 0.015 5 0.075 1 0.000 9 332 30.6 445 10.1 467 5.7 D3104-27 122 375 0.33 0.056 1 0.001 6 0.582 9 0.017 9 0.075 0 0.001 0 454 63.0 466 11.5 466 5.8 D3104-28 260 636 0.41 0.055 8 0.001 5 0.573 6 0.015 3 0.074 1 0.000 6 443 59.3 460 9.9 461 3.5 D3104-29 168 341 0.49 0.055 3 0.001 7 0.568 8 0.017 3 0.074 9 0.001 4 433 70.4 457 11.2 465 8.2 D3104-30 166 737 0.23 0.056 9 0.001 3 0.586 8 0.017 0 0.074 0 0.001 3 487 84.2 469 10.9 462 7.9 表 2 花岗质片麻岩锆石Hf同位素分析数据
Table 2. Zircon Lu-Hf isotope data for granitic gneiss
测点号 t(Ma) 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf 2σ εHf(0) εHf(t) tDM (Ma) tDMC(Ma) fLu/Hf D5279-1.1 480 0.079 585 0.002 970 0.282 453 0.000 010 -11.3 -1.7 1 192 1 554 -0.91 D5279-2.1 480 0.027 221 0.001 026 0.282 375 0.000 008 -14.0 -3.8 1 239 1 690 -0.97 D5279-3.1 482 0.063 853 0.002 427 0.282 399 0.000 010 -13.2 -3.3 1 252 1 662 -0.93 D5279-4.1 484 0.067 342 0.002 585 0.282 441 0.000 010 -11.7 -1.9 1 196 1 571 -0.92 D5279-5.1 473 0.062 514 0.002 321 0.282 477 0.000 010 -10.4 -0.7 1 135 1 491 -0.93 D5279-6.1 472 0.072 551 0.002 664 0.282 417 0.000 009 -12.6 -3.0 1 234 1 633 -0.92 D5279-7.1 475 0.066 997 0.002 466 0.282 428 0.000 012 -12.2 -2.5 1 211 1 602 -0.93 D5279-8.1 474 0.038 219 0.001 495 0.282 287 0.000 009 -17.14 -7.2 1 379 1 907 -0.95 D3104-1.1 471 0.058 272 0.002 182 0.282 453 0.000 011 -11.3 -1.6 1 166 1 543 -0.93 D3104-2.1 470 0.072 773 0.002 835 0.282 404 0.000 011 -13.0 -3.6 1 259 1 666 -0.91 D3104-3.1 465 0.068 827 0.002 759 0.282 387 0.000 010 -13.6 -4.2 1 281 1705 -0.92 D3104-4.1 468 0.063 461 0.002 451 0.282 409 0.000 013 -12.8 -3.3 1 238 1 648 -0.93 D3104-5.1 467 0.085 082 0.003 314 0.282 437 0.000 016 -11.9 -2.6 1 228 1 604 -0.90 D3104-6.1 465 0.043 073 0.001 675 0.282 410 0.000 011 -12.8 -3.1 1 212 1 633 -0.95 D3104-7.1 468 0.119 671 0.004 577 0.282 428 0.000 010 -12.2 -3.3 1 287 1 648 -0.86 D3104-8.1 466 0.044 207 0.001 651 0.282 433 0.000 009 -12.0 -2.2 1 177 1 580 -0.95 D3104-9.1 461 0.061 855 0.002 344 0.282 412 0.000 010 -12.7 -3.3 1 230 1 643 -0.93 表 3 花岗质片麻岩的主量元素(%)和微量元素(10-6)分析结果
Table 3. Major elements (%) and trace elements (10-6) analysis data for granitic gneiss
样品号 D5279-H1 D5279-H2 D5279-H3 D3104-H1 D3104-H2 D3104-H3 D3104-H4 SiO2 70.67 71.60 71.46 73.01 72.6 72.37 74.03 TiO2 0.46 0.45 0.44 0.28 0.30 0.29 0.26 Al2O3 14.27 14.51 14.10 13.24 14.00 13.89 13.64 Fe2O3T 3.66 3.50 3.50 2.68 2.80 2.77 2.21 MnO 0.06 0.05 0.05 0.06 0.10 0.07 0.05 MgO 0.75 0.74 0.71 0.57 0.60 0.59 0.46 CaO 2.20 2.24 2.18 1.58 2.00 1.77 1.39 Na2O 2.97 3.13 3.08 2.73 3.30 3.08 2.75 K2O 3.67 3.52 3.52 4.22 3.50 3.99 4.11 P2O5 0.12 0.11 0.11 0.06 0.10 0.07 0.06 LOI 0.51 0.70 0.58 0.85 0.60 0.59 0.85 Total 99.33 100.54 99.74 99.29 99.9 99.47 99.79 A/CNK 1.11 1.11 1.10 1.11 1.09 1.10 1.19 Sc 10.6 10.1 9.72 9.30 9.69 9.03 8.56 V 42.6 41.8 40.9 28.7 29.7 30.0 26.2 Cr 10.4 9.39 9.28 5.10 5.23 4.89 4.27 Co 5.71 5.71 5.29 3.73 4.39 3.84 2.33 Ni 4.98 4.46 4.86 2.57 2.82 2.80 2.02 Ga 19.1 19.3 18.5 15.4 16.7 16.2 15.7 Rb 165 156 158 183 153 170 161 Sr 79.8 81.2 78.3 60.3 72.9 68.4 60.0 Y 51.5 48.3 54.2 54.4 50.3 59.3 54.9 Zr 216 240 241 128 121 118 121 Nb 12.4 12.2 11.9 9.37 10.3 9.66 8.69 Cs 7.71 6.23 7.40 5.66 6.69 5.47 3.25 Ba 726 748 693 450 398 504 436 La 45.2 46.0 36.7 26.9 27.8 29.9 30.1 Ce 93.1 94.3 76.1 56.2 58.5 62.9 64.2 Pr 10.3 10.9 8.63 6.43 6.67 7.23 7.19 Nd 40.3 41.8 33.5 24.5 25.5 27.5 27.8 Sm 8.62 9.04 7.36 5.78 6.11 6.30 6.58 Eu 1.09 1.15 1.08 0.69 0.73 0.76 0.66 Gd 8.54 8.78 7.58 6.61 6.68 7.26 7.01 Tb 1.45 1.36 1.37 1.20 1.29 1.36 1.32 Dy 8.60 8.07 8.52 8.21 8.31 9.11 8.54 Ho 1.69 1.62 1.75 1.77 1.65 1.91 1.81 Er 5.00 4.66 5.12 5.46 4.69 5.65 5.48 Tm 0.69 0.65 0.72 0.83 0.66 0.86 0.82 Yb 4.57 4.46 4.86 5.68 4.22 5.54 5.34 Lu 0.67 0.66 0.72 0.84 0.60 0.84 0.82 Hf 6.54 7.30 7.10 4.35 4.04 3.92 4.07 Ta 0.96 1.00 0.91 0.99 0.98 1.06 0.88 Pb 26.4 27.4 26.0 34.5 29.1 31.1 30.7 Th 24.5 26.4 19.4 16.6 16.5 18.6 20.5 U 3.43 3.51 3.52 5.19 4.20 3.38 4.40 δEu 0.34 0.35 0.34 0.30 0.39 0.40 0.44 (La/Yb)N 3.40 4.73 3.87 4.04 7.08 7.39 5.41 -
[1] Altherr, R., Holl, A., Hegner, E., et al., 2000.High-Potassium, Calc-Alkaline I-Type Plutonism in the European Variscides:Northern Vosges (France) and Northern Schwarzwald (Germany).Lithos, 50(1-3):51-73.https://doi.org/10.1016/s0024-4937(99)00052-3 doi: 10.1016/S0024-4937(99)00052-3 [2] Blichert-Toft, J., Albarède, F., 1997.The Lu-Hf Isotope Geochemistry of Chondrites and the Evolution of the Mantle-Crust System.Earth and Planetary Science Letters, 148(1-2):243-258.https://doi.org/10.1016/s0012-821x(97)00040-x doi: 10.1016/S0012-821X(97)00040-X [3] Chappell, B.W., 1999.Aluminium Saturation in I-and S-Type Granites and the Characterization of Fractionated Haplogranites.Lithos, 46(3):535-551.https://doi.org/10.1016/s0024-4937(98)00086-3 doi: 10.1016/S0024-4937(98)00086-3 [4] Chen, J.C., 1989.Tectonic Surroundings Forming West Yunnan Granitoids and Their Rock Characters.Yunnan Geology, 8(3-4):205-212 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YNZD1989Z1001.htm [5] Cong, B.L., Wu, G.Y., Zhang, Q., et al., 1993.The Tectonic Evolution of the Rock in the Ancient Tethys, Western Yunnan.Science in China (Series B), 23 (11):1201-1207 (in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201707008 [6] Ferry, J.M., Watson, E.B., 2007.New Thermodynamic Models and Revised Calibrations for the Ti-in-Zircon and Zr-in-Rutile Thermometers.Contributions to Mineralogy and Petrology, 154(4):429-437. https://doi.org/10.1007/s00410-007-0201-0 [7] Griffin, W.L., Wang, X., Jackson, S.E., et al., 2002.Zircon Chemistry and Magma Mixing, SE China:In-Situ Analysis of Hf Isotopes, Tonglu and Pingtan Igneous Complexes.Lithos, 61(3-4):237-269.https://doi.org/10.1016/s0024-4937(02)00082-8 doi: 10.1016/S0024-4937(02)00082-8 [8] Griffin, W.L., Belousova, E.A., Shee, S.R., et al., 2004.Archean Crustal Evolution in the Northern Yilgarn Craton:U-Pb and Hf Isotope Evidence from Detrital Zircons.Precambrian Research, 131(3-4):231-282. https://doi.org/10.1016/j.precamres.2003.12.011 [9] Hu, P.Y., Li, C., Su, L., et al., 2010.Zircon U-Pb Dating of Granitic Gneiss in Wugong Mountain Area, Central Qiangtang, Qinghai-Tibet Plateau:Age Records of Pan-African Movement and Indo-China Movement.Geology in China, 37(4):1050-1061 (in Chinese with English abstract). [10] Huang, Y., Hao, J.X., Bai, L., et al., 2012.Stratigraphic and Petrologic Response to Late Pan-African Movement in Shidian Area, Western Yunnan Province.Geologcal Bulletin of China, 31(2):306-313 (in Chinese with English abstract). https://www.researchgate.net/publication/289747078_Stratigraphic_and_petrologic_response_to_Late_Pan-African_movement_in_Shidian_area_western_Yunnan_Province [11] King, P.L., White, A.J.R., Chappell, B.W., et al., 1997.Characterization and Origin of Aluminous A-Type Granites from the Lachlan Fold Belt, Southeastern Australia.Journal of Petrology, 38(3):371-391. https://doi.org/10.1093/petroj/38.3.371 [12] Kong, H.L., Dong, G.C., Mo, X.X., et al., 2012.Petrogenesis of Lincang Granites in Sanjiang Area of Western Yunnan Province:Constraints from Geochemistry, zircon U-Pb Geochronology and Hf Isotope.Acta Petrologica Sinica, 28(5):1438-1452 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=2b68cf1f7825af5d5f9cc8bab685aeb1&encoded=0&v=paper_preview&mkt=zh-cn [13] Lehmann, B., Zhao, X.F., Zhou, M.F., et al., 2013.Mid-Silurian Back-Arc Spreading at the Northeastern Margin of Gondwana:The Dapingzhang Dacite-Hosted Massive Sulfide Deposit, Lancangjiang Zone, Southwestern Yunnan, China.Gondwana Research, 24(2):648-663. https://doi.org/10.1016/j.gr.2012.12.018 [14] Li, C., Wu, Y.W., Wang, M., et al., 2010.Significant Progress on Pan-African and Early Paleozoic Orogenic Events in Qinghai-Tibet Plateau——Discovery of Pan-African Orogenic Unconformity and Cambrian System in the Gangdise Area, Tibet, China.Geological Bulletin of China, 29(12):1733-1736 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZQYD201012002.htm [15] Li, X.L., 1996.Basic Characteristics and Formation Structural Environment of Lincang Composite Granite Batholith.Yunnan Geology, 15(1):1-18 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YNZD601.000.htm [16] Liu, B.P., Feng, Q.L., Fang, N.Q., et al., 1993.Tectonic Evolution of Palaeo-Tethys Poly-Island-Ocean in Changning-Menglian and Lancangjiang Belts, Southwestern Yunnan, China.Earth Science, 18(5):529-539 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX199305000.htm [17] Liu, C.S., Zhu, J.C., Xu, X.S., et al., 1989.Study on the Characteristics of Linchang Composite Granite Batholith in West Yunnan.Yunnan Geology, 8(3-4):189-204 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YNZD1989Z1000.htm [18] Liu, D.L., Liu, J.S., Zhang, C.H., et al., 2008.Geological Characteristics and Tectonic Setting of Yunxian Granite in the Northern Part of South Lancangjiang Convergent Margin, Western Yunnan Province.Acta Petrologica et Mineralogica, 27(1):23-31 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=9ac04cc0521227dbb059bc378306426b&encoded=0&v=paper_preview&mkt=zh-cn [19] Liu, G.C., Sun, Z.B., Zeng, W.T., et al., 2017.The Age of Wanhe Ophiolitic Mélange from Mengku Area, Shuangjiang County, Western Yunnnan Province, and Its Geological Significance.Acta Petrologica et Mineralogica, 36(2):163-174 (in Chinese with English abstract). [20] Liu, Q., Deng, Y.B., Xiang, S.Y., et al., 2017.Early Ordovician Tectono-Thermal Event in Zhongba Terrane and Its Geological Significance.Earth Science, 42(6):881-890 (in Chinese with English abstract).https://doi.org/dqkx.2017.076 http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201706003.htm [21] Liu, Y.S., Hu, Z.C., Zong, K.Q., et al., 2010.Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS.Chinese Science Bulletin, 55(15):1535-1546. https://doi.org/10.1007/s11434-010-3052-4 [22] Ludwig, K.R., 2003.User's Manual for Isoplot 3.0:A Geochronological Toolkit for Microsoft Excel.Berkeley Geochronology Center Special Publication, Berkeley. [23] Mao, X.C., Wang, L.Q., Li, B., et al., 2012.Discovery of the Late Silurian Volcanic Rocks in the Dazhonghe Area, Yunxian-Jinggu Volcanic Arc Belt, Western Yunnan, China and Its Geological Significance.Acta Petrologica Sinica, 28(5):1517-1528 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201205014 [24] Middlemost, E.A.K., 1985.Magmas and Magmatic Rocks.Longman, London. [25] Middlemost, E.A.K., 1994.Naming Materials in the Magma/Igneous Rock System.Earth-Science Reviews, 37(3-4):215-224. https://doi.org/10.1016/0012-8252(94)90029-9 [26] Nie, X.M., Feng, Q.L., Qian, X., et al., 2015.Magmatic Record of Prototethyan Evolution in SW Yunnan, China:Geochemical, Zircon U-Pb Geochronological and Lu-Hf Isotopic Evidence from the Huimin Metavolcanic Rocks in the Southern Lancangjiang Zone.Gondwana Research, 28(2):757-768.https://doi.org/10.13039/501100001809 doi: 10.1016/j.gr.2014.05.011 [27] Pan, G.T., Wang, L.Q., Li, R.S., et al., 2012.Tectonic Model of Archipelagic Arc-Basin Systems:The Key to the Continental Geology.Sedimentary Geology and Tethyan Geology, 32(3):1-20 (in Chinese with English abstract). https://www.researchgate.net/publication/311570518_Tectonic_Model_of_Archipelagic_Arc-Basin_Systems_The_Key_to_the_Continental_Geology [28] Peccerillo, A., Taylor, S.R., 1976.Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey.Contributions to Mineralogy and Petrology, 58(1):63-81.https://doi.org/10.1007/bf00384745 doi: 10.1007/BF00384745 [29] Peng, T.P., Wang, Y.J., Fan, W.M., et al., 2006.SHRIMP Zircon U-Pb Geochronology of Early Mesozoic Felsic Igneous Rocks from the Southern Lancangjiang and Its Tectonic Implications.Science in China (Series D), 36(2):123-132 (in Chinese). https://www.researchgate.net/profile/Yuruo_Shi/publication/226663314_SHRIMP_ziron_U-Pb_geochronology_of_early_Mesozoic_felsic_igneous_rocks_from_the_southern_Lancangjiang_and_its_tectonic_implications/links/53e8c1be0cf21cc29fdc94cf.pdf?origin=publication_list [30] Peng, Z.M., Geng, Q.R., Wang, L.Q., et al., 2014.Zircon U-Pb Ages and Hf Isotopic Characteristics of Granitic Gneiss from Bunsumco, Central Qiangtang, Qinghai-Tibet Plateau.Chinese Science Bulletin, 59(26):2621-2629 (in Chinese). doi: 10.1360/N972014-00014 [31] Söderlund, U., Patchett, P.J., Vervoort, J.D., et al., 2004.The 176Lu Decay Constant Determined by Lu-Hf and U-Pb Isotope Systematics of Precambrian Mafic Intrusions.Earth and Planetary Science Letters, 219(3-4):311-324.https://doi.org/10.1016/s0012-821x(04)00012-3 doi: 10.1016/S0012-821X(04)00012-3 [32] Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345.https://doi.org/10.1144/gsl.sp.1989.042.01.19 doi: 10.1144/GSL.SP.1989.042.01.19 [33] Sun, Z.B., Zeng, W.T., Zhou, K., et al., 2017.Identification of Ordovician Oceanic Island Basalt in the Changning-Menglian Suture Zone and Its Tectonic Implications:Evidence from Geochemical and Geochronological Data.Geological Bulletin of China, 36(10):1760-1771 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201710008.htm [34] Sylvester, P.J., 1998.Post-Collisional Strongly Peraluminous Granites.Lithos, 45(1-4):29-44.https://doi.org/10.1016/s0024-4937(98)00024-3 doi: 10.1016/S0024-4937(98)00024-3 [35] Wang, B.D., Wang, L.Q., Pan, G.T., et al., 2013.U-Pb Zircon Dating of Early Paleozoic Gabbro from the Nantinghe Ophiolite in the Changning-Menglian Suture Zone and Its Geological Implication.Chinese Science Bulletin, 58(4):344-354(in Chinese). http://cn.bing.com/academic/profile?id=e5c57d4e44a3e491a9308cfefd5ae46f&encoded=0&v=paper_preview&mkt=zh-cn [36] Wang, D.B., Luo, L., Tang, Y., et al., 2016.Zircon U-Pb Dating and Petrogenesis of Early Paleozoic Adakites from the Niujingshan Ophiolitic Mélange in the Changning-Menglian Suture Zone and Its Geological Implications.Acta Petrologica Sinica, 32(8):2317-2329 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201608006 [37] Wang, H.L., Lin, F.C., Cong, F., et al., 2016.Yunnan Fengqing Mang Street Leucogranite LA-ICP-MS Zircon U-Pb Age and Its Geological Significance.World Nonferrous Metals, (7):59-61 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-COLO201607024.htm [38] Wang, L.Q., Pan, G.T., Li, C., et al., 2008.SHRIMP U-Pb Zircon Dating of Eopaleozoic Cumulate in Guoganjianian Mt.from Central Qiangtang Area of Northern Tibet-Considering the Evolvement of Proto-and Paleo-Tethys.Geological Bulletin of China, 27(12):2045-2056 (in Chinese with English abstract). https://www.researchgate.net/publication/279556293_SHRIMP_U-Pb_zircon_dating_of_Eopaleozoic_cumulate_in_Guoganjianian_Mt_from_central_Qiangtang_area_of_northern_Tibet-Considering_the_evolvement_of_Proto-and_Paleo-Tethys [39] Watson, E.B., Harrison, T.M., 1983.Zircon Saturation Revisited:Temperature and Composition Effects in a Variety of Crustal Magma Types.Earth and Planetary Science Letters, 64(2):295-304.https://doi.org/10.1016/0012-821x(83)90211-x doi: 10.1016/0012-821X(83)90211-X [40] Wu, S. L., 2010. Charcteristics, Geochronology of Lincang Granite in the Southern Langcangjiang, Sanjiang Area and Implication for Tectonics (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract). [41] Xing, X.W., Wang, Y.J., Cawood, P.A., et al., 2017.Early Paleozoic Accretionary Orogenesis along Northern Margin of Gondwana Constrained by High-Mg Metaigneous Rocks, SW Yunnan.International Journal of Earth Sciences, 106(5):1469-1486. https://doi.org/10.1007/s00531-015-1282-z [42] Xing, X.W., Zhang, Y.Z., Wang, Y.J., et al., 2015.Zircon U-Pb Geochronology and Hf Isotopic Composition of the Ordovician Granitic Gneisses in Ximeng Area, West Yunnan Province.Geotectonica et Metallogenia, 39(3):470-480 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=69f696ee0255c7c73807e65e56693f10&encoded=0&v=paper_preview&mkt=zh-cn [43] Yu, S.Y., Li, K.Q., Shi, Y.P., et al., 2003.A Study on the Granodiorite in the Middle Part of Lincang Granite Batholith.Yunnan Geology, 22(4):426-442 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=8f7bb3241af6dded30a3a6f328186cba&encoded=0&v=paper_preview&mkt=zh-cn [44] Zeng, W.T., Liu, G.C., Feng, Q.L., et al., 2017.The Relationship between Lincang Block and Provenance of Nanduan Formation:Evidence of Detrital Zircon U-Pb Dating from Metasandstone of Devonian-Carboniferous Nanduan Formation.Geological Bulletin of China, 36(7):1175-1187 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-ZQYD201707008.htm [45] Zhang, W.H., Qin, Y.J., Wang, Y., 1991.Discussion on the Causation Type and Its Source of Lincang Granite Belt in West Yunnan.Bulletin of Mineralogy, Petrology and Geochemistry, 10(4):240-243 (in Chinese with English abstract). [46] Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2012.Cambrian Bimodal Volcanism in the Lhasa Terrane, Southern Tibet:Record of an Early Paleozoic Andean-Type Magmatic Arc in the Australian Proto-Tethyan Margin.Chemical Geology, 328:290-308. https://doi.org/10.1016/j.chemgeo.2011.12.024 [47] 陈吉琛, 1989.滇西花岗岩类形成的构造环境及岩石特征.云南地质, 8(3-4):205-212. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=YNZD1989Z1001&dbname=CJFD&dbcode=CJFQ [48] 从柏林, 吴根耀, 张旗, 等, 1993.中国滇西古特提斯构造带岩石大地构造演化.中国科学(B辑), 23(11):1201-1207. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000001581745 [49] 胡培远, 李才, 苏犁, 等, 2010.青藏高原羌塘中部蜈蚣山花岗片麻岩锆石U-Pb定年——泛非与印支事件的年代学记录.中国地质, 37(4):1050-1061. doi: 10.3969/j.issn.1000-3657.2010.04.019 [50] 黄勇, 郝家栩, 白龙, 等, 2012.滇西施甸地区晚泛非运动的地层学和岩石学响应.地质通报, 31(2):306-313. doi: 10.3969/j.issn.1671-2552.2012.02.013 [51] 孔会磊, 董国臣, 莫宣学, 等, 2012.滇西三江地区临沧花岗岩的岩石成因:地球化学、锆石U-Pb年代学及Hf同位素约束.岩石学报, 28(5):1438-1452. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201205008 [52] 李才, 吴彦旺, 王明, 等, 2010.青藏高原泛非-早古生代造山事件研究重大进展——冈底斯地区寒武系和泛非造山不整合的发现.地质通报, 29(12):1733-1736. doi: 10.3969/j.issn.1671-2552.2010.12.001 [53] 李兴林, 1996.临沧复式花岗岩基的基本特征及形成构造环境的研究.云南地质, 15(1):1-18. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600616589 [54] 刘本培, 冯庆来, 方念乔, 等, 1993.滇西南昌宁-孟连带和澜沧江带古特提斯多岛洋构造演化.地球科学, 18(5):529-539. http://earth-science.net/WebPage/Article.aspx?id=68 [55] 刘昌实, 朱金初, 徐夕生, 等, 1989.滇西临沧复式岩基特征研究.云南地质, 8(3-4):189-204. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000003601932 [56] 刘德利, 刘继顺, 张彩华, 等, 2008.滇西南澜沧江结合带北段云县花岗岩的地质特征及形成环境.岩石矿物学杂志, 27(1):23-31. doi: 10.3969/j.issn.1000-6524.2008.01.003 [57] 刘桂春, 孙载波, 曾文涛, 等, 2017.滇西双江县勐库地区湾河蛇绿混杂岩的形成时代、岩石地球化学特征及地质意义.岩石矿物学杂志, 36(2):163-174. doi: 10.3969/j.issn.1000-6524.2017.02.003 [58] 刘强, 邓玉彪, 向树元, 等, 2017.藏南仲巴地体早奥陶世构造-热事件及其地质意义.地球科学, 42(6):881-890.https://doi.org/dqkx.2017.076 http://earth-science.net/WebPage/Article.aspx?id=3585 [59] 毛晓长, 王立全, 李冰, 等, 2012.云县-景谷火山弧带大中河晚志留世火山岩的发现及其地质意义.岩石学报, 28(5):1517-1528. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201205014 [60] 潘桂棠, 王立全, 李荣社, 等, 2012.多岛弧盆系构造模式:认识大陆地质的关键.沉积与特提斯地质, 32(3):1-20. doi: 10.3969/j.issn.1009-3850.2012.03.001 [61] 彭头平, 王岳军, 范蔚茗, 等, 2006.澜沧江南段早中生代酸性火成岩SHRIMP锆石U-Pb定年及构造意义.中国科学(D辑), 36 (2):123-132. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200602002 [62] 彭智敏, 耿全如, 王立全, 等, 2014.青藏高原羌塘中部本松错花岗质片麻岩锆石U-Pb年龄、Hf同位素特征及地质意义.科学通报, 59(26):2621-2629. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=KXTB201426014&dbname=CJFD&dbcode=CJFQ [63] 孙载波, 曾文涛, 周坤, 等, 2017.昌宁-孟连结合带奥陶纪洋岛玄武岩的识别及其构造意义——来自地球化学和锆石U-Pb年龄的证据.地质通报, 36(10):1760-1771. doi: 10.3969/j.issn.1671-2552.2017.10.008 [64] 王保弟, 王立全, 潘桂棠, 等, 2013.昌宁-孟连结合带南汀河早古生代辉长岩锆石年代学及地质意义.科学通报, 58(4):344-354. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=YNZD1989Z1001&dbname=CJFD&dbcode=CJFQ [65] 王冬兵, 罗亮, 唐渊, 等, 2016.昌宁-孟连结合带牛井山早古生代埃达克岩锆石U-Pb年龄、岩石成因及其地质意义.岩石学报, 32(8):2317-2329. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201608006 [66] 王海林, 林方成, 丛峰, 等, 2016.云南凤庆漭街淡色花岗岩LA-ICP-MS锆石U-Pb年龄及其地质意义.世界有色金属, (7):59-61. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=COLO201607024&dbname=CJFD&dbcode=CJFQ [67] 王立全, 潘桂棠, 李才, 等, 2008.藏北羌塘中部果干加年山早古生代堆晶辉长岩的锆石SHRIMP U-Pb年龄——兼论原-古特提斯洋的演化.地质通报, 27(12):2045-2056. doi: 10.3969/j.issn.1671-2552.2008.12.010 [68] 吴随录, 2010. 三江地区南澜沧江临沧花岗岩的特点、时代及区域构造意义(硕士学位论文). 北京: 中国地质大学. [69] 邢晓婉, 张玉芝, 王岳军, 等, 2015.西盟地区奥陶纪花岗片麻岩的锆石U-Pb年代学、Hf同位素组成特征及其大地构造意义.大地构造与成矿学, 39(3):470-480. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201503012 [70] 俞赛赢, 李昆琼, 施玉萍, 等, 2003.临沧花岗岩基中段花岗闪长岩类研究.云南地质, 22(4):426-442. doi: 10.3969/j.issn.1004-1885.2003.04.009 [71] 曾文涛, 刘桂春, 冯庆来, 等, 2017.临沧地体亲缘性及南段组物源——来自泥盆纪-石炭纪南段组碎屑锆石U-Pb年龄的证据.地质通报, 36(7):1175-1187. doi: 10.3969/j.issn.1671-2552.2017.07.008 [72] 张雯华, 秦元季, 王毅, 1991.滇西临沧花岗岩带的成因类型及其物源的讨论.矿物岩石地球化学通讯, 10(4):240-243. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=KYDH199104001&dbname=CJFD&dbcode=CJFQ