Zircon U-Pb Chronology and Geochemistry of the Rhyolite Porphyry in the Nagengkangqieer Silver Polymetallic Deposit, East Kunlun and Their Geological Significance
-
摘要: 那更康切尔银多金属矿床是青海省目前发现的首个大型银矿床,通过对赋矿流纹斑岩进行岩石学、地球化学、锆石U-Pb定年及Hf同位素研究,结果表明:流纹斑岩LA-ICP-MS锆石U-Pb年龄为217.4±3.1 Ma,形成于晚三叠世;流纹斑岩SiO2的含量在73.08%~75.78%,Al2O3含量介于14.05%~16.04%,Na2O+K2O含量为4.31%~4.77%,K2O含量为4.20%~4.61%,K2O/Na2O比值远大于1,属于钙碱性强过铝钾质火山岩.岩石具有高硅、富铝、富钾的特征,Mg#值介于45~54,具有明显的轻稀土元素富集,重稀土元素亏损的特征;富集大离子亲石元素Rb、Th、K,亏损Ta、Nb、P、Ti等高场强元素;εHf(t)介于-4.4~-9.7,二阶段Hf模式年龄TDM2为1 533~1 864 Ma.综上表明流纹斑岩主要源于中元古代-古元古代下地壳重熔,同时混入幔源物质;赋矿流纹斑岩形成于东昆仑晚三叠世造山后伸展环境.那更康切尔大型银矿床的发现,是东昆仑晚三叠世成矿作用的表现,为区域上寻找同期侵入岩或陆相火山岩有关的多金属矿床奠定基础.
-
关键词:
- 流纹斑岩 /
- 锆石U-Pb定年 /
- 地球化学 /
- 那更康切尔银多金属矿床 /
- 东昆仑
Abstract: The Nagengkangqieer silver polymetallic deposit located in the East Kunlun orogenic belt is a newly discovered large-scale silver deposit in Qinghai Province. Orebodies of the deposit are mainly hosted in rhyolite porphyry. This paper presents zircon U-Pb dating and Lu-Hf isotopes, whole-rock major and trace elements for rhyolite porphyry in the Nagengkangqieer deposit. The LA-ICP-MS zircon U-Pb analyses for rhyolite porphyry show that rocks formed during the Late Triassic with ages of 217.4±3.1 Ma. The rhyolite porphyry has high contents of SiO2 (73.08%-75.78%), Al2O3 (14.05%-16.04%), with K2O+Na2O ranging from 4.31% to 4.77%, and K2O=4.20%-4.61%, belonging to the high-potassium calc-alkaline strong peralkaline volcanic rocks. These rocks are characterized by high silicon, aluminum and high-potassium, the Mg# values range from 45 to 54; and rhyolite porphyry is depleted in high field strength elements (HFSEs; e.g., Nb, Ta, P, and Ti), and enriched in large-ion lithophile elements (LILEs; e.g., Rb, Th and K); εHf(t) values vary from -4.4 to -9.7, and the two-stage model age of TDM2 ranges from 1 533 Ma to 1 864 Ma. According to the petrology, geochemistry and regional tectonic background, we conclude that the rhyolite porphyry was predominantly derived from partial melting of the Paleoproterozoic-Mesoproterozoic continental crust and some mantle derived material, it formed in extension tectonic settings. The Nagengkangqieer silver polymetallic deposit reflects the Late Triassic mineralization, which is essential for future exploration of polymetallic deposit in the area where intrusive rocks or volcanic rocks in East Kunlun orogenic belt would be very obvious. -
图 1 那更康切尔银多金属矿地质图
图a据Xia et al. (2015);图b据许远平等(2014)修改
Fig. 1. The sketch geological map of the Nagengkangqieer silver polymetallic deposit
图 5 那更康切尔流纹斑岩岩石分类图解
a.火山岩TAS图解,底图据Bas et al. (1986);b.Nb/Y-103 Zr/TiO2图解,底图据Winchester and Floyd (1977);c.K2O-SiO2图解,底图据Hastie et al. (2007);d.A/NK-A/CNK图解,底图据Maniar and Piccoli (1989)
Fig. 5. Geochemical diagram of volcanic rocks from Nagengkangqieer rhyolite porphyry
图 6 那更康切尔流纹斑岩的稀土元素球粒陨石标准化配分曲线图(a)和微量元素原始地幔标准化蛛网图(b)
标准化数据据Sun and McDonough(1989)
Fig. 6. Chondrite-normalized REE patterns (a) and Primitive mantle-normalized trace element patterns (b) for the Nagengkangqieer rhyolite porphyry
图 8 那更康切尔流纹斑岩Rb/Sr⁃Ba/Rb图解
Fig. 8. Rb/Sr⁃Ba/Rb diagram of Nagengkangqieer rhyolite porphyry
图 9 那更康切尔流纹斑岩Nb/La-Ba/Rb (a)和Th/La-Ce/Pb (b)图解
图a底图据Nelson (1992);图b底图据Oyhantçabal et al. (2007))
Fig. 9. Nb/La-Ba/Rb (a) and Th/La-Ce/Pb (b) diagrams of Nagengkangqieer rhyolite porphyry
表 1 那更康切尔流纹斑岩锆石LA⁃ICP⁃MS测年结果
Table 1. LA⁃ICP⁃MS isotopic data of zircon from Nagengkangqieer rhyolite porphyry
点号 Th U Th/U 比值 比值 比值 年龄(Ma) 年龄(Ma) (10-6) (10-6) 207Pb/206Pb 1σ 206Pb/238U 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/235U 1σ 052N201 82.13 84.23 0.98 0.049 66 0.005 64 0.034 05 0.001 11 0.233 09 0.025 59 215.9 6.9 212.7 21.1 053N202 71.51 98.01 0.73 0.050 59 0.005 24 0.034 69 0.001 16 0.241 90 0.023 98 219.8 7.3 220.0 19.6 055N204 88.53 118.66 0.75 0.050 07 0.004 25 0.034 14 0.000 97 0.235 61 0.019 10 216.4 6.0 214.8 15.7 057N206 114.62 140.26 0.82 0.051 94 0.003 80 0.034 43 0.000 89 0.246 48 0.017 15 218.2 5.6 223.7 14.0 059N207 75.57 98.41 0.77 0.050 68 0.005 02 0.034 30 0.001 12 0.239 65 0.022 69 217.4 7.0 218.1 18.6 060N208 84.61 121.04 0.70 0.050 55 0.004 30 0.034 18 0.000 99 0.238 15 0.019 29 216.6 6.2 216.9 15.8 061N209 68.32 86.51 0.79 0.051 43 0.007 24 0.034 06 0.001 75 0.241 49 0.032 01 215.9 10.9 219.6 26.2 062N210 39.50 56.27 0.70 0.049 41 0.006 76 0.034 67 0.001 31 0.236 11 0.031 26 219.7 8.2 215.2 25.7 063N211 77.23 99.58 0.78 0.049 94 0.004 91 0.034 39 0.001 10 0.236 72 0.022 27 218.0 6.9 215.7 18.3 068N213 98.31 113.13 0.87 0.052 93 0.004 89 0.034 12 0.001 17 0.248 94 0.021 67 216.3 7.3 225.7 17.6 069N214 86.99 98.73 0.88 0.050 60 0.005 34 0.03476 0.001 30 0.242 49 0.024 23 220.3 8.1 220.5 19.8 070N215 113.15 135.37 0.84 0.047 43 0.003 86 0.034 21 0.000 87 0.223 69 0.017 52 216.8 5.4 205.0 14.5 071N216 41.13 61.34 0.67 0.049 89 0.007 34 0.034 58 0.001 47 0.237 85 0.033 74 219.2 9.1 216.7 27.7 073N218 66.22 90.90 0.73 0.050 85 0.005 10 0.034 21 0.001 11 0.239 80 0.022 99 216.8 6.9 218.3 18.8 075N219 59.55 91.56 0.65 0.050 79 0.006 03 0.033 78 0.001 34 0.236 54 0.026 73 214.2 8.4 215.6 22.0 076N220 84.71 104.36 0.81 0.050 61 0.004 56 0.033 93 0.000 97 0.236 76 0.020 48 215.1 6.1 215.8 16.8 077N221 46.76 61.09 0.77 0.052 88 0.007 16 0.033 75 0.001 67 0.246 07 0.031 37 214.0 10.4 223.4 25.6 078N222 91.87 112.11 0.82 0.051 02 0.004 39 0.034 73 0.001 04 0.244 27 0.019 97 220.1 6.5 221.9 16.3 079N223 104.04 117.43 0.89 0.052 09 0.004 46 0.034 40 0.001 13 0.247 01 0.019 87 218.0 7.0 224.1 16.2 080N224 50.60 73.41 0.69 0.048 91 0.005 86 0.034 53 0.001 22 0.232 82 0.026 88 218.8 7.6 212.5 22.1 表 2 那更康切尔流纹斑岩主量元素(%)和微量元素(10-6)
Table 2. Contents of major elements (%) and trace elements (10-6) of Nagengkangqieer rhyolite porphyry
样品编号 17NGH1 17NGH2 17NGH3 17NGH4 SiO2 73.08 73.56 75.29 75.78 TiO2 0.67 0.64 0.61 0.62 Al2O3 16.04 15.58 14.64 14.05 Fe2O3 0.69 0.78 0.93 0.76 FeO 0.22 0.25 0.29 0.31 MnO 0.08 0.04 0.05 0.03 MgO 0.56 0.58 0.51 0.52 CaO 0.29 0.29 0.16 0.29 Na2O 0.16 0.16 0.15 0.11 K2O 4.61 4.54 4.25 4.20 P2O5 0.10 0.02 0.04 0.09 烧失 3.41 3.46 2.97 3.17 Total 99.91 99.90 99.89 99.93 Mg# 54 52 45 48 A/CNK 2.77 2.72 2.84 2.67 A/NK 3.05 3.00 3.01 2.97 Rb 264.00 230.00 245.00 212.00 Ba 577.00 556.00 681.00 572.00 Th 11.50 9.84 11.70 10.10 U 1.60 1.17 1.75 1.40 Sr 17.00 15.40 21.20 18.10 Nb 14.00 12.60 14.70 13.20 Ta 1.01 0.89 1.05 0.91 Zr 165.00 148.00 169.00 153.00 Hf 5.10 4.59 5.22 4.66 Co 0.84 0.40 0.76 0.57 Ni 0.75 0.45 1.08 0.83 Cr 21.70 18.30 19.90 17.40 V 50.10 49.10 53.20 47.30 Sc 14.20 11.80 12.40 13.50 Cs 20.30 17.40 19.00 14.50 Cu 10.50 5.84 6.29 8.40 Pb 86.60 32.60 35.80 58.00 Zn 25.20 20.80 30.60 19.10 Sn 29.60 8.30 10.90 13.90 La 29.80 32.20 35.10 33.20 Ce 58.60 63.70 69.20 64.30 Pr 6.68 6.93 7.73 6.79 Nd 24.00 25.50 28.60 24.90 Sm 4.21 4.14 4.68 4.12 Eu 0.58 0.70 0.84 0.62 Gd 3.45 3.53 3.86 3.49 Tb 0.50 0.50 0.61 0.56 Dy 2.63 2.98 3.53 3.46 Ho 0.53 0.56 0.66 0.67 Er 1.50 1.57 1.88 1.92 Tm 0.24 0.25 0.30 0.29 Yb 1.52 1.63 1.92 1.93 Lu 0.23 0.25 0.29 0.29 Y 12.40 14.70 16.80 17.60 ΣREE 134.47 144.44 159.20 146.54 LREE 123.87 133.17 146.15 133.93 HREE 10.60 11.27 13.05 12.61 LREE/HREE 11.69 11.82 11.20 10.62 LaN/YbN 14.06 14.17 13.11 12.34 δEu 0.47 0.56 0.60 0.50 δCe 1.02 1.05 1.03 1.05 表 3 那更康切尔流纹斑岩锆石Hf同位素
Table 3. Zircon in situ Hf isotope analysis data of Nagengkangqieer rhyolite porphyry
样品点 t(Ma) 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf ±2σ εHf(0) εHf(t) TDM1(Ma) TDM2(Ma) fLu/Hf Hf-172-N201 215.9 0.024 632 0.000 872 0.282 449 0.000 029 ‒11.4 ‒6.8 1 133 1 687 ‒0.97 Hf-172-N202 219.8 0.014 953 0.000 542 0.282 463 0.000 028 ‒10.9 ‒6.2 1 103 1 650 ‒0.98 Hf-172-N203* 217.4 0.011 634 0.000 424 0.282 414 0.000 024 ‒12.7 ‒8.0 1 168 1 759 ‒0.99 Hf-172-N204 216.4 0.013 912 0.000 505 0.282 444 0.000 028 ‒11.6 ‒6.9 1 128 1 693 ‒0.98 Hf-172-N205* 217.4 0.015 640 0.000 561 0.282 466 0.000 027 ‒10.8 ‒6.1 1 100 1 645 ‒0.98 Hf-172-N206 218.2 0.019 011 0.000 708 0.282 477 0.000 028 ‒10.4 ‒5.8 1 089 1 621 ‒0.98 Hf-172-N207 217.4 0.014 830 0.000 538 0.282 437 0.000 031 ‒11.9 ‒7.2 1 139 1 710 ‒0.98 Hf-172-N208 216.6 0.016 425 0.000 630 0.282 442 0.000 022 ‒11.7 ‒7.0 1 136 1 700 ‒0.98 Hf-172-N209 215.9 0.015 070 0.000 553 0.282 458 0.000 027 ‒11.1 ‒6.5 1 111 1 664 ‒0.98 Hf-172-N210 219.7 0.010 963 0.000 395 0.282 429 0.000 027 ‒12.1 ‒7.4 1 146 1 725 ‒0.99 Hf-172-N211 218.0 0.015 480 0.000 563 0.282 438 0.000 031 ‒11.8 ‒7.1 1 139 1 707 ‒0.98 Hf-172-N212* 217.4 0.017 483 0.000 647 0.282 400 0.000 028 ‒13.1 ‒8.5 1 193 1 792 ‒0.98 Hf-172-N213 216.3 0.015 609 0.000 575 0.282 516 0.000 025 ‒9.0 ‒4.4 1 030 1 533 ‒0.98 Hf-172-N214 220.3 0.017 228 0.000 619 0.282 422 0.000 029 ‒12.4 ‒7.6 1 162 1 741 ‒0.98 Hf-172-N215 216.8 0.017 152 0.000 639 0.282 403 0.000 028 ‒13.1 ‒8.4 1 190 1 787 ‒0.98 Hf-172-N216 219.2 0.009 405 0.000 353 0.282 508 0.000 027 ‒9.3 ‒4.6 1 035 1 547 ‒0.99 Hf-172-N217* 217.4 0.013 902 0.000 488 0.282 399 0.000 029 ‒13.2 ‒8.5 1 191 1 794 ‒0.99 Hf-172-N218 216.8 0.014 698 0.000 523 0.282 445 0.000 027 ‒11.6 ‒6.9 1 128 1 692 ‒0.98 Hf-172-N219 214.2 0.012 144 0.000 447 0.282 482 0.000 025 ‒10.2 ‒5.6 1 074 1 609 ‒0.99 Hf-172-N220 215.1 0.014 182 0.000 507 0.282 485 0.000 026 ‒10.1 ‒5.5 1 071 1 603 ‒0.98 Hf-172-N221 214.0 0.012 160 0.000 424 0.282 368 0.000 026 ‒14.3 ‒9.7 1 231 1 864 ‒0.99 Hf-172-N222 220.1 0.013 895 0.000 508 0.282 426 0.000 027 ‒12.2 ‒7.5 1 153 1 731 ‒0.98 Hf-172-N223 218.0 0.020 733 0.000 731 0.282 439 0.000 030 ‒11.8 ‒7.1 1 143 1 707 ‒0.98 Hf-172-N224 218.8 0.015 712 0.000 553 0.282 499 0.000 026 ‒9.7 ‒4.9 1 054 1 571 ‒0.98 注:带*号锆石年龄采用加权平均年龄进行计算. -
[1] Atherton, M. P., Petford, N., 1993. Generation of Sodium-Rich Magmas from Newly Underplated Basaltic Crust. Nature, 362(6416):144-146. https://doi.org/10.1038/362144a0 [2] Bacon, C. R., Druitt, T. H., 1988. Compositional Evolution of the Zoned Calcalkaline Magma Chamber of Mount Mazama, Crater Lake, Oregon. Contributions to Mineralogy and Petrology, 98(2):224-256. https://doi.org/10.1007/bf00402114 [3] Bai, Y. N., Sun, F. Y., Qian, Y., et al., 2016. Zircon U-Pb Geochronology and Geochemistry of Pyroxene Diorite in Galinge Iron-Polymetallic Deposit, East Kunlun. Global Geology, 35(1):17-27 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sjdz201601003 [4] Bas, M. J. L., Maitre, R. W. L., Streckeisen, A., et al., 1986. A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram. Journal of Petrology, 27(3):745-750. https://doi.org/10.1093/petrology/27.3.745 [5] Bolhar, R., Weaver, S. D., Whitehouse, M. J., et al., 2008. Sources and Evolution of Arc Magmas Inferred from Coupled O and Hf Isotope Systematics of Plutonic Zircons from the Cretaceous Separation Point Suite (New Zealand). Earth and Planetary Science Letters, 268(3-4):312-324. https://doi.org/10.1016/j.epsl.2008.01.022 [6] Bouvier, A., Vervoort, J. D., Patchett, P. J., 2008. The Lu-Hf and Sm-Nd Isotopic Composition of CHUR:Constraints from Unequilibrated Chondrites and Implications for the Bulk Composition of Terrestrial Planets. Earth and Planetary Science Letters, 273(1-2):48-57. https://doi.org/10.1016/j.epsl.2008.06.010 [7] Cao, J. H., Yuan, W. M., Hao, N. N., et al., 2015. Geochronology, Geochemistry and Geodynamic Implications of the Gouli Area Granites in East Kunlun Mountains. Geological Science and Technology Information, 34(2):42-51 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201502006 [8] Dong, Y. P., He, D. F., Sun, S. S., et al., 2018. Subduction and Accretionary Tectonics of the East Kunlun Orogen, Western Segment of the Central China Orogenic System. Earth-Science Reviews, 186:231-261. https://doi.org/10.1016/j.earscirev.2017.12.006 [9] Dostal, J., Chatterjee, A. K., 2000. Contrasting Behaviour of Nb/Ta and Zr/Hf Ratios in a Peraluminous Granitic Pluton (Nova Scotia, Canada). Chemical Geology, 163(1-4):207-218. https://doi.org/10.1016/s0009-2541(99)00113-8 [10] Furman, T., Graham, D., 1999. Erosion of Lithospheric Mantle beneath the East African Rift System:Geochemical Evidence from the Kivu Volcanic Province. Lithos, 48(1-4):237-262. https://doi.org/10.1016/s0024-4937(99)00031-6 [11] Gagnevin, D., Daly, J. S., Horstwood, M. S. A., et al., 2011. In-Situ Zircon U-Pb, Oxygen and Hafnium Isotopic Evidence for Magma Mixing and Mantle Metasomatism in the Tuscan Magmatic Province, Italy. Earth and Planetary Science Letters, 305(1-2):45-56. https://doi.org/10.1016/j.epsl.2011.02.039 [12] Greenough, J. D., 1988. Minor Phases in the Earth's Mantle:Evidence from Trace- and Minor-Element Patterns in Primitive Alkaline Magmas. Chemical Geology, 69(3-4):177-192. https://doi.org/10.1016/0009-2541(88)90033-2 [13] Griffin, W. L., Pearson, N. J., Belousova, E., et al., 2000. The Hf Isotope Composition of Cratonic Mantle:LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites. Geochimica et Cosmochimica Acta, 64(1):133-147. https://doi.org/10.1016/s0016-7037(99)00343-9 [14] Guffanti, M., Clynne, M. A., Muffler, L. J. P., 1996. Thermal and Mass Implications of Magmatic Evolution in the Lassen Volcanic Region, California, and Minimum Constraints on Basalt Influx to the Lower Crust. Journal of Geophysical Research:Solid Earth, 101(B2):3003-3013. https://doi.org/10.1029/95jb03463 [15] Hastie, A. R., Kerr, A. C., Pearce, J. A., et al., 2007. Classification of Altered Volcanic Island Arc Rocks Using Immobile Trace Elements:Development of the Th-Co Discrimination Diagram. Journal of Petrology, 48(12):2341-2357. https://doi.org/10.1093/petrology/egm062 [16] Hofmann, A. W., 1988. Chemical Differentiation of the Earth:The Relationship between Mantle, Continental Crust, and Oceanic Crust. Earth and Planetary Science Letters, 90(3):297-314. https://doi.org/10.1016/ 0012-821x(88)90132-x doi: 10.1016/0012-821x(88)90132-x [17] Hoskin, P. W. O., Ireland, T. R., 2000. Rare Earth Element Chemistry of Zircon and Its Use as a Provenance Indicator. Geology, 28(7):627. https://doi.org/10.1130/0091-7613(2000)28<627:reecoz>2.0.co;2 doi: 10.1130/0091-7613(2000)28<627:reecoz>2.0.co;2 [18] Hu, Y., Niu, Y. L., Li, J. Y., et al., 2016. Petrogenesis and Tectonic Significance of the Late Triassic Mafic Dikes and Felsic Volcanic Rocks in the East Kunlun Orogenic Belt, Northern Tibet Plateau. Lithos, 245:205-222. https://doi.org/10.1016/j.lithos.2015.05.004 [19] Ingle, S., 2002. Indian Continental Crust Recovered from Elan Bank, Kerguelen Plateau (ODP Leg 183, Site 1137). Journal of Petrology, 43(7):1241-1257. https://doi.org/10.1093/petrology/43.7.1241 [20] Jiang, B., Zhang, D. Q., Wang, D. H., et al., 2015. A Preliminary Review of Metallogenic Regularity of Silver Deposits in China. Acta Geologica Sinica (English Edition), 89(3):1002-1020. https://doi.org/10.1111/1755-6724.12493 [21] John, D. A., Hofstra, A. H., Fleck, R. J., et al., 2003. Geologic Setting and Genesis of the Mule Canyon Low-Sulfidation Epithermal Gold-Silver Deposit, North-Central Nevada. Economic Geology, 98(2):425-463. https://doi.org/10.2113/gsecongeo.98.2.425 [22] Kouhestani, H., Ghaderi, M., Large, R. R., et al., 2017. Texture and Chemistry of Pyrite at Chah Zard Epithermal Gold-Silver Deposit, Iran. Ore Geology Reviews, 84:80-101. https://doi.org/10.1016/j.oregeorev.2017.01.002 [23] Li, M. T., Li, Z. Q., 2017. Constrains of S-Pb-C-O Isotope Compositions on the Origin of Nagengkangqieer Silver Deposit, the Eastern Kunlun Mountains, China. Acta Mineralogica Sinica, 37(6):771-781 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KWXB201706012.htm [24] Li, Y. G., Wang, S. S., Liu, M. W., et al., 2015. U-Pb Dating Study of Baddeleyite by LA-ICP-MS:Technique and Application. Acta Geological Sinica, 89(12):2400-2418 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dizhixb201512015 [25] Li, Z. C., Pei, X. Z., Liu, Z. Q., et al., 2013. Geochronology and Geochemistry of the Gerizhuotuo Diorites from the Buqingshan Tectonic Mélange Belt in the Southern Margin of East Kunlun and Their Geologic Implications. Acta Geological Sinica, 87(8):1089-1103 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201308005 [26] Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5):635-643. https://doi.org/10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2 doi: 10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2 [27] Mao, J. W., Zhou, Z. H., Feng, C. Y., et al., 2012. A Preliminary Study of the Triassic Large-Scale Mineralization in China and Its Geodynamic Setting. Geology in China, 39(6):1437-1471 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201206001 [28] McCoy-West, A. J., Baker, J. A., Faure, K., et al., 2010. Petrogenesis and Origins of Mid-Cretaceous Continental Intraplate Volcanism in Marlborough, New Zealand:Implications for the Long-Lived HIMU Magmatic Mega-Province of the SW Pacific. Journal of Petrology, 51(10):2003-2045. https://doi.org/10.1093/petrology/egq046 [29] Mo, X. X., Luo, Z. H., Deng, J. F., et al., 2007. Granitoids and Crustal Growth in the East-Kunlun Orogenic Belt. Geological Journal of China Universities, 13(3):403-414 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDX200703005.htm [30] Nelson, D. R., 1992. Isotopic Characteristics of Potassic Rocks:Evidence for the Involvement of Subducted Sediments in Magma Genesis. Lithos, 28(3-6):403-420. https://doi.org/10.1016/0024-4937(92)90016-r [31] Oyhantçabal, P., Siegesmund, S., Wemmer, K., et al., 2007. Post-Collisional Transition from Calc-Alkaline to Alkaline Magmatism during Transcurrent Deformation in the Southernmost Dom Feliciano Belt (Braziliano-Pan-African, Uruguay). Lithos, 98(1-4):141-159. https://doi.org/10.1016/j.lithos.2007.03.001 [32] Roberts, M. P., Clemens, J. D., 1993. Origin of High-Potassium, Talc-Alkaline, Ⅰ-Type Granitoids. Geology, 21(9):825. https://doi.org/10.1130/0091-7613(1993)021<0825:oohpta>2.3.co;2 doi: 10.1130/0091-7613(1993)021<0825:oohpta>2.3.co;2 [33] Seltmann, R., Porter, T. M., Pirajno, F., 2014. Geodynamics and Metallogeny of the Central Eurasian Porphyry and Related Epithermal Mineral Systems:A Review. Journal of Asian Earth Sciences, 79:810-841. https://doi.org/10.1016/j.jseaes.2013.03.030 [34] Sillitoe, R. H., 2010. Porphyry Copper Systems. Economic Geology, 105(1):3-41. https://doi.org/10.2113/gsecongeo.105.1.3 [35] Söderlund, U., Patchett, P. J., Vervoort, J. D., et al., 2004. The 176Lu Decay Constant Determined by Lu-Hf and U-Pb Isotope Systematics of Precambrian Mafic Intrusions. Earth and Planetary Science Letters, 219(3-4):311-324. https://doi.org/10.1016/s0012-821x(04)00012-3 [36] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [37] Tang, J. X., Ding, S., Meng, Z., et al., 2016. The First Discovery of the Low Sulfidation Epithermal Deposit in Linzizong Volcanics, Tibet:A Case Study of the Sinongduo Ag Polymetallic Deposit. Acta Geoscientica Sinica, 37(4):461-470 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQXB201604010.htm [38] Taylor, S. R., McLennan, S. M., 1995. The Geochemical Evolution of the Continental Crust. Reviews of Geophysics, 33(2):241. https://doi.org/10.1029/95rg00262 [39] Wark, D. A., Hildreth, W., Spear, F. S., et al., 2007. Pre-Eruption Recharge of the Bishop Magma System. Geology, 35(3):235. https://doi.org/10.1130/g23316a.1 [40] Williams, H. M., 2004. Nature of the Source Regions for Post-Collisional, Potassic Magmatism in Southern and Northern Tibet from Geochemical Variations and Inverse Trace Element Modelling. Journal of Petrology, 45(3):555-607. https://doi.org/10.1093/petrology/egg094 [41] Winchester, J. A., Floyd, P. A., 1977. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 20:325-343. https://doi.org/10.1016/0009-2541(77)90057-2 [42] Wu, C. Y., Bai, G., Xu, L. M., 1993. Types and Distribution of Silver Ore Deposits in China. Mineralium Deposita, 28(4):223-239. https://doi.org/10.1007/bf02421573 [43] Wu, F. Y., Li, X. H., Zheng, Y. F., et al., 2007. Lu-Hf Isotopic Systematics and Their Applications in Petrology. Acta Petrologica Sinica, 23(2):185-220 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200702001 [44] Xia, R., Wang, C. M., Qing, M., et al., 2015. Molybdenite Re-Os, Zircon U-Pb Dating and Hf Isotopic Analysis of the Shuangqing Fe-Pb-Zn-Cu Skarn Deposit, East Kunlun Mountains, Qinghai Province, China. Ore Geology Reviews, 66:114-131. https://doi.org/10.1016/j.oregeorev.2014.10.024 [45] Xiong, F. H., Ma, C. Q., Jiang, H., et al., 2014. Geochronology and Geochemistry of Middle Devonian Mafic Dykes in the East Kunlun Orogenic Belt, Northern Tibet Plateau:Implications for the Transition from Prototethys to Paleotethys Orogeny. Geochemistry, 74(2):225-235. https://doi.org/10.1016/j.chemer.2013.07.004 [46] Xiong, F. H., Ma, C. Q., Zhang, J. Y., et al., 2011. LA-ICP-MS Zircon U-Pb Dating, Elements and Sr-Nd-Hf Isotope Geochemistry of the Early Mesozoic Mafic Dyke Swarms in East Kunlun Orogenic Belt. Acta Petrologica Sinica, 27(11):3350-3364 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201111016 [47] Xu, Y. P., Xie, W. H., Yang, Y. F., et al., 2014. Geological Characteristics and Prospecting Perspective of NaGenKangQieEr Silver Deposit in Eastern Kunlun Mountain of Qinghai. Xinjiang Geology, 32(1):113-117 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xjdz201401020 [48] Xu, Z. Q., Yang, J. S., Li, H. B., et al., 2006. The Qinghai- Tibet Plateau and Continental Dynamics:A Review on Terrain Tectonics, Collisional Orogenesis, and Processes and Mechanisms for the Rise of the Plateau. Geology in China, 33(2):221-238 (in Chinese with English abstract). [49] Yin, H. F., Zhang, K. X., 1998. Evolution and Characteristics of the Central Orogenic Belt. Earth Science, 23(5):437-442 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dizhixb201807003 [50] Yu, J. C., Mo, X. X., Yu, X. H., et al., 2014. Petrogenesis and Geological Implications of the Late Triassic Potassic-Ultrapotassic Rocks in Changdu Block, Northern Segment of the Sanjiang Area. Acta Petrologica Sinica, 30(11):3334-3344 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201411017 [51] Yuan, H. L., Gao, S., Dai, M. N., et al., 2008. Simultaneous Determinations of U-Pb Age, Hf Isotopes and Trace Element Compositions of Zircon by Excimer Laser-Ablation Quadrupole and Multiple-Collector ICP-MS. Chemical Geology, 247(1-2):100-118. https://doi.org/10.1016/j.chemgeo.2007.10.003 [52] Zhang, D. X., Zeng, X. P., Wei, X. L., et al., 2017. Geochemistry and Tectonic Setting of Late Triassic Volcanics in Elashan Formation in South of Nalingelehe River, East Kunlun. Contributions to Geology and Mineral Resources Research, 32(2):245-253 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzzklc201702011 [53] Zhang, W., Zhou, H. W., Zhu, Y. H., et al., 2016. The Evolution of Triassic Granites Associated with Mineralization within East Kunlun Orogenic Belt:Evidence from the Petrology, Geochemistry and Zircon U-Pb Geochronology of the Mohexiala Pluton. Earth Science, 41(8):1334-1348 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.520 [54] Zhao, Z. D., Mo, X. X., Dilek, Y., et al., 2009. Geochemical and Sr-Nd-Pb-O Isotopic Compositions of the Post-Collisional Ultrapotassic Magmatism in SW Tibet:Petrogenesis and Implications for India Intra-Continental Subduction beneath Southern Tibet. Lithos, 113(1/2):190-212. https://doi.org/10.1016/j.lithos.2009.02.004 [55] Zhu, D. C, Pan, G. T., Mo, X. X., et al., 2006. Late Jurassic-Early Cretaceous Geodynamic Setting in Middle-Northern Gangdese:New Insights from Volcanic Rocks. Acta Petrologica Sinica, 22(3):534-546 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200603002.htm [56] 白宜娜, 孙丰月, 钱烨, 等, 2016.青海东昆仑尕林格铁多金属矿床辉石闪长岩U-Pb年代学及地球化学特征.世界地质, 35(1):17-27. doi: 10.3969/j.issn.1004-5589.2016.01.003 [57] 曹建辉, 袁万明, 郝娜娜, 等, 2015.东昆仑沟里地区花岗岩年代学、岩石地球化学及其地球动力学意义.地质科技情报, 34(2):42-51. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201502006 [58] 李敏同, 李忠权, 2017.东昆仑那更康切尔银矿床S-Pb-C-O同位素地球化学特征.矿物学报, 37(6):771-781. http://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201706012.htm [59] 李艳广, 汪双双, 刘民武, 等, 2015.斜锆石LA-ICP-MS U-Pb定年方法及应用.地质学报, 89(12): 2400-2418. doi: 10.3969/j.issn.0001-5717.2015.12.015 [60] 李佐臣, 裴先治, 刘战庆, 等, 2013.东昆仑南缘布青山构造混杂岩带哥日卓托闪长岩体年代学、地球化学特征及其地质意义.地质学报, 87(8):1089-1103. doi: 10.3969/j.issn.0001-5717.2013.08.005 [61] 毛景文, 周振华, 丰成友, 等, 2012.初论中国三叠纪大规模成矿作用及其动力学背景.中国地质, 39(6): 1437-1471. doi: 10.3969/j.issn.1000-3657.2012.06.001 [62] 莫宣学, 罗照华, 邓晋福, 等, 2007.东昆仑造山带花岗岩及地壳生长.高校地质学报, 13(3):403-414. doi: 10.3969/j.issn.1006-7493.2007.03.010 [63] 唐菊兴, 丁帅, 孟展, 等, 2016.西藏林子宗群火山岩中首次发现低硫化型浅成低温热液型矿床——以斯弄多银多金属矿为例.地球学报, 37(4):461-470. doi: 10.3975/cagsb.2016.04.08 [64] 吴福元, 李献华, 郑永飞, 等, 2007. Lu-Hf同位素体系及其岩石学应用.岩石学报, 23(2):185-220. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200702001 [65] 熊富浩, 马昌前, 张金阳, 等, 2011.东昆仑造山带早中生代镁铁质岩墙群LA-ICP-MS锆石U-Pb定年、元素和Sr-Nd-Hf同位素地球化学.岩石学报, 27(11):3350-3364. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201111016 [66] 许远平, 谢万洪, 杨永峰, 等, 2014.青海东昆仑那更康切尔银矿地质特征及找矿远景浅析.新疆地质, 32(1):113-117. http://d.old.wanfangdata.com.cn/Periodical/xjdz201401020 [67] 许志琴, 杨经绥, 李海兵, 等, 2006.青藏高原与大陆动力学——地体拼合、碰撞造山及高原隆升的深部驱动力.中国地质, 33(2):221-238. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi200602001 [68] 殷鸿福, 张克信, 1998.中央造山带的演化及其特点.地球科学, 23(5):437-442. http://earth-science.net/WebPage/Article.aspx?id=696 [69] 于峻川, 莫宣学, 喻学惠, 等, 2014. "三江"北段昌都陆块晚三叠世钾质-超钾质火山岩成因及地质意义.岩石学报, 30(11):3334-3344. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201411017 [70] 张得鑫, 曾小平, 魏小林, 等, 2017.东昆仑那陵格勒河南上三叠统鄂拉山组火山岩地球化学特征及构造环境.地质找矿论丛, 32(2):245-253. http://d.old.wanfangdata.com.cn/Periodical/dzzklc201702011 [71] 张炜, 周汉文, 朱云海, 等, 2016.东昆仑与成矿有关的三叠纪花岗岩演化:基于莫河下拉岩体岩石学、地球化学和锆石U-Pb年代学的证据.地球科学, 41(8):1334-1348. http://earth-science.net/WebPage/Article.aspx?id=3341 [72] 朱弟成, 潘桂棠, 莫宣学, 等, 2006.冈底斯中北部晚侏罗世-早白垩世地球动力学环境:火山岩约束.岩石学报, 22(3):534-546. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200603002