• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    漠河地区黑云母花岗闪长岩地球化学、Hf同位素特征及其成因

    李良 孙丰月 李碧乐 陈广俊 许庆林 张雅静 钱烨 王琳琳

    李良, 孙丰月, 李碧乐, 陈广俊, 许庆林, 张雅静, 钱烨, 王琳琳, 2018. 漠河地区黑云母花岗闪长岩地球化学、Hf同位素特征及其成因. 地球科学, 43(2): 417-435. doi: 10.3799/dqkx.2018.022
    引用本文: 李良, 孙丰月, 李碧乐, 陈广俊, 许庆林, 张雅静, 钱烨, 王琳琳, 2018. 漠河地区黑云母花岗闪长岩地球化学、Hf同位素特征及其成因. 地球科学, 43(2): 417-435. doi: 10.3799/dqkx.2018.022
    Li Liang, Sun Fengyue, Li Bile, Chen Guangjun, Xu Qinglin, Zhang Yajing, Qian Ye, Wang Linlin, 2018. Geochemistry, Hf Isotopes and Petrogenesis of Biotite Granodiorites in the Mohe Area. Earth Science, 43(2): 417-435. doi: 10.3799/dqkx.2018.022
    Citation: Li Liang, Sun Fengyue, Li Bile, Chen Guangjun, Xu Qinglin, Zhang Yajing, Qian Ye, Wang Linlin, 2018. Geochemistry, Hf Isotopes and Petrogenesis of Biotite Granodiorites in the Mohe Area. Earth Science, 43(2): 417-435. doi: 10.3799/dqkx.2018.022

    漠河地区黑云母花岗闪长岩地球化学、Hf同位素特征及其成因

    doi: 10.3799/dqkx.2018.022
    基金项目: 

    中国地质调查局项目 1212011085485

    国家自然科学基金项目 41272093

    详细信息
      作者简介:

      李良(1986-), 男, 博士研究生, 主要从事矿床成矿理论与预测方面的研究

      通讯作者:

      孙丰月

    • 中图分类号: P581;P591.1

    Geochemistry, Hf Isotopes and Petrogenesis of Biotite Granodiorites in the Mohe Area

    • 摘要: 以往学者的研究多集中在印支期出露于漠河县城南的黑云母花岗闪长岩,而对该地区燕山早期构造演化的研究相对薄弱.运用LA-ICP-MS锆石U-Pb年代学、全岩地球化学与Hf同位素分析的方法确定其形成时代、岩浆源区性质及成岩构造背景.结果表明:该岩石的加权平均年龄分别为185±2 Ma和182±2 Ma,表明其形成于早侏罗世;岩石属于高钾钙碱性系列,A/CNK介于0.90~1.03,Mg#值为42~48,具有高Sr(489×10-6~653×10-6)低Yb(1.33×10-6~1.99×10-6)的特征,判定其属于埃达克岩类;岩石具有弧岩浆的微量元素特征,轻重稀土元素分馏明显((La/Yb)N=8.36~15.6),较弱的Eu负异常(Eu/Eu*=0.79~0.95),富集Rb、K等大离子亲石元素,明显亏损Nb、Ta、Ti等高场强元素;岩石的εHft)值为-3.26~-1.46,二阶段模式年龄介于1.25~1.59 Ga,结合该时期的地幔特征认为该岩石岩浆起源于中元古代亏损地幔新增生的下地壳部分熔融.综合认为岩石形成于蒙古-鄂霍茨克洋板块向南俯冲的活动大陆边缘环境.

       

    • 图  1  中国东北地区构造分区图(a)和漠河地区地质简图(b)

      图a中主要断裂:①牡丹江断裂,②敦化—密山断裂,③伊通—伊兰断裂,④索伦—西拉木伦—长春断裂,⑤贺根山—黑河断裂,⑥喜桂图—塔源断裂,⑦蒙古—鄂霍茨克缝合带;图b:1.中生代沉积岩, 2.古生代沉积岩, 3.前寒武纪基底, 4.中生代火山岩, 5.中生代花岗岩, 6.中生代花岗闪长岩, 7.时代不明的花岗岩, 8.主要断裂, 9.采样地点;图a据Wu et al.(2007),图b据黑龙江省地质矿产局(1993)李良等(2015)改编

      Fig.  1.  Simplified geological map of NE China, showing the main tectonic subdivisions (a) and detailed geological map of the Mohe area, Heilongjiang province (b)

      图  2  研究区黑云母花岗闪长岩手标本(a,b)和显微镜下照片(c~f)

      Aln.褐帘石;Ap.磷灰石;Bi.黑云母;Or.正长石;Pl.斜长石;Pth.条纹长石;Q.石英;Spn.榍石

      Fig.  2.  Hand specimen photographs (a, b) and micrographs (c-f) of the biotite granodiorites in the study area

      图  3  黑云母花岗闪长岩部分锆石阴极发光图像

      实线圆圈代表U-Pb分析点,虚线圆圈代表相应的Hf同位素分析点;MH-N3样品的锆石图中第一排数值为二阶段模式年龄,第二排数值为锆石U-Pb表面年龄

      Fig.  3.  CL images of zircons selected for analysis from biotite granodiorites

      图  4  漠河县城南黑云母花岗闪长岩样品锆石U-Pb年龄谐和图

      Fig.  4.  Zircon U-Pb concordia diagrams for biotite granodiorites in southern Mohe county

      图  5  黑云母花岗闪长岩QAP图解(a)、SiO2-K2O图解(b)和A/CNK-A/NK图解(c)

      图a底图据Streckeisen(1976);图b底图据Peccerillo and Taylor(1976);图c底图据Maniar and Piccoli(1989)

      Fig.  5.  QAP (a), SiO2 vs. K2O (b) and A/CNK vs. A/NK (c) diagrams of biotite granodiorites

      图  6  黑云母花岗闪长岩稀土元素球粒陨石标准化配分图(a)和微量元素原始地幔标准化蛛网图(b)

      图a底图据Boynton (1984);图b底图据Sun and McDonough (1989)

      Fig.  6.  Chondrite-normalized REE patterns (a) and primitive mantle-normalized trace element spider diagrams (b) for biotite granodiorites

      图  7  黑云母花岗闪长岩锆石Hf同位素特征

      兴-蒙造山带东段与燕山褶皱带Hf同位素组成引自Yang et al.(2006);额尔古纳地块早中生代花岗质岩石的Hf同位素组成引自Tang et al.(2016)

      Fig.  7.  Hf isotopic compositions of zircons from biotite granodiorites

      图  8  黑云母花岗闪长岩YbN-(La/Yb)N判别图解

      底图据Defant and Drummond (1990)

      Fig.  8.  YbN vs. (La/Yb)N diagram for biotite granodiorites

      图  9  黑云母花岗闪长岩Sr/Y-(La/Yb)N(a)、Sr-10Y-Zr(b)和Y/Yb-Sr/Y-La/Yb(c)判别图解

      图a底图据Liu et al.(2010);图b和c的底图据朱弟成等(2002)

      Fig.  9.  The discrimination diagrams of Sr/Y-(La/Yb)N (a), Sr-10Y-Zr (b) and Y/Yb-Sr/Y-La/Yb (c) for biotite granodiorites

      图  10  黑云母花岗闪长岩源区判别图解

      底图据Patiño(1999)

      Fig.  10.  Discriminant diagrams of source regions for biotite granodiorites

      图  11  黑云母花岗闪长岩(Yb+Ta)-Rb(a)、(Y+Nb)-Rb(b)和R1-R2(c)构造判别图解

      图a和b底图据Pearce et al.(1984);图c底图据Batchelor and Bowden(1985)

      Fig.  11.  Tectonic discrimination diagrams of (Yb+Ta)-Rb (a), (Y+Nb)-Rb (b) and R1-R2 (c) for biotite granodiorites

      表  1  漠河县城南黑云母花岗闪长岩锆石LA-ICP-MS U-Pb同位素分析结果

      Table  1.   Zircon LA-ICP-MS U-Pb dating results for biotite granodiorites in southern Mohe county

      分析点 含量(10-6) Th/U 同位素比值 同位素年龄(Ma)
      Pb Th U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 208Pb/232Th 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 208Pb/232Th 1σ
      MH-N3-01 17.3 406 473 0.86 0.052 4 0.002 3 0.207 7 0.007 1 0.028 8 0.000 4 0.008 9 0.000 2 301 52 192 6 183 3 180 3
      MH-N3-02 9.32 67.4 262 0.26 0.054 0 0.003 9 0.216 5 0.014 2 0.029 1 0.000 6 0.010 5 0.000 6 370 112 199 12 185 4 210 11
      MH-N3-03 12.5 176 372 0.47 0.050 9 0.002 4 0.203 0 0.009 2 0.028 9 0.000 4 0.009 1 0.000 1 237 111 188 8 184 3 183 2
      MH-N3-04 10.7 177 304 0.58 0.050 1 0.002 4 0.200 2 0.007 5 0.029 0 0.000 4 0.008 4 0.000 2 199 60 185 6 184 3 169 3
      MH-N3-05 22.6 49.5 595 0.08 0.049 9 0.001 9 0.199 8 0.006 9 0.029 0 0.000 4 0.009 2 0.000 1 190 88 185 6 185 3 184 2
      MH-N3-06 9.23 77 269 0.29 0.051 3 0.002 6 0.204 6 0.008 4 0.028 9 0.000 4 0.010 5 0.000 3 256 66 189 7 184 3 211 6
      MH-N3-07 8.96 78.1 225 0.35 0.052 0 0.002 8 0.207 5 0.009 5 0.028 9 0.000 5 0.009 7 0.000 3 287 76 191 8 184 3 196 6
      MH-N3-08 7.52 93.8 220 0.43 0.053 8 0.002 7 0.215 9 0.009 0 0.029 1 0.000 4 0.010 3 0.000 3 363 66 199 7 185 3 207 5
      MH-N3-09 12.7 95.2 356 0.27 0.050 8 0.002 7 0.204 7 0.009 2 0.029 2 0.000 5 0.009 9 0.000 3 231 75 189 8 186 3 199 6
      MH-N3-10 12.8 125 369 0.34 0.051 9 0.002 8 0.211 5 0.009 6 0.029 6 0.000 5 0.008 9 0.000 3 279 74 195 8 188 3 179 5
      MH-N3-11 16.7 370 459 0.81 0.050 3 0.002 0 0.202 9 0.005 7 0.029 3 0.000 4 0.008 6 0.000 1 209 40 188 5 186 3 172 3
      MH-N3-12 8.73 68.8 270 0.25 0.053 3 0.002 9 0.213 1 0.009 8 0.029 0 0.000 5 0.009 2 0.000 3 342 74 196 8 184 3 185 6
      MH-N3-13 14.7 252 430 0.59 0.051 1 0.002 4 0.203 8 0.007 4 0.028 9 0.000 4 0.009 1 0.000 2 245 56 188 6 184 3 184 4
      MH-N3-14 18.7 207 525 0.39 0.053 2 0.002 3 0.212 1 0.006 8 0.028 9 0.000 4 0.009 3 0.000 2 337 47 195 6 184 3 188 4
      MH-N3-15 16.4 248 432 0.57 0.051 6 0.003 1 0.207 5 0.012 1 0.029 2 0.000 5 0.009 2 0.000 1 268 141 191 10 185 3 185 2
      MH-N3-16 96.4 643 1144 0.56 0.057 6 0.001 8 0.579 5 0.008 5 0.072 9 0.000 9 0.020 5 0.000 2 516 15 464 5 454 5 410 5
      MH-N3-17 51.5 146 630 0.23 0.063 1 0.002 1 0.634 9 0.011 6 0.073 0 0.001 0 0.031 4 0.000 5 710 19 499 7 454 6 625 9
      MH-N3-18 8.96 78.1 225 0.35 0.055 8 0.002 2 0.403 6 0.011 5 0.052 5 0.000 7 0.025 8 0.000 7 443 39 344 8 330 5 515 13
      MH-N3-19 39.7 173 725 0.24 0.058 0 0.002 1 0.420 2 0.009 5 0.052 5 0.000 7 0.021 9 0.000 4 530 27 356 7 330 4 437 8
      MH-N3-20 24.5 205 442 0.46 0.057 2 0.002 1 0.412 0 0.009 8 0.052 2 0.000 7 0.012 2 0.000 2 500 30 350 7 328 4 245 4
      MH-N4-01 10.2 55.5 291 0.19 0.051 8 0.002 9 0.197 3 0.010 0 0.027 6 0.000 6 0.010 3 0.000 4 275 79 183 8 176 4 206 9
      MH-N4-02 7.61 47.5 213 0.22 0.050 2 0.002 4 0.198 5 0.007 9 0.028 7 0.000 5 0.008 9 0.000 3 204 59 184 7 182 3 179 6
      MH-N4-03 15.7 312 449 0.70 0.052 0 0.006 1 0.200 6 0.022 5 0.028 0 0.000 9 0.007 9 0.000 5 286 194 186 19 178 6 159 11
      MH-N4-04 11.4 166 311 0.53 0.050 6 0.002 1 0.201 1 0.006 7 0.028 9 0.000 5 0.008 9 0.000 2 220 45 186 6 183 3 179 4
      MH-N4-05 10.2 152 281 0.54 0.054 5 0.004 7 0.215 0 0.017 6 0.028 6 0.000 7 0.009 2 0.000 5 390 138 198 15 182 5 185 10
      MH-N4-06 11 158 305 0.52 0.051 0 0.002 3 0.202 8 0.007 4 0.028 8 0.000 5 0.007 8 0.000 2 240 51 187 6 183 3 158 4
      MH-N4-07 15.8 48.3 470 0.10 0.052 2 0.002 1 0.210 5 0.006 5 0.029 2 0.000 5 0.012 9 0.000 5 294 39 194 5 186 3 258 9
      MH-N4-08 11.8 166 330 0.50 0.049 8 0.002 1 0.196 9 0.006 5 0.028 7 0.000 5 0.008 6 0.000 2 186 45 183 6 182 3 173 4
      MH-N4-09 11.3 154 269 0.57 0.055 7 0.004 8 0.225 8 0.018 1 0.029 4 0.000 8 0.009 5 0.000 5 440 133 207 15 187 5 192 9
      MH-N4-10 10.1 127 282 0.45 0.051 5 0.002 5 0.205 8 0.008 6 0.029 0 0.000 5 0.008 4 0.000 2 264 62 190 7 184 3 168 5
      MH-N4-11 8.04 124 193 0.64 0.050 6 0.005 7 0.198 2 0.021 3 0.028 4 0.000 9 0.009 3 0.000 5 223 186 184 18 181 5 187 10
      MH-N4-12 14.6 366 360 1.02 0.050 0 0.004 8 0.189 7 0.017 8 0.027 5 0.000 6 0.008 7 0.000 1 197 219 176 15 175 4 175 3
      MH-N4-13 11.9 177 323 0.55 0.055 3 0.003 1 0.218 8 0.010 6 0.028 7 0.000 6 0.009 2 0.000 3 424 73 201 9 182 4 186 5
      MH-N4-14 29.7 915 704 1.30 0.051 5 0.002 1 0.203 3 0.006 3 0.028 6 0.000 5 0.008 3 0.000 1 262 40 188 5 182 3 167 3
      MH-N4-15 19.8 381 519 0.73 0.052 1 0.002 5 0.207 8 0.008 2 0.028 9 0.000 5 0.009 3 0.000 2 289 56 192 7 184 3 188 4
      MH-N4-16 13.9 154 394 0.39 0.054 7 0.004 4 0.215 0 0.016 1 0.028 5 0.000 7 0.011 8 0.000 7 400 125 198 13 181 4 238 13
      MH-N4-17 12.4 32 371 0.09 0.051 4 0.002 3 0.204 2 0.007 4 0.028 8 0.000 5 0.011 8 0.000 5 258 51 189 6 183 3 237 10
      MH-N4-18 58.5 193 843 0.23 0.060 6 0.002 3 0.599 6 0.014 9 0.071 7 0.001 0 0.018 9 0.000 4 625 31 477 9 447 6 378 8
      MH-N4-19 55.9 97.8 841 0.12 0.054 9 0.001 8 0.483 6 0.008 1 0.063 9 0.000 8 0.022 0 0.000 4 406 18 401 6 399 5 440 8
      下载: 导出CSV

      表  2  漠河县城南黑云母花岗闪长岩主量(%)、微量元素(10-6)分析结果

      Table  2.   Major elements (%) and trace elements (10-6) compositions for biotite granodiorites in southern Mohe county

      样品号 MH-N3-B1 MH-N3-B2 MH-N3-B3 MH-N3-B4 MH-N4-B1 MH-N4-B2 MH-N4-B3
      SiO2 65.00 64.38 64.56 63.56 63.82 63.90 66.32
      TiO2 0.73 0.66 0.64 0.55 0.80 0.76 0.63
      Al2O3 16.82 16.58 16.96 16.76 17.10 17.34 16.63
      FeOT 3.90 4.05 4.11 3.87 3.75 3.53 2.96
      MnO 0.06 0.12 0.10 0.10 0.05 0.04 0.04
      MgO 1.98 1.70 1.81 1.96 1.58 1.54 1.22
      CaO 3.54 3.97 3.89 3.95 3.80 3.93 3.35
      Na2O 4.13 4.40 3.96 4.68 4.15 4.29 4.02
      K2O 2.89 2.68 2.71 3.39 2.98 2.74 3.13
      P2O5 0.21 0.21 0.23 0.18 0.22 0.21 0.17
      LOI 0.53 0.55 0.30 0.22 0.43 0.44 0.39
      Total 99.91 99.40 99.40 99.40 99.28 99.27 99.34
      ALK 7.02 7.08 6.67 8.07 7.14 7.03 7.15
      Na2O/K2O 1.43 1.64 1.46 1.38 1.39 1.57 1.29
      A/CNK 1.03 0.96 1.03 0.90 1.01 1.01 1.03
      Mg# 48 43 44 47 43 44 42
      La 17.5 19.2 27.1 15.5 41.0 38.2 25.4
      Ce 46.6 53.0 61.2 41.8 83.7 75.6 62.4
      Pr 5.71 5.84 7.07 4.74 10.8 9.74 7.98
      Nd 24.9 25.3 30.4 21.0 39.7 36.3 30.7
      Sm 4.50 4.60 5.42 3.95 6.55 6.13 5.92
      Eu 1.16 1.23 1.39 0.96 1.81 1.67 1.43
      Gd 3.48 3.58 4.28 3.41 5.20 4.92 5.13
      Tb 0.45 0.45 0.54 0.47 0.66 0.62 0.71
      Dy 2.49 2.40 2.80 2.70 3.25 3.11 3.85
      Ho 0.45 0.43 0.49 0.48 0.65 0.59 0.75
      Er 1.37 1.29 1.51 1.47 1.82 1.67 2.10
      Tm 0.20 0.19 0.23 0.21 0.28 0.26 0.30
      Yb 1.39 1.35 1.58 1.33 1.99 1.76 1.83
      Lu 0.20 0.21 0.24 0.19 0.31 0.29 0.27
      ΣREE 111 119 144 98.1 198 181 149
      HREE 10.0 9.89 11.7 10.3 14.2 13.2 14.9
      (La/Yb)N 9.08 10.2 12.3 8.36 14.8 15.6 10.0
      Eu/Eu* 0.90 0.92 0.88 0.80 0.95 0.93 0.79
      V 82.3 76.9 81.5 58.9 85.0 79.0 69.0
      Cr 6.24 7.63 9.01 7.06 6.56 8.34 7.83
      Co 8.15 7.88 8.70 6.51 6.87 6.65 8.22
      Ni 7.00 6.16 6.08 4.89 6.52 5.37 6.21
      Sn 2.64 2.51 2.69 2.76 3.00 3.00 3.00
      Cs 2.88 2.45 2.42 3.22 3.00 2.74 4.11
      Rb 47.0 41.4 50.0 59.3 114 100 118
      Sr 541 504 563 489 653 622 587
      Y 11.3 12.6 15.3 11.9 19.4 17.3 21.7
      Ba 649 604 620 614 987 823 943
      Zr 204 88.2 261 43.9 250 220 210
      Nb 12.8 12.1 13.1 12.2 16.5 14.5 15.1
      Hf 3.52 1.81 4.53 1.03 6.60 6.10 5.30
      Ta 0.94 0.92 1.01 0.94 1.50 1.40 1.40
      Ga 28.2 26.5 27.8 26.4 27.9 26.3 26.4
      Pb 14.4 14.2 14.8 15.4 18.6 17.3 20.7
      Th 5.26 4.84 6.24 4.60 8.77 8.46 8.24
      U 2.01 1.97 2.25 1.92 2.59 2.17 2.03
      下载: 导出CSV

      表  3  漠河县城南黑云母花岗闪长岩锆石Hf同位素分析结果

      Table  3.   Zircon Lu-Hf isotopic data for biotite granodiorites in southern Mohe county

      分析点 t(Ma) 176Yb/177Hf 2σ 176Lu/177Hf 2σ 176Hf/177Hf 2σ εHf(0) εHf(t) 2σ tDM1(Hf) tDM2(Hf) fLu/Hf
      MH-N3-1 183 0.019 292 0.000 218 0.000 582 0.000 004 0.282 592 0.000 014 -6.36 -2.41 0.50 924 1 378 -0.98
      MH-N3-2 185 0.013 751 0.000 062 0.000 434 0.000 002 0.282 582 0.000 014 -6.71 -2.70 0.49 934 1 398 -0.99
      MH-N3-3 184 0.025 231 0.000 089 0.000 723 0.000 001 0.282 595 0.000 015 -6.26 -2.31 0.53 923 1 372 -0.98
      MH-N3-4 184 0.011 502 0.000 151 0.000 376 0.000 003 0.282 574 0.000 015 -6.98 -2.99 0.52 943 1 416 -0.99
      MH-N3-5 185 0.014 551 0.000 385 0.000 452 0.000 010 0.282 605 0.000 015 -5.92 -1.91 0.53 903 1 348 -0.99
      MH-N3-6 184 0.022 926 0.000 311 0.000 697 0.000 013 0.282 613 0.000 016 -5.61 -1.65 0.56 897 1 331 -0.98
      MH-N3-7 184 0.042 380 0.001 638 0.001 156 0.000 044 0.282 610 0.000 018 -5.74 -1.85 0.63 913 1 343 -0.97
      MH-N3-8 185 0.028 355 0.000 905 0.000 768 0.000 021 0.282 618 0.000 018 -5.43 -1.46 0.63 891 1 319 -0.98
      MH-N3-9 186 0.057 628 0.000 663 0.001 457 0.000 022 0.282 607 0.000 018 -5.85 -1.94 0.63 925 1 351 -0.96
      MH-N3-10 188 0.025 143 0.000 246 0.000 757 0.000 008 0.282 592 0.000 013 -6.35 -2.32 0.46 928 1 376 -0.98
      MH-N3-11 186 0.013 000 0.000 183 0.000 391 0.000 002 0.282 571 0.000 015 -7.12 -3.09 0.52 949 1 423 -0.99
      MH-N3-12 184 0.022 687 0.000 141 0.000 679 0.000 004 0.282 617 0.000 017 -5.49 -1.53 0.60 892 1 323 -0.98
      MH-N3-13 184 0.007 467 0.000 080 0.000 283 0.000 001 0.282 567 0.000 015 -7.26 -3.26 0.54 952 1 433 -0.99
      MH-N3-14 184 0.020 418 0.000 221 0.000 590 0.000 005 0.282 617 0.000 016 -5.49 -1.52 0.57 889 1 322 -0.98
      MH-N3-15 185 0.016 438 0.000 132 0.000 493 0.000 004 0.282 577 0.000 017 -6.88 -2.88 0.60 942 1 410 -0.99
      下载: 导出CSV
    • [1] Andersen, T., 2002.Correction of Common Lead in U-Pb Analyses that Do Not Report 204Pb.Chemical Geology, 192(1-2):59-79. https://doi.org/10.1016/s0009-2541(02)00195-x
      [2] Atherton, M.P., Petford, N., 1993.Generation of Sodium-Rich Magmas from Newly Underplated Basaltic Crust.Nature, 362:144-146. https://doi.org/10.1038/362144a0
      [3] Batchelor, R.A., Bowden, P., 1985.Petrogenetic Interpretation of Granitoid Rock Series Using Multicationic Parameters.Chemical Geology, 48(1-4):43-55. https://doi.org/10.1016/0009-2541(85)90034-8
      [4] Boynton, W. V, 1984. Geochemistry of the Rare Earth Elements: Meteorite Studies. In: Henderson, P., ed., Rare Earth Element Geochemistry. Elsevier, Amsterdam.
      [5] Bureau of Geology and Mineral Resources of Inner Mongolia Autonomous Region (BGMRI), 1991.Regional Geology of Inner Mongolia Autonomous Region.Geological Publishing House, Beijing (in Chinese).
      [6] Bureau of Geology and Mineral Resources of Heilongjiang Province (BGMRH), 1993.Regional Geology of Heilongjiang Province.Geological Publishing House, Beijing (in Chinese).
      [7] Castillo, P.R., Janney, P.E., Solidum, R.U., 1999.Petrology and Geochemistry of Camiguin Island, Southern Philippines:Insights to the Source of Adakites and Other Lavas in a Complex Arc Setting.Contributions to Mineralogy and Petrology, 134(1):33-51. https://doi.org/10.1007/s004100050467
      [8] Chen, Z.G., Zhang, L.C., Lu, B.Z., et al., 2010.Geochronology and Geochemistry of the Taipingchuan Copper-Molybdenum Deposit in Inner Mongolia, and Its Geological Significances.Acta Petrologica Sinica, 26(5):1437-1449 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201005010.htm
      [9] Chen, Z.G., Zhang, L.C., Wan, B., et al., 2011.Geochronology and Geochemistry of the Wunugetushan Porphyry Cu-Mo Deposit in NE China, and Their Geological Significance.Ore Geology Reviews, 43:92-105. https://doi.org/10.1016/j.oregeorev.2011.08.007
      [10] Chu, N.C., Taylor, R.N., Chavagnac, V., et al., 2002.Hf Isotope Ratio Analysis Using Multi-Collector Inductively Coupled Plasma Mass Spectrometry:An Evaluation of Isobaric Interference Corrections.Journal of Analytical Atomic Spectrometry, 17(12):1567-1574. https://doi.org/10.1039/b206707b
      [11] Defant, M.J., Drummond, M.S., 1990.Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere.Nature, 347:662-665. https://doi.org/10.1038/347662a0
      [12] Ding, H.X., Hou, Q.Y., Zhang, Z.M., 2016.Petrogenesis and Tectonic Significance of the Eocene Adakite-Like Rocks in Western Yunnan, Southeastern Tibetan Plateau.Lithos, 245:161-173. https://doi.org/10.1016/j.lithos.2015.09.024
      [13] Dong, Z.C., Gu, P.Y., Chen, R.M., et al., 2015.Geochronlogy, Geochemistry, and Hf Isotope of Yanchangbeishan Adamellite of Lenghu Area in Qinghai.Earth Science, 40(1):130-144(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2015.009
      [14] Francalanci, L., Taylor, S.R., McCulloch, M.T., et al., 1993.Geochemical and Isotopic Variations in the Calc-Alkaline Rocks of Aeolian Arc, Southern Tyrrhenian Sea, Italy:Constraints on Magma Genesis.Contributions to Mineralogy and Petrology, 113(3):300-313. https://doi.org/10.1007/bf00286923
      [15] Gao, S., Jin, Z.M., 1997.Delamination and Its Geodynamical Significance for the Crust-Mantle Evolution.Geological Scince and Technology Information, 16(1):1-8 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ701.000.htm
      [16] Gao, S., Rudnick, R.L., Yuan, H.L., et al., 2004.Recycling Lower Continental Crust in the North China Craton.Nature, 432:892-897. https://doi.org/10.1038/nature03162
      [17] Geng, J.Z., Li, H.K., Zhang, J., et al., 2011.Zircon Hf Isotope Analysis by Means of LA-MC-ICP-MS.Geological Bulletin of China, 30(10):1508-1513 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201110005.htm
      [18] Gill, J.B., 1987.Early Geochemical Evolution of an Oceanic Island Arc and Back Arc:Fiji and the South Fiji Basin.The Journal of Geology, 95(5):589-615. doi: 10.1086/629158
      [19] Gou, J., Sun, D.Y., Ren, Y.S., et al., 2013.Petrogenesis and Geodynamic Setting of Neoproterozoic and Late Paleozoic Magmatism in the Manzhouli-Erguna Area of Inner Mongolia, China:Geochronological, Geochemical and Hf Isotopic Evidence.Journal of Asian Earth Sciences, 67-68:114-137. https://doi.org/10.1016/j.jseaes.2013.02.016
      [20] Griffin, W.L., Wang, X., Jackson, S.E., et al., 2002.Zircon Chemistry and Magma Mixing, SE China:In-Situ Analysis of Hf Isotope, Tonglu and Pingtan Igneous Complexes.Lithos, 61(3-4):237-269. https://doi.org/10.1016/s0024-4937(02)00082-8
      [21] Hou, H.X., Zhang, D.H., Zhang, R.Z., 2016.The Chronology, Geochemical Characteristics and Geological Significance of the Mesozoic Shiyaogou Hidden Granite at the East Qinling.Earth Science, 41(10):1665-1682 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.122
      [22] Jiang, S.H., Nie, F.J., Su, Y.J., et al., 2010.Geochronology and Origin of the Erdenet Superlarge Cu-Mo Deposit in Mongolia.Acta Geoscientia Sinica, 31(3):289-306 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXB201003005.htm
      [23] Kay, S.M., Mpodozis, C., 2001.Central Andean Ore Deposits Linked to Evolving Shallow Subduction Systems and Thickening Crust.GSA Today, 11(3):4-9.https://doi.org/10.1130/1052-5173(2001)011<0004:caodlt>2.0.co;2 doi: 10.1130/1052-5173(2001)011<0004:caodlt>2.0.co;2
      [24] Kravchinsky, V.A., Cogné, J.P., Harbert, W.P., et al., 2002.Evolution of the Mongol-Okhotsk Ocean as Constrained by New Palaeomagnetic Data from the Mongol-Okhotsk Suture Zone, Siberia.Geophysical Journal International, 148(1):34-57. https://doi.org/10.1046/j.1365-246x.2002.01557.x
      [25] Lai, S.C., Liu, C.Y., Yi, H.S., 2003.Geochemistry and Petrogenesis of Cenozoic Andesite-Dacite Associations from the Hoh Xil Region, Tibetan Plateau.International Geology Review, 45(11):998-1019. https://doi.org/10.2747/0020-6814.45.11.998
      [26] Li., B.L., Sun, Y.G., Chen, G.J., et al., 2016.Zircon U-Pb Geochronology, Geochemistry and Hf Isotopic Composition and Its Geological Implication of the Fine-Grained Syenogranite in Dong'an Goldfield from the Lesser Xing'an Mountains.Earth Science, 41(1):1-16 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.001
      [27] Li, J.Y., He, Z.J., Mo, S.G., et al., 2004a.The Age of Conglomerates in the Lower Part of the Xiufeng Formation in the Northern Da Hinggan Mountains, NE China, and Their Tectonic Implications.Geological Bulletin of China, 23(2):120-129(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZQYD200402003.htm
      [28] Li, J.Y., Mo, S.G., He, Z.J., et al., 2004b.The Timing of Crustal Sinistral Strike-Slip Movement in the Northern Great Khing'an Ranges and Its Constraint on Reconstruction of the Crustal Tectonic Evolution of NE China and Adjacent Areas since the Mesozoic.Earth Science Frontiers, 11(3), 157-167 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200403022.htm
      [29] Li, J.Y., Zhang, J., Yang, T.N., et al., 2009.Crustal Tectonic Division and Evolution of the Southern Part of the North Asian Orogenic Region and Its Adjacent Areas.Journal of Jilin University (Earth Science Edition), 39(4):584-605 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ200904002.htm
      [30] Li, L., Sun, F.Y., Li, B.L., et al., 2015.Ore-Forming Fluid Features and Genesis of Shabaosi Gold Deposit in Mohe County, Heilongjiang Province.Earth Science, 40(7):1163-1176 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2015.097
      [31] Li, L., Sun, F.Y., Li, B.L., et al., 2017.Geochronology of Ershi'erzhan Formation Sandstone in Mohe Basin and Tectonic Environment of Its Provenance.Earth Science, 42(1):35-52 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.003
      [32] Li, Y., Ding, L.L., Xu, W.L., et al., 2015.Geochronology and Geochemistry of Muscovite Granites in Sunwu Area, NE China:Implications for the Timing of Closure of the Mongol-Okhotsk Ocean.Acta Petrologica Sinica, 31(1):56-66 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201501004.htm
      [33] Liu, J.L., Sun, F.Y., Li, L., et al., 2015a.Geochronology, Geochemistry and Hf Isotopes of Gerizhuotuo Complex Intrusion in West of Anyemaqen Suture Zone.Earth Science, 40(6):965-981 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2015.081
      [34] Liu, J.L., Sun, F.Y., Lin, B.L., 2015b.Geochronology, Geochemistry and Zircon Hf Isotope of Miantian Granodiorite Intrusion in Yanbian Region, Southern Jilin Province and Its Geological Significance.Earth Science, 40(1):49-60 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2015.004
      [35] Liu, J.L., Sun, F.Y., Zhang, Y.J., et al., 2016.Zircon U-Pb Geochronology, Geochemistry and Hf Isotopes of Nankouqian Granitic Intrusion in Qingyuan Region, Liaoning Province.Earth Science, 41(1):55-66 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.004
      [36] Liu, S.A., Li, S.G., He, Y.S., et al., 2010.Geochemical Contrasts between Early Cretaceous Ore-Bearing and Ore-Barren High-Mg Adakites in Central-Eastern China:Implications for Petrogenesis and Cu-Au Mineralization.Geochimica et Cosmochimica Acta, 74(24):7160-7178. https://doi.org/10.1016/j.gca.2010.09.003
      [37] Ludwig, K. R., 2003. User's Manual for Isoplot 3. 00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, Berkeley.
      [38] Macpherson, C.G., Dreher, S.T., Thirlwall, M.F., 2006.Adakites Without Slab Melting:High Pressure Differentiation of Island Arc Magma, Mindanao, the Philippines.Earth and Planetary Science Letters, 243(3-4), 581-593. doi: 10.1016/j.epsl.2005.12.034
      [39] Maniar, P.D., Piccoli, P.M., 1989.Tectonic Discrimination of Granitoids.Geological Society of America Bulletin, 101(5):635-643.https://doi.org/10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2 doi: 10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2
      [40] Martin, H., 1999.Adakitic Magmas:Modern Analogues of Archaean Granitoids.Lithos, 46(3):411-429. https://doi.org/10.1016/s0024-4937(98)00076-0
      [41] McKenzie, D., 1989.Some Remarks on the Movement of Small Melt Fractions in the Mantle.Earth and Planetary Science Letters, 95(1-2):53-72. https://doi.org/10.1016/0012-821x(89)90167-2
      [42] Meng, E., Xu.W, L., Yang, D.B., et al., 2011.Zircon U-Pb Chronology, Geochemistry of Mesozoic Volcanic Rocks from the Lingquan Basin in Manzhouli Area, and Its Tectonic Implications.Acta Petrologica Sinica, 27(4):1209-1226 (in Chinese with English abstract). http://www.oalib.com/paper/1475699
      [43] Mo, S.G., Han, M.L., Li, J.Y., 2005.Compositions and Orogenic Processes of Mongolia-Okhotsk Orogen.Journal of Shandong University of Science and Technology (Natural Science), 24(3):50-52 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SDKY200503013.htm
      [44] Orolmaa, D., Erdenesaihan, G., Borisenko, A.S., et al., 2008.Permian-Triassic Granitoid Magmatism and Metallogeny of the Hangayn (central Mongolia).Russian Geology and Geophysics, 49(7):534-544. https://doi.org/10.1016/j.rgg.2008.06.008
      [45] Oyarzun, R., Márquez, A., Lillo, J., et al., 2001.Giant Versus Small Porphyry Copper Deposits of Cenozoic Age in Northern Chile:Adakitic Versus Normal Calc-Alkaline Magmatism.Mineralium Deposita, 36(8):794-798. https://doi.org/10.1007/s001260100205
      [46] Parfenov, L.M., Popeko, L.I., Tomurtogoo, O., 2001.Problems of Tectonics of the Mongolia-Okhotsk Orogenic Belt.Geology of the Pacific Ocean, 16(5):797-830. https://elibrary.ru/item.asp?id=13370628
      [47] Patchett, P.J., Tatsumoto, M., 1980.A Routine High-Precision Method for Lu-Hf Isotope Geochemistry and Chronology.Contributions to Mineralogy and Petrology, 75(3):263-267. https://doi.org/10.1007/bf01166766
      [48] Patiño, D.A.E., 1999.What do Experiments Tell Us about the Relative Contributions of Crust and Mantle to the Origin of Granitic Magmas? In:Castro, A., Fernandez, C., Vigneressese, J.L., eds., Understanding Granites:Intergrating New and Classical Techniques.Geological Society, London, Special Publication, 168:55-75. doi: 10.1144/GSL.SP.1999.168.01.05
      [49] Pearce, J.A., Harris, N.B.W., Tindle, A.G., 1984.Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks.Journal of Petrology, 25(4):956-983. https://doi.org/10.1093/petrology/25.4.956
      [50] Peccerillo, A., Taylor, S.R., 1976.Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey.Contributions to Mineralogy and Petrology, 58(1):63-81. https://doi.org/10.1007/bf00384745
      [51] Qin, K.Z., Li, H.M., Li, W.S., et al., 1999.Intrusion and Mineralization Ages of the Wunugetushan Porphyry Cu-Mo Deposit, Inner Mongolia, Northwestern China.Geological Review, 45(2):180-185 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP199902014.htm
      [52] Qin, X.F., Yin, Z.G., Wang, Y., et al., 2007.Early Paleozoic Adakitic Rocks in Mohe Area at the Northern End of the Da Hinggan Mountains and Their Geological Significance.Acta Petrologica Sinica, 23(6):1501-1511 (in Chinese with English abstract). https://doi.org/10.3969/j.issn.1000-0569.2007.06.024
      [53] Qiu, J.X., 2004.Opening-Closing Tectonics and Magmatic Activity.Geological Bulletin of China, 23(3):222-231 (in Chinese with English abstract). https://doi.org/10.3969/j.issn.1671-2552.2004.03.008
      [54] Rabbia, O.M., Correa, K.J., Hernández, L.B., et al., 2017."Normal" to Adakite-Like Arc Magmatism Associated with the El Abra Porphyry Copper Deposit, Central Andes, Northern Chile.International Journal of Earth Sciences, 106(8):2687-2711. https://doi.org/10.1007/s00531-017-1454-0
      [55] Rapp, R.P., Watson, E.B., 1995.Dehydration Melting of Metabasalt at 8-32 Kbar:Implications for Continental Growth and Crust-Mantle Recycling.Journal of Petrology, 36(4):891-931. https://doi.org/10.1093/petrology/36.4.891
      [56] Richards, J.P., Kerrich, R., 2007.Special Paper:Adakite-Like Rocks:Their Diverse Origins and Questionable Role in Metallogenesis.Economic Geology, 102(4):537-576. https://doi.org/10.2113/gsecongeo.102.4.537
      [57] Sajona, F.G., Maury, R.C., 1998.Association of Adakites with Gold and Copper Mineralization in the Philippines.Comptes Rendus de I'Académie des Sciences-Series ⅡA-Earth and Planetary Science, 326(1):27-34. https://doi.org/10.1016/s1251-8050(97)83200-4
      [58] Stern, C.R., Kilian, R., 1996.Role of the Subducted Slab, Mantle Wedge and Continental Crust in the Generation of Adakites from the Andean Austral Volcanic Zone.Contributions to Mineralogy and Petrology, 123:263-281. doi: 10.1007/s004100050155
      [59] Streckeisen, A.L., 1976.Classification of the Common Igneous Rocks by Means of Their Chemical Composition:A Provisional Attempt.Neues Jahrbuch für Mineralogie-Monatshefte, 1:1-15. https://eurekamag.com/research/018/290/018290717.php
      [60] Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.In:Saunders, A.D., Norry, M.J., eds., Magmatism in Ocean Basins.Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      [61] Tang, J., Xu, W.L., Wang, F., et al., 2014.Geochronology and Geochemistry of Early-Middle Triassic Magmatism in the Erguna Massif, NE China:Constraints on the Tectonic Evolution of the Mongol-Okhotsk Ocean.Lithos, 184-187:1-16. https://doi.org/10.1016/j.lithos.2013.10.024
      [62] Tang, J., Xu, W.L., Wang, F., et al., 2016.Early Mesozoic Southward Subduction History of the Mongol-Okhotsk Oceanic Plate:Evidence from Geochronology and Geochemistry of Early Mesozoic Intrusive Rocks in the Erguna Massif, NE China.Gondwana Research, 31:218-240. https://doi.org/10.1016/j.gr.2014.12.010
      [63] Thiéblemont, D., Stein, G., Lescuyer, J.L., 1997.Gisements Épithermaux et Porphyriques:La Connexion Adakite.Comptes Rendus de I'Académie des Sciences-Series ⅡA-Earth and Planetary Science, 325(2):103-109. https://doi.org/10.1016/s1251-8050(97)83970-5
      [64] Tomurtogoo, O., Windley, B.F., Kroner, A., et al., 2005.Zircon Age and Occurrence of the Adaatsag Ophiolite and Muron Shear Zone, Central Mongolia:Constraints on the Evolution of the Mongol-Okhotsk Ocean, Suture and Orogen.Journal of the Geological Society, 162(1):125-134. https://doi.org/10.1144/0016-764903-146
      [65] Wang, Q., Zhao, Z.H., Bai, Z.H., et al., 2003a.Carboniferous Adakites and Nb-Enriched Arc Basaltic Rocks Association in the Alataw Mountains, North Xinjiang:Interactions between Slab Melt and Mantle Peridotite and Implications for Crustal Growth.Chinese Science Bulletin, 48(19):2108-2115. https://doi.org/10.1007/bf03037015
      [66] Wang, Q., Zhao, Z.H., Xu, J.F., et al., 2003b.Petrologenesis and Metallogenesis of the Yanshanian Adakite-Like Rocks in the Eastern Yangtze Block.Science China Earth Sciences, 46(Supp.):164-176. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jdxg2003s2013&dbname=CJFD&dbcode=CJFQ
      [67] Wang, Q., Zhao, Z.H., Xu, J.F., et al., 2006.Carboniferous Adakite-High-Mg Andesite-Nb-Enriched Basaltic Rock Suites in the Northern Tianshan Area:Implications for Phanerozoic Crustal Growth in the Central Asia Orogenic Belt and Cu-Au Mineralization.Acta Petrologica Sinica, 22(1):11-30 (in Chinese with English abstract). http://www.oalib.com/paper/1471327
      [68] Wang, Z.L., Jin, J., Li, Z.L., et al., 2010.Zircon U-Pb Ages and Hf Isotopic Characteristics of Mineralized Porphyries in the Mordaoga Area, Northern-Central Da Hinggan Mountains, and Their Metallogenic Significance.Acta Petrologica et Mineralogica, 29(6):796-810 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW201006015.htm
      [69] Wei, Z.L., Zhang, H., Guo, W.M., et al., 2008.LA-ICP-MS Zircon U-Pb Dating:Constraints on Late Mesozoic Regional Unconformity Timing in the Northern Hebei-Western Liaoning Provinces.Progress in Natural Science, 18(10):1119-1127 (in Chinese).
      [70] Weng, W.F., Zhi, L.G., Cai, L.Y., et al., 2011.Geochemical Characteristics and Petrogenesis of the Mesozoic Adakite in South Anhui Province.Geological Survey and Research, 34(2):98-107 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-QHWJ201102001.htm
      [71] Wu, F.Y., Sun, D.Y., Ge, W.C., et al., 2011.Geochronology of the Phanerozoic Granitoids in Northeastern China.Journal of Asian Earth Sciences, 41(1):1-30. https://doi.org/10.1016/j.jseaes.2010.11.014
      [72] Wu, F.Y., Zhao, G.C., Sun, D.Y., 2007.The Hulan Group:Its Role in the Evolution of the Central Asian Orogenic Belt of NE China.Journal of Asian Earth Sciences, 30(3-4):542-556. https://doi.org/10.1016/j.jseaes.2007.01.003
      [73] Wu, G., Chen, Y.C., Chen, Y.J., et al., 2012.Zircon U-Pb Ages of the Metamorphic Supracrustal Rocks of the Xinghuadukou Group and Granitic Complexes in the Argun Massif of the Northern Great Hinggan Range, NE China, and Their Tectonic Implications.Journal of Asian Earth Sciences, 49:214-233. https://doi.org/10.1016/j.jseaes.2011.11.023
      [74] Wu, G., Chen, Y.J., Sun, F.Y., et al., 2008.Geochemistry of the Late Jurassic Granitoids in the Northern End Area of Da Hinggan Mountains and Their Geological and Prospecting Implications.Acta Petrologica Sinica, 24(4):899-910 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200804029.htm
      [75] Wu, G., Sun, F.Y., Zhao, C.S., et al., 2005.Discovery of the Early Paleozoic Post-Collisional Granites in Northern Margin of Erguna Massif and Its Geological Significance.Chinese Science Bulletin, 50(20):2278-2288 (in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jxtw200523012&dbname=CJFD&dbcode=CJFQ
      [76] Wu, G., Sun, F.Y., Zhao, C.S., et al., 2007.Fluid Inclusion Study on Gold Deposits in Northwestern Erguna Metallogenic Belt, China.Acta Petrologica Sinica, 23(9):2227-2240 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200709021.htm
      [77] Xiao, L., Clemens, J.D., 2007.Origin of Potassic (C-Type) Adakite Magmas:Experimental and Field Constraints.Lithos, 95(3-4):399-414. https://doi.org/10.1016/j.lithos.2006.09.002
      [78] Xiong, X.L., Adam, J., Green, T.H., et al., 2005.Trace Element Characteristics of Partial Melts Produced by Melting of Metabasalts at High Pressures:Constraints on the Formation Condition of Adakitic Melts.Science China Earth Sciences, 49(9):915-925. https://doi.org/10.1007/s11430-006-0915-2
      [79] Xiong, X.L., Li, X.H., Xu, J.F., et al., 2003.Extremely High Na Adakite-Like Magmas Derived from Lower Crust Basaltic Underplate:the Zhantang Andesitc Rocks from Huichang Basin, SE China.Geochemical Journal, 37:233-252. https://doi.org/10.2343/geochemj.37.233
      [80] Xu, W.L., Pei, F.P., Wang, F., et al., 2013.Spatial-Temporal Relationships of Mesozoic Volcanic Rocks in NE China:Constraints on Tectonic Overprinting and Transformations between Multiple Tectonic Regimes.Journal of Asian Earth Sciences, 74:167-193. https://doi.org/10.1016/j.jseaes.2013.04.003
      [81] Xu, W.L., Wang, F., Pei, F.P., et al., 2013.Mesozoic Tectonic Regimes and Regional Ore-Forming Background in NE China:Constraints from Spatial and Temporal Variations of Mesozoic Volcanic Rock Associations.Acta Petrologica Sinica, 29(2):339-353(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201302002.htm
      [82] Yang, J.H., Wu, F.Y., Shao, J.A., et al., 2006.Constraints on the Timing of Uplift of the Yanshan Fold and Thrust Belt, North China.Earth and Planetary Science Letters, 246(3-4):336-352. https://doi.org/10.1016/j.epsl.2006.04.029
      [83] Yuan, H.L., Gao, S., Liu, X.M., et al., 2004.Accurate U-Pb Age and Trace Element Determinations of Zircon by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry.Geostandards and Geoanalytical Research, 28(3):353-370. https://doi.org/10.1111/j.1751-908x.2004.tb00755.x
      [84] Zeng, W.S., Zhou, J.B., Dong, C., et al., 2014.Subduction Record of Mongol-Okhotsk Ocean:Constraints from Badaguan Metamorphic Complexes in the Erguna Massif, NE China.Acta Petrologica Sinica, 30(7):1948-1960 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201407010.htm
      [85] Zhang, J.F., Li, Z.T., Jin, C.Z., 2004.Adakites in Northeastern China and Their Mineralized Implications.Acta Petrologica Sinica, 20(2):361-368 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200402015.htm
      [86] Zhang, J.H., Ge, W.C., Wu, F.Y., et al., 2008.Large-Scale Early Cretaceous Volcanic Events in the Northern Great Xing'an Range, Northeastern China.Lithos, 102(1-2):138-157. https://doi.org/10.1016/j.lithos.2007.08.011
      [87] Zhang, Q., Wang, Y., Qian, Q., et al., 2001.The Characteristics and Tectonic-Meltallogenic Significances of the Adakites in Yanshan Period from Eastern China.Acta Petrologia Sinica, 17(2):236-244 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200102007.htm
      [88] Zhang, Q., Xu, J.F., Wang, Y., et al., 2004.Diversity of Adakite.Geological Bulletin of China, 23(9-10):959-965 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD2004Z2019.htm
      [89] Zhang, Q., Yin, X.M., Yin, Y., et al., 2009.Issues on Metallogenesis and Prospecting of Gold and Copper Deposits Related to Adakite and Himalayan Type Granite in West Qinling.Acta Petrologica Sinica, 25(12):3103-3122 (in Chinese with English abstract). http://www.oalib.com/paper/1470976
      [90] Zhao, S., Xu, W.L., Tang, J., et al., 2016.Timing of Formation and Tectonic Nature of the Purportedly Neoproterozoic Jiageda Formation of the Erguna Massif, NE China:Constraints from Field Geology and U-Pb Geochronology of Detrital and Magmatic Zircons.Precambrian Research, 281:585-601. https://doi.org/10.1016/j.precamres.2016.06.014
      [91] Zhao, X., Coe, R.S., Zhou, Y.X., et al., 1990.New Paleomagnetic Results from Northern China:Collision and Suturing with Siberia and Kazakhstan.Tectonophysics, 181(1-4):43-81. https://doi.org/10.1016/0040-1951(90)90008-v
      [92] Zhu, D.C., Duan, L.P., Liao, Z.L., et al., 2002.Discrimination for Two Kinds of Adakites.Journal of Mineralogy and Petrology, 22(3):5-9 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KWYS200203001.htm
      [93] Zonenshain, L. P., Kuzmin, M. I., Natapov, L. M., et al., 1990. Geology of the USSR: A Plate-Tectonic Synthesis. American Geophysical union, Washington, D. C. .
      [94] Zorin, Y.A., 1999.Geodynamics of the Western Part of the Mongolia-Okhotsk Collisional Belt, Trans-Baikal Region (Russia) and Mongolia.Tectonophysics, 306(1):33-56. https://doi.org/10.1016/s0040-1951(99)00042-6
      [95] 陈志广, 张连昌, 卢百志, 等, 2010.内蒙古太平川铜钼矿成矿斑岩时代、地球化学及地质意义.岩石学报, 26(5):1437-1449. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ysxb201005010&dbname=CJFD&dbcode=CJFQ
      [96] 董增产, 辜平阳, 陈锐明, 等, 2015.柴北缘西端盐场北山二长花岗岩年代学、地球化学及其Hf同位素特征.地球科学, 40(1):130-144.doi: 10.3799/dqkx.2015.009
      [97] 高山, 金振民, 1997.拆沉作用(delamination)及其壳-幔演化动力学意义.地质科技情报, 16(1):1-9. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dzkq701.000&dbname=CJFD&dbcode=CJFQ
      [98] 耿建珍, 李怀坤, 张健, 等, 2011.锆石Hf同位素组成的LA-MC-ICP-MS测定.地质通报, 30(10):1508-1513.doi: 10.3969/j.issn.1671-2552.2011.10.004
      [99] 黑龙江省地质矿产局, 1993.黑龙江省区域地质志.北京:地质出版社.
      [100] 侯红星, 张德会, 张荣臻, 2016.东秦岭中生代石瑶沟隐伏花岗岩年代学、地球化学特征及地质意义.地球科学, 41(10):1665-1682.doi: 10.3799/dqkx.2016.122
      [101] 江思宏, 聂凤军, 苏永江, 等, 2010.蒙古国额尔登特特大型铜-钼矿床年代学与成因研究.地球学报, 31(3):289-306. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dqxb201003005&dbname=CJFD&dbcode=CJFQ
      [102] 李碧乐, 孙永刚, 陈广俊, 等, 2016.小兴安岭东安金矿区细粒正长花岗岩U-Pb年龄、岩石地球化学、Hf同位素组成及地质意义.地球科学, 41(1):1-16.doi: 10.3799/dqkx.2016.001
      [103] 李锦轶, 和政军, 莫申国, 等, 2004a.大兴安岭北部绣峰组下部砾岩的形成时代及其大地构造意义.地质通报, 23(2):120-129. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zqyd200402003&dbname=CJFD&dbcode=CJFQ
      [104] 李锦轶, 莫申国, 何政军, 等, 2004b.大兴安岭北段地壳左行走滑运动的时代及其对中国东北及邻区中生代以来地壳构造演化重建的制约.地学前缘, 11(3):157-168. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dxqy200403022&dbname=CJFD&dbcode=CJFQ
      [105] 李锦轶, 张进, 杨天南, 等, 2009.北亚造山区南部及其毗邻地区地壳构造分区与构造演化.吉林大学学报(地球科学版), 39(4):584-605. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ccdz200904002&dbname=CJFD&dbcode=CJFQ
      [106] 李良, 孙丰月, 李碧乐, 等, 2015.黑龙江省漠河县砂宝斯金矿床流体特征及矿床成因.地球科学, 40(7):1163-1176.doi: 10.3799/dqkx.2015.097
      [107] 李良, 孙丰月, 李碧乐, 等, 2017.漠河盆地二十二站组砂岩形成时代及物源区构造环境判别.地球科学, 42(1):35-52.doi: 10.3799/dqkx.2017.003
      [108] 李宇, 丁磊磊, 许文良, 等, 2015.孙吴地区中侏罗世白云母花岗岩的年代学与地球化学:对蒙古-鄂霍茨克洋闭合时间的限定.岩石学报, 31(1):56-66. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ysxb201501004&dbname=CJFD&dbcode=CJFQ
      [109] 刘金龙, 孙丰月, 李良, 等, 2015a.青海阿尼玛卿蛇绿混杂岩带西段哥日卓托杂岩体年代学、地球化学及Hf同位素.地球科学, 40(6):965-981.doi: 10.3799/dqkx.2015.081
      [110] 刘金龙, 孙丰月, 林博磊, 等, 2015b.吉林延边地区棉田岩体锆石U-Pb年代学、地球化学及Hf同位素.地球科学, 40(1):49-60.doi: 10.3799/dqkx.2015.004
      [111] 刘金龙, 孙丰月, 张雅静, 等, 2016.辽宁省清原县南口前岩体锆石U-Pb年代学、地球化学及Hf同位素.地球科学, 41(1):55-66.doi: 10.3799/dqkx.2016.004
      [112] 孟恩, 许文良, 杨德彬, 等, 2011.满洲里地区灵泉盆地中生代火山岩的锆石U-Pb年代学、地球化学及其地质意义.岩石学报, 27(4):1209-1226. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ysxb201104029&dbname=CJFD&dbcode=CJFQ
      [113] 莫申国, 韩美莲, 李锦轶, 2005.蒙古-鄂霍茨克造山带的组成及造山过程.山东科技大学学报(自然科学版), 24(3):50-52. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=sdky200503013&dbname=CJFD&dbcode=CJFQ
      [114] 内蒙古自治区地质矿产局, 1991.内蒙古自治区区域地质志.北京:地质出版社.
      [115] 秦克章, 李惠民, 李伟实, 等, 1999.内蒙古乌奴格吐山斑岩铜钼矿床的成岩、成矿时代.地质论评, 45(2):180-185. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dzlp199902014&dbname=CJFD&dbcode=CJFQ
      [116] 秦秀峰, 尹志刚, 汪岩, 等, 2007.大兴安岭北端漠河地区早古生代埃达克质岩特征及地质意义.岩石学报, 23(6):1501-1511. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ysxb200706023&dbname=CJFD&dbcode=CJFQ
      [117] 邱家骧, 2004.开合构造与岩浆活动.地质通报, 23(3):222-231. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zqyd200403005&dbname=CJFD&dbcode=CJFQ
      [118] 王强, 赵振华, 许继峰, 等, 2006.天山北部石炭纪埃达克岩-高镁安山岩-富Nb岛弧玄武质岩:对中亚造山带显生宙地壳增生与铜金成矿的意义.岩石学报, 22(1):11-30. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ysxb200601002&dbname=CJFD&dbcode=CJFQ
      [119] 王召林, 金浚, 李占龙, 等, 2010.大兴安岭中北段莫尔道嘎地区含矿斑岩的锆石U-Pb年龄、Hf同位素特征及成矿意义.岩石矿物学杂志, 29(6):796-810. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=yskw201006015&dbname=CJFD&dbcode=CJFQ
      [120] 韦忠良, 张宏, 郭文敏, 等, 2008.LA-ICP-MS锆石U-Pb测年对辽西-冀北地区晚中生代区域性角度不整合时代的约束.自然科学进展, 18(10):1119-1127. doi: 10.3321/j.issn:1002-008X.2008.10.005
      [121] 翁望飞, 支利庚, 蔡连友, 等, 2011.皖南中生代高钾钙碱性埃达克岩地球化学特征及岩石成因.地质调查与研究, 34(2):98-107. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=qhwj201102001&dbname=CJFD&dbcode=CJFQ
      [122] 武广, 孙丰月, 赵财胜, 等, 2005.额尔古纳地块北缘早古生代后碰撞花岗岩的发现及其地质意义.科学通报, 50(20):2278-2288. doi: 10.3321/j.issn:0023-074X.2005.20.017
      [123] 武广, 孙丰月, 赵财胜, 等, 2007.额尔古纳成矿带西北部金矿床流体包裹体研究.岩石学报, 23(9):2227-2240. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ysxb200709021&dbname=CJFD&dbcode=CJFQ
      [124] 武广, 陈衍景, 孙丰月, 等, 2008.大兴安岭北端晚侏罗世花岗岩类地球化学及其地质和找矿意义.岩石学报, 24(4):899-910. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ysxb200804029&dbname=CJFD&dbcode=CJFQ
      [125] 许文良, 王枫, 裴福萍, 等, 2013.中国东北中生代构造体制与区域成矿背景:来自中生代火山岩组合时空变化的制约.岩石学报, 29(2):339-353. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ysxb201302002&dbname=CJFD&dbcode=CJFQ
      [126] 曾维顺, 周建波, 董策, 等, 2014.蒙古-鄂霍茨克洋俯冲的记录:额尔古纳地区八大关变质杂岩的证据.岩石学报, 30(7):1948-1960. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ysxb201407010&dbname=CJFD&dbcode=CJFQ
      [127] 张炯飞, 李之彤, 金成洙, 2004.中国东北部地区埃达克岩及其成矿意义.岩石学报, 20(2):361-368. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ysxb200402015&dbname=CJFD&dbcode=CJFQ
      [128] 张旗, 王焰, 钱青, 等, 2001.中国东部燕山期埃达克岩的特征及其构造-成矿意义.岩石学报, 17(2):236-244. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ysxb200102007&dbname=CJFD&dbcode=CJFQ
      [129] 张旗, 许继峰, 王焰, 等, 2004.埃达克岩的多样性.地质通报, 23(9-10):959-965. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zqyd2004z2019&dbname=CJFD&dbcode=CJFQ
      [130] 张旗, 殷先明, 殷勇, 等, 2009.西秦岭与埃达克岩和喜马拉雅型花岗岩有关的金铜成矿及找矿问题.岩石学报, 25(12):3103-3122. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ysxb200912003&dbname=CJFD&dbcode=CJFQ
      [131] 朱弟成, 段丽萍, 廖忠礼, 等, 2002.两类埃达克岩的判别.矿物岩石, 22(3):5-9. http://www.cnki.com.cn/Article/CJFDTOTAL-KWYS200203001.htm
    • 加载中
    图(11) / 表(3)
    计量
    • 文章访问数:  4496
    • HTML全文浏览量:  1023
    • PDF下载量:  30
    • 被引次数: 0
    出版历程
    • 收稿日期:  2017-07-12
    • 刊出日期:  2018-02-15

    目录

      /

      返回文章
      返回