Geochemical Characteristics of Niobium and Tantalum: A Review of Twin Elements
-
摘要: 因为具有相同的离子电价(+5)及相似的离子半径(~0.064 nm),铌和钽是地球化学性质非常相似的一对"孪生"元素.作为高场强元素,Nb-Ta通常赋存在金红石、角闪石、铌-钽矿、榍石和云母等矿物中.近20年来特别是21世纪初,Nb、Ta一直是地球化学领域的一个热点,大量的研究关注不同铌-钽矿物的赋存状态、矿物和岩石中铌-钽含量和铌/钽比值、铌-钽矿物与熔/流体之间的元素分配的实验岩石学研究和铌-钽分异的机制及具体地质过程.研究Nb、Ta具有重要的科学意义,涉及到整个地球的元素平衡、大陆地壳的生长机制、含金红石岩石的形成源区等.本文综合了近20年来铌、钽的研究内容,系统地总结了铌、钽在地球化学研究中各方面已经取得的成果,同时展望了未来铌-钽这对高场强元素对在地球科学研究中的潜在应用.Abstract: Niobium and tantalum have the same oxidation state (+5) and nearly identical ionic radii (~0.064 nm), thus they are considered as twin elements in geological properties. As high field strength elements, Nb-Ta are usually reserved in the rutile, hornblende, Nb-Ta ores, sphene, mica and other minerals. Nb and Ta have been the hotpot in the geochemistry in the last two decades, particularly since the beginning of the 21st century, with researches focused on the geochemical characters of Nb-Ta, Nb-Ta partition coefficient between mineral and melt/fluid, and the mechanism of Nb-Ta differentiation during geological processes. The studies of Nb and Ta have enhanced the understanding of the mass balance of elements in the Earth, the growth and accretion of the continental crust, the origin of the Archean tonalitic-trondhjemitic-granodioritic magmas (TTGs), the mechanism of elemental differentiation and the source tracking of metamorphic rocks. In this paper, we present the developments of niobium and tantalum in the past two decades, aiming to facilitate the future application of niobium and tantalum in geochemical researches.
-
Key words:
- geochemistry /
- niobium /
- tantalum /
- high field strength element /
- geological process /
- rutile
-
图 1 太阳系中不同岩石类型的Nb/Ta比值
数据据Jochum et al.(1986)、Barth et al.(2000)、Rudnick et al.(2000)、Kamber and Collerson(2000)、Münker et al.(2003)、Münker et al.(2004)、Workman and Hart(2005)、Pfänder et al.(2007).黑色五角星代表各类岩石的平均Nb/Ta比值
Fig. 1. Nb/Ta ratios of different types of rocks in the solar system
图 2 硅酸盐地球不同地质储库的Nb-Nb/Ta关系
数据来源:Chondrite据Münker et al.(2003);DM据Rudnick et al.(2000)、Workman and Hart(2005);UCC据Barth et al.(2000);IAB据Münker et al.(2004);HIMU、EM1和EM2据Pfänder et al.(2007)
Fig. 2. The Nb content and Nb/Ta ration diagram of main geological reservoirs in the Earth
图 3 平均弧玄武岩和板片内产生的岩浆的混合曲线
图改自Barth et al.(2000);Average arc basalt的数据来自于Mcculloch amd Gamble(1991);板片内产生的岩浆的数据来自于Sun and McDonough(1989)和Neal et al.(1997)
Fig. 3. Mixing relationships between average arc basalt and intraplate magmas
图 4 不同变质岩性中金红石Nb-Cr判别图解
a.改自Zack et al.(2004a),注意长英质片麻岩中的Nb含量可达28 500×10-6;b.改自Triebold et al.(2007),当lg(Cr/Nb)>0时,说明金红石来自于变镁铁质岩石,反之,来自于变泥质岩;c.改自Meinhold et al.(2008),注意变泥质岩中金红石的Nb含量下限为800×10-6
Fig. 4. Rutile Nb-Cr discrimination diagram in different metamorphic lithology
-
[1] Adam, J., Green, T., 2003.The Influence of Pressure, Mineral Composition and Water on Trace Element Partitioning between Clinopyroxene, Amphibole and Basanitic Melts.European Journal of Mineralogy, 15(5):831-841. https://dx.doi.org/10.1127/0935-1221/2003/0015-0831 [2] Adam, J., Green, T., 2006.Trace Element Partitioning between Mica-and Amphibole-Bearing Garnet Lherzolite and Hydrous Basanitic Melt:1.Experimental Results and the Investigation of Controls on Partitioning Behaviour.Contributions to Mineralogy and Petrology, 152(1):1-17. https://dx.doi.org/10.1007/s00410-006-0085-4 [3] Adam, J., Green, T.H., Sie, S.H., 1993.Proton Microprobe Determined Partitioning of Rb, Sr, Ba, Y, Zr, Nb and Ta between Experimentally Produced Amphiboles and Silicate Melts with Variable F Content.Chemical Geology, 109(1-4):29-49. https://dx.doi.org/10.1016/0009-2541(93)90060-v [4] Adam, J., Oberti, R., Camara, F., et al., 2007.An Electron Microprobe, LAM-ICP-MS and Single-Crystal X-Ray Structure Refinement Study of the Effects of Pressure, Melt-H2O Concentration and fO2 on Experimentally Produced Basaltic Amphiboles.European Journal of Mineralogy, 19(5):641-655. https://dx.doi.org/10.1127/0935-1221/2007/0019-1750 [5] Allègre, C.J., Jaupart, C., 1985.Continental Tectonics and Continental Kinetics.Earth and Planetary Science Letters, 74(2-3):171-186. https://dx.doi.org/10.1016/0012-821x(85)90020-2 [6] Allègre, C.J., Poirier, J.P., Humler, E., et al., 1995.The Chemical Composition of the Earth.Earth and Planetary Science Letters, 134(3-4):515-526. https://dx.doi.org/10.1016/0012-821x(95)00123-t [7] Anders, E., Grevesse, N., 1989.Abundances of the Elements:Meteoritic and Solar.Geochimica et Cosmochimica Acta, 53(1):197-214. https://dx.doi.org/10.1016/0016-7037(89)90286-x [8] Arndt, N.T., Goldstein, S.L., 1987.Use and Abuse of Crust-Formation Ages.Geology, 15(10):893-895.https://dx.doi.org/10.1130/0091-7613(1987)15<893:uaaoca>2.0.co;2 doi: 10.1130/0091-7613(1987)15<893:uaaoca>2.0.co;2 [9] Arth, J.G., 1979.Some Trace Elements in Trondhjemites-Their Implications to Magma Genesis and Paleotectonic Setting.Developments in Petrology, 73:123-132. https://dx.doi.org/10.1016/b978-0-444-41765-7.50008-3 [10] Arth, J.G., Hanson, G.N., 1975.Geochemistry and Origin of the Early Precambrian Crust of Northeastern Minnesota.Geochimica et Cosmochimica Acta, 39(3):325-362. https://dx.doi.org/10.1016/0016-7037(75)90200-8 [11] Audétat, A., Keppler, H., 2005.Solubility of Rutile in Subduction Zone Fluids, as Determined by Experiments in the Hydrothermal Diamond Anvil Cell.Earth and Planetary Science Letters, 232(3-4):393-402. https://dx.doi.org/10.1016/j.epsl.2005.01.028 [12] Ayers, J.C., Watson, E.B., 1993.Rutile Solubility and Mobility in Supercritical Aqueous Fluids.Contributions to Mineralogy and Petrology, 114(3):321-330. https://dx.doi.org/10.1007/bf01046535 [13] Bakun-Czubarow, N., Kusy, D., Fiala, J., 2005.Trace Element Abundances in Rutile from Eclogite-Granulite Rocks Series of the Zlote Mountains in the Sudtes (SW Poland).Polskie Towarzystwo Mineralogiczne-prace Specjalne Mineralogical Society of Poland-Special Papers, 26:132-136. https://www.sciencedirect.com/science/article/pii/S1367912014004246 [14] Barth, M.G., McDonough, W.F., Rudnick, R.L., 2000.Tracking the Budget of Nb and Ta in the Continental Crust.Chemical Geology, 165(3-4):197-213. https://dx.doi.org/10.1016/s0009-2541(99)00173-4 [15] Beinlich, A., Klemd, R., John, T., et al., 2010.Trace-Element Mobilization during Ca-Metasomatism along a Major Fluid Conduit:Eclogitization of Blueschist as a Consequence of Fluid-Rock Interaction.Geochimica et Cosmochimica Acta, 74(6):1892-1922. https://dx.doi.org/10.1016/j.gca.2009.12.011 [16] Bodinier, J.I., Merlet, C., Bedini, R.M., et al., 1996.Distribution of Niobium, Tantalum, and Other Highly Incompatible Trace Elements in the Lithospheric Mantle:The Spinel Paradox.Geochimica et Cosmochimica Acta, 60(3):545-550. https://dx.doi.org/10.1016/0016-7037(95)00431-9 [17] Brenan, J.M., Shaw, H.F., Phinney, D.L., et al., 1994.Rutile-Aqueous Fluid Partitioning of Nb, Ta, Hf, Zr, U and Th:Implications for High Field Strength Element Depletions in Island-Arc Basalts.Earth and Planetary Science Letters, 128(3-4):327-339. https://dx.doi.org/10.1016/0012-821x(94)90154-6 [18] Brenan, J.M., Shaw, H.F., Ryerson, F.J., et al., 1995.Experimental Determination of Trace-Element Partitioning between Pargasite and a Synthetic Hydrous Andesitic Melt.Earth and Planetary Science Letters, 135:1-11. https://dx.doi.org/10.1016/0012-821X(96)00046-5 [19] Campbell, I.H., O'Neill, H.S.C., 2012.Evidence against a Chondritic Earth.Nature, 483(7391):553-558. https://dx.doi.org/10.1038/nature10901 [20] Cheatham, M.M., Sangrey, W.F., White, W.M., 1993.Sources of Error in External Calibration ICP-MS Analysis of Geological Samples and an Improved Non-Linear Drift Correction Procedure.Spectrochimica Acta Part B:Atomic Spectroscopy, 48(3):487-506. https://dx.doi.org/10.1016/0584-8547(93)80054-x [21] Chen, Y.X., Zheng, Y.F., 2015.Extreme Nb/Ta Fractionation in Metamorphic Titanite from Ultrahigh-Pressure Metagranite.Geochimica et Cosmochimica Acta, 150:53-73. https://dx.doi.org/10.1016/j.gca.2014.12.002 [22] Christensen, N.I., Mooney, W.D., 1995.Seismic Velocity Structure and Composition of the Continental Crust:A Global View.Journal of Geophysical Research:Solid Earth, 100(B6):9761-9788. https://dx.doi.org/10.1029/95jb00259 [23] Corfu, F., Heaman, L.M., Rogers, G., 1994.Polymetamorphic Evolution of the Lewisian Complex, NW Scotland, as Recorded by U-Pb Isotopic Compositions of Zircon, Titanite and Rutile.Contributions to Mineralogy and Petrology, 117(3):215-228. https://dx.doi.org/10.1007/bf00310864 [24] Dalpé, C., Baker, D.R., 2000.Experimental Investigation of Large-Ion-Lithophile-Element-, High-Field-Strength-Elementand Rare-Earth-Element-Partitioning between Calcic Amphibole and Basaltic Melt:The Effects of Pressure and Oxygen Fugacity.Contributions to Mineralogy and Petrology, 140(2):233-250. https://dx.doi.org/10.1007/s004100000181 [25] Ding, X., Lundstrom, C., Huang, F., et al., 2009.Natural and Experimental Constraints on Formation of the Continental Crust Based on Niobium-Tantalum Fractionation.International Geology Review, 51(6):473-501. https://dx.doi.org/10.1080/00206810902759749 [26] Doherty, W., 1989.An Internal Standardization Procedure for the Determination of Yttrium and the Rare Earth Elements in Geological Materials by Inductively Coupled Plasma-Mass Spectrometry.Spectrochimica Acta Part B:Atomic Spectroscopy, 44(3):263-280. https://dx.doi.org/10.1016/0584-8547(89)80031-x [27] Dostal, J., Chatterjee, A.K., 2000.Contrasting Behaviour of Nb/Ta and Zr/Hf Ratios in a Peraluminous Granitic Pluton (Nova Scotia, Canada).Chemical Geology, 163(1-4):207-218. https://dx.doi.org/10.1016/s0009-2541(99)00113-8 [28] Eggins, S.M., Woodhead, J.D., Kinsley, L.P.J., et al., 1997.A Simple Method for the Precise Determination of ≥ 40 Trace Elements in Geological Samples by ICPMS Using Enriched Isotope Internal Standardisation.Chemical Geology, 134(4):311-326. https://dx.doi.org/10.1016/s0009-2541(96)00100-3 [29] Foley, S., Tiepolo, M., Vannucci, R., 2002.Growth of Early Continental Crust Controlled by Melting of Amphibolite in Subduction Zones.Nature, 417(6891):837-840. https://dx.doi.org/10.1038/nature00799 [30] Gao, J., John, T., Klemd, R., et al., 2007.Mobilization of Ti-Nb-Ta during Subduction:Evidence from Rutile-Bearing Dehydration Segregations and Veins Hosted in Eclogite, Tianshan, NW China.Geochimica et Cosmochimica Acta, 71(20):4974-4996. https://dx.doi.org/10.1016/j.gca.2007.07.027 [31] Gao, S., Liu, X. M., Yuan, H. L., et al., 2002. Analysis of Forty-Two Major and Trace Elements of USGS and NIST SRM Glasses by LA-ICP-MS. 13th Annual VM Goldschmidt Conference, Kurashiki. https: //dx. doi. org/10. 1016/S0016-7037(03)00507-6 [32] Garbe-Schönberg, C.D., 1993.Simultaneous Determination of Thirty-Seven Trace Elements in Twenty-Eight International Rock Standards by ICP-MS.Geostandards and Geoanalytical Research, 17(1):81-97. https://dx.doi.org/10.1111/j.1751-908x.1993.tb00122.x [33] Goldstein, S.J., Jacobsen, S.B., 1988.Nd and Sr Isotopic Systematics of River Water Suspended Material:Implications for Crustal Evolution.Earth and Planetary Science Letters, 87(3):249-265. https://dx.doi.org/10.1016/0012-821x(88)90013-1 [34] Green, T.H., 1995.Significance of Nb/Ta as an Indicator of Geochemical Processes in the Crust-Mantle System.Chemical Geology, 120(3-4):347-359. https://dx.doi.org/10.1016/0009-2541(94)00145-x [35] Green, T.H., Pearson, N.J., 1987.An Experimental Study of Nb and Ta Partitioning between Ti-Rich Minerals and Silicate Liquids at High Pressure and Temperature.Geochimica et Cosmochimica Acta, 51(1):55-62. https://dx.doi.org/10.1016/0016-7037(87)90006-8 [36] Günther, D., Jackson, S.E., Longerich, H.P., 1999.Laser Ablation and Arc/Spark Solid Sample Introduction into Inductively Coupled Plasma Mass Spectrometers.Spectrochimica Acta Part B:Atomic Spectroscopy, 54(3-4):381-409. https://dx.doi.org/10.1016/s0584-8547(99)00011-7 [37] Hall, G.E.M., Plant, J.A., 1992.Analytical Errors in the Determination of High Field Strength Elements and Their Implications in Tectonic Interpretation Studies.Chemical Geology, 95(1-2):141-156. https://dx.doi.org/10.1016/0009-2541(92)90051-6 [38] He, H.L., Li, B., Han, L.R., et al., 2002.Evaluation of Determining 47 Elements in Geological Samples by Pressurized Acid Digestion-ICPMS.Chinese Journal of Analysis Laboratory, 21(5):8-12 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-FXSY200205003.htm [39] Hofmann, A.W., 1988.Chemical Differentiation of the Earth:The Relationship between Mantle, Continental Crust, and Oceanic Crust.Earth and Planetary Science Letters, 90(3):297-314. https://dx.doi.org/10.1016/0012-821x(88)90132-x [40] Hofmann, A.W., Jochum, K.P., Seufert, M., et al., 1986.Nb and Pb in Oceanic Basalts:New Constraints on Mantle Evolution.Earth and Planetary Science Letters, 79(1-2):33-45. https://dx.doi.org/10.1016/0012-821x(86)90038-5 [41] Horng, W.S., Hess, P.C., 2000.Partition Coefficients of Nb and Ta between Rutile and Anhydrous Haplogranite Melts.Contributions to Mineralogy and Petrology, 138(2):176-185. https://dx.doi.org/10.1007/s004100050016 [42] Hu, S.H., Chen, A.F., Lin, S.L., et al., 2000.ICP-MS Analytical Research into 40 Trace and Ultra-Trace Elements in Geological Samples.Earth Science, 25(2):186-190 (in Chinese with English abstract). doi: 10.1007/s006040170005.pdf [43] Huang, J., Xiao, Y., Gao, Y., et al., 2012.Nb-Ta Fractionation Induced by Fluid-Rock Interaction in Subduction-Zones:Constraints from UHP Eclogite-and Vein-Hosted Rutile from the Dabie Orogen, Central-Eastern China.Journal of Metamorphic Geology, 30(8):821-842. https://dx.doi.org/10.1111/j.1525-1314.2012.01000.x [44] Hurley, P.M., Rand, J.R., 1969.Evidence against Dispersal of Continental Nuclei Prior to Last Great Drift.Transactions.American Geophysical Union, Washington DC. [45] Jochum, K.P., Seufert, H.M., Spettel, B., et al., 1986.The Solar-System Abundances of Nb, Ta, and Y, and the Relative Abundances of Refractory Lithophile Elements in Differentiated Planetary Bodies.Geochimica et Cosmochimica Acta, 50(6):1173-1183. https://dx.doi.org/10.1016/0016-7037(86)90400-x [46] Jochum, K.P., Stolz, A.J., Mcorist, G., 2000.Niobium and Tantalum in Carbonaceous Chondrites:Constraints on the Solar System and Primitive Mantle Niobium/Tantalum, Zirconium/Niobium, and Niobium/Uranium Ratio.Meteoritics & Planetary Science, 35(2):229-235. https://dx.doi.org/10.1111/j.1945-5100.2000.tb01771.x [47] Jochum, K.P., Hofmann, A.W., Stoll, B., et al., 2002.Nb and V in Planetary Cores.Meteoritics & Planetary Science, 37(7):72-72. https://www.researchgate.net/.../234422642_Nb_and_V_in_Planetary_Cores [48] John, T., Gussone, N., Podladchikov, Y.Y., et al., 2012.Volcanic Arcs Fed by Rapid Pulsed Fluid Flow through Subducting Slabs.Nature Geoscience, 5(7):489-492. https://dx.doi.org/10.1038/ngeo1482 [49] John, T., Klemd, R., Gao, J., et al., 2008.Trace-Element Mobilization in Slabs due to Non Steady-State Fluid-Rock Interaction:Constraints from an Eclogite-Facies Transport Vein in Blueschist (Tianshan, China).Lithos, 103(1-2):1-24. https://dx.doi.org/10.1016/j.lithos.2007.09.005 [50] Kamber, B.S., Collerson, K.D., 2000.Zr/Nb Systematics of Ocean Island Basalts Reassessed-The Case for Binary Mixing.Journal of Petrology, 41(7):1007-1021. https://dx.doi.org/10.1093/petrology/41.7.1007 [51] Kamber, B.S., Ewart, A., Collerson, K.D., et al., 2002.Fluid-Mobile Trace Element Constraints on the Role of Slab Melting and Implications for Archaean Crustal Growth Models.Contributions to Mineralogy and Petrology, 144(1):38-56. https://dx.doi.org/10.1007/s00410-002-0374-5 [52] Kamber, B.S., Greig, A., Schoenberg, R., et al., 2003.A Refined Solution to Earth's Hidden Niobium:Implications for Evolution of Continental Crust and Mode of Core Formation.Precambrian Research, 126(3-4):289-308. https://dx.doi.org/10.1016/s0301-9268(03)00100-1 [53] Klein, M., Stosch, H.G., Seck, H.A., et al., 2000.Experimental Partitioning of High Field Strength and Rare Earth Elements between Clinopyroxene and Garnet in Andesitic to Tonalitic Systems.Geochimica et Cosmochimica Acta, 64(1):99-115. https://dx.doi.org/10.1016/s0016-7037(99)00178-7 [54] Klemme, S., Blundy, J.D., Wood, B.J., 2002.Experimental Constraints on Major and Trace Element Partitioning during Partial Melting of Eclogite.Geochimica et Cosmochimica Acta, 66(17):3109-3123. https://dx.doi.org/10.1016/s0016-7037(02)00859-1 [55] Klemme, S., Prowatke, S., Hametner, K., et al., 2005.Partitioning of Trace Elements between Rutile and Silicate Melts:Implications for Subduction Zones.Geochimica et Cosmochimica Acta, 69(9):2361-2371. https://dx.doi.org/10.1016/j.gca.2004.11.015 [56] Lesher, C.M., Arndt, N.T., 1995.REE and Nd Isotope Geochemistry, Petrogenesis and Volcanic Evolution of Contaminated Komatiites at Kambalda, Western Australia.Lithos, 34(1-3):127-157. https://dx.doi.org/10.1016/0024-4937(95)90017-9 [57] Li, L., Xiong, X.L., Liu, X.C., 2017.Nb/Ta Fractionation by Amphibole in Hydrous Basaltic Systems:Implications for Arc Magma Evolution and Continental Crust Formation.Journal of Petrology, 75:egw070. https://dx.doi.org/10.1093/petrology/egw070 [58] Li, X.H., Liu, Y., Tu, X.L., et al., 2002.Precise Determination of Chemical Compositions in Silicate Rocks Using ICP-AES and ICP-MS:A Comparative Study of Sample Digestion Techniques of Alkali Fusion and Acid Dissolution.Geochimica, 31(3):289-294 (in Chinese with English abstract). doi: 10.1007/BF02837884 [59] Liang, J.L., Ding, X., Sun, X.M., et al., 2009.Nb/Ta Fractionation Observed in Eclogites from the Chinese Continental Scientific Drilling Project.Chemical Geology, 268(1-2):27-40. https://dx.doi.org/10.1016/j.chemgeo.2009.07.006 [60] Liu, L., Xiao, Y.L., Aulbach, S., et al., 2014.Vanadium and Niobium Behavior in Rutile as a Function of Oxygen Fugacity:Evidence from Natural Samples.Contributions to Mineralogy and Petrology, 167(6):1-22. https://dx.doi.org/10.1007/s00410-014-1026-2 [61] Longerich, H.P., Jenner, G.A., Fryer, B.J., et al., 1990.Inductively Coupled Plasma-Mass Spectrometric Analysis of Geological Samples:A Critical Evolution Based on Case Studies.Chemical Geology, 83(1-2):105-118. https://dx.doi.org/10.1016/0009-2541(90)90143-U [62] Martin H., 1993.The Mechanisms of Petrogenesis of the Archaean Continental Crust-Comparison with Modern Processes.Lithos, 30(3-4):373-388. https://dx.doi.org/10.1016/0024-4937(93)90046-F [63] Martin, H., 1986.Effect of Steeper Archean Geothermal Gradient on Geochemistry of Subduction-Zone Magmas.Geology, 14(9):753.https://dx.doi.org/10.1130/0091-7613(1986)14<753:eosagg>2.0.co;2 doi: 10.1130/0091-7613(1986)14<753:eosagg>2.0.co;2 [64] Martin, H., Smithies, R.H., Rapp, R., et al., 2005.An Overview of Adakite, Tonalite-Trondhjemite-Granodiorite (TTG), and Sanukitoid:Relationships and Some Implications for Crustal Evolution.Lithos, 79(1-2):1-24. https://dx.doi.org/10.1016/j.lithos.2004.04.048 [65] Mcculloch, M.T., Gamble, J.A., 1991.Geochemical and Geodynamical Constraints on Subduction Zone Magmatism.Earth and Planetary Science Letters, 102(3-4):358-374. https://dx.doi.org/10.1016/0012-821x(91)90029-h [66] McDonough, W.F., 1991.Partial Melting of Subducted Oceanic Crust and Isolation of Its Residual Eclogitic Lithology.Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 335(1638):407-418. https://dx.doi.org/10.1098/rsta.1991.0055 [67] McDonough, W.F., Sun, S.S., 1995.The Composition of the Earth.Chemical Geology, 120(3-4):223-253. https://dx.doi.org/10.1016/0009-2541(94)00140-4 [68] Meinhold, G., Anders, B., Kostopoulos, D., et al., 2008.Rutile Chemistry and Thermometry as Provenance Indicator:An Example from Chios Island, Greece.Sedimentary Geology, 203(1-2):98-111. https://dx.doi.org/10.1016/j.sedgeo.2007.11.004 [69] Miller, R.G., O'Nions, R.K., Hamilton, P.J., et al., 1986.Crustal Residence Ages of Clastic Sediments, Orogeny and Continental Evolution.Chemical Geology, 57(1-2):87-99. https://dx.doi.org/10.1016/0009-2541(86)90095-1 [70] Münker, C., 1998.Nb/Ta Fractionation in a Cambrian Arc/Back Arc System, New Zealand:Source Constraints and Application of Refined ICPMS Techniques.Chemical Geology, 144(1-2):23-45. https://dx.doi.org/10.1016/s0009-2541(97)00105-8 [71] Münker, C., Pfänder, J.A., Weyer, S., et al., 2003.Evolution of Planetary Cores and the Earth-Moon System from Nb/Ta Systematics.Science, 301(5629):84-87. https://dx.doi.org/10.1126/science.1084662 [72] Münker, C., Wörner, G., Yogodzinski, G., et al., 2004.Behaviour of High Field Strength Elements in Subduction Zones:Constraints from Kamchatka-Aleutian Arc Lavas.Earth and Planetary Science Letters, 224(3-4):275-293. https://dx.doi.org/10.1016/j.epsl.2004.05.030 [73] Neal, C. R., Mahoney, J. J., Kroenke, L. W., et al., 1997. The Ontong Java Plateau. In: Mahoney, J. J., Coffin, M. F., eds., Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism. AGU, Washington DC, 183-216. [74] Nebel, O., van Westrenen, W., Vroon, P.Z., et al., 2010.Deep Mantle Storage of the Earth's Missing Niobium in Late-Stage Residual Melts from a Magma Ocean.Geochimica et Cosmochimica Acta, 74(15):4392-4404. https://dx.doi.org/10.1016/j.gca.2010.04.061 [75] Niida, K., Green, D.H., 1999.Stability and Chemical Composition of Pargasitic Amphibole in MORB Pyrolite under Upper Mantle Conditions.Contributions to Mineralogy and Petrology, 135(1):18-40. https://dx.doi.org/10.1007/s004100050495 [76] Pearce, J., Peate, D.W., 1995.Tectonic Implications of the Composition of Volcanic Arc Magmas.Annual Review of Earth and Planetary Sciences, 23(1):251-285. https://dx.doi.org/10.1146/annurev.earth.23.1.251 [77] Peng, S.B., Liu, S.F., Lin, M.S., et al., 2016.Early Paleozoic Subduction in Cathaysia (Ⅱ):New Evidence from the Dashuang High Magnesian-Magnesian Andesite.Earth Science, 41(6):931-947 (in Chinese with English abstract). https://dx.doi.org/10.3799/dqkx.2016.079 [78] Peterman, Z. F., Barker, F., 1976. Rb-Sr Whole Rock Age of Trondhjemites and Related Rocks of the Southwestern Trondheim Region. Norway. United States Geological Survey Open File Report, Washington DC. [79] Pfänder, J.A., Jung, S., Münker, C., et al., 2012.A Possible High Nb/Ta Reservoir in the Continental Lithospheric Mantle and Consequences on the Global Nb Budget-Evidence from Continental Basalts from Central Germany.Geochimica et Cosmochimica Acta, 77:232-251. https://dx.doi.org/10.1016/j.gca.2011.11.017 [80] Pfänder, J.A., Münker, C., Stracke, A., et al., 2007.Nb/Ta and Zr/Hf in Ocean Island Basalts-Implications for Crust-Mantle Differentiation and the Fate of Niobium.Earth and Planetary Science Letters, 254(1-2):158-172. https://dx.doi.org/10.1016/j.epsl.2006.11.027 [81] Philippot, P., Selverstone, J., 1991.Trace-Element-Rich Brines in Eclogitic Veins:Implications for Fluid Composition and Transport during Subduction.Contributions to Mineralogy and Petrology, 106(4):417-430. https://dx.doi.org/10.1007/bf00321985 [82] Plank, T., Langmuir, C.H., 1998.The Chemical Composition of Subducting Sediment and Its Consequences for the Crust and Mantle.Chemical Geology, 145(3-4):325-394. https://dx.doi.org/10.1016/s0009-2541(97)00150-2 [83] Prowatke, S., Klemme, S., 2005.Effect of Melt Composition on the Partitioning of Trace Elements between Titanite and Silicate Melt.Geochimica et Cosmochimica Acta, 69(3):695-709. https://dx.doi.org/10.1016/j.gca.2004.06.037 [84] Qian, Q., Hermann, J., 2013.Partial Melting of Lower Crust at 10-15kbar:Constraints on Adakite and TTG Formation.Contributions to Mineralogy and Petrology, 165(6):1195-1224. https://dx.doi.org/10.1007/s00410-013-0854-9 [85] Rapp, R.P., Shimizu, N., Norman, M.D., 2003.Growth of Early Continental Crust by Partial Melting of Eclogite.Nature, 425(6958):605-609. https://dx.doi.org/10.1038/nature02031 [86] Rudnick, R.L., 2000.Rutile-Bearing Refractory Eclogites:Missing Link between Continents and Depleted Mantle.Science, 287(5451):278-281. https://dx.doi.org/10.1126/science.287.5451.278 [87] Rudnick, R.L., Fountain, D.M., 1995.Nature and Composition of the Continental Crust:A Lower Crustal Perspective.Reviews of Geophysics, 33(3):267-309. https://dx.doi.org/10.1029/95rg01302 [88] Rudnick, R., Gao, S., 2003.The Role of Lower Crustal Recycling in Continent Formation.Geochimica et Cosmochimica Acta, 67(18):A403-A403. http://adsabs.harvard.edu/abs/2003GeCAS..67Q.403R [89] Schmidt, M.W., Dardon, A., Chazot, G., et al., 2004.The Dependence of Nb and Ta Rutile-Melt Partitioning on Melt Composition and Nb/Ta Fractionation during Subduction Processes.Earth and Planetary Science Letters, 226(3-4):415-432. https://dx.doi.org/10.1016/j.epsl.2004.08.010 [90] Shannon, R.D., Prewitt, C.T., 1969.Effective Ionic Radii in Oxides and Fluorides.Acta Crystallographica Section B:Structural Crystallography and Crystal Chemistry, 25(5):925-946. https://dx.doi.org/10.1107/s0567740869003220 [91] Smithies, R.H., 2000.The Archaean Tonalite-Trondhjemite-Granodiorite (TTG) Series is not an Analogue of Cenozoic Adakite.Earth and Planetary Science Letters, 182(1):115-125. https://dx.doi.org/10.1016/s0012-821x(00)00236-3 [92] Stalder, R., Foley, S.F., Brey, G.P., et al., 1998.Mineral-Aqueous Fluid Partitioning of Trace Elements at 900-1200℃ and 3.0-5.7GPa:New Experimental Data for Garnet, Clinopyroxene, and Rutile, and Implications for Mantle Metasomatism.Geochimica et Cosmochimica Acta, 62(10):1781-1801. https://dx.doi.org/10.1016/s0016-7037(98)00101-x [93] Stendal, H., Toteu, S.F., Frei, R., et al., 2006.Derivation of Detrital Rutile in the Yaoundé Region from the Neoproterozoic Pan-African Belt in Southern Cameroon (Central Africa).Journal of African Earth Sciences, 44(4-5):443-458. https://dx.doi.org/10.1016/j.jafrearsci.2005.11.012 [94] Stepanov, A.S., Hermann, J., 2013.Fractionation of Nb and Ta by Biotite and Phengite:Implications for the "Missing Nb Paradox".Geology, 41(3):303-306. https://dx.doi.org/10.1130/G33781.1 [95] Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345. https://dx.doi.org/10.1144/gsl.sp.1989.042.01.19 [96] Sylvester, P.J., Campbell, I.H., Bowyer, D.A., 1997.Niobium/Uranium Evidence for Early Formation of the Continental Crust.Science, 275(5299):521-523. https://dx.doi.org/10.1126/science.275.5299.521 [97] Taylor, S.R., 1967.The Origin and Growth of Continents.Tectonophysics, 4(1):17-34. https://dx.doi.org/10.1016/0040-1951(67)90056-x [98] Tiepolo, M., Vannucci, R., 2014.The Contribution of Amphibole from Deep Arc Crust to the Silicate Earth's Nb Budget.Lithos, 208-209:16-20. https://dx.doi.org/10.1016/j.lithos.2014.07.028 [99] Tiepolo, M., Vannucci, R., Oberti, R., et al., 2000.Nb and Ta Incorporation and Fractionation in Titanian Pargasite and Kaersutite:Crystal-Chemical Constraints and Implications for Natural Systems.Earth and Planetary Science Letters, 176(2):185-201. https://dx.doi.org/10.1016/s0012-821x(00)00004-2 [100] Totland, M., Jarvis, I., Jarvis, K.E., 1992.An Assessment of Dissolution Techniques for the Analysis of Geological Samples by Plasma Spectrometry.Chemical Geology, 95(1-2):35-62. https://dx.doi.org/10.1016/0009-2541(92)90042-4 [101] Triebold, S., von Eynatten, H.V., Luvizotto, G.L., et al., 2007.Deducing Source Rock Lithology from Detrital Rutile Geochemistry:An Example from the Erzgebirge, Germany.Chemical Geology, 244(3-4):421-436. https://dx.doi.org/10.1016/j.chemgeo.2007.06.033 [102] Tropper, P., Manning, C.E., 2005.Very Low Solubility of Rutile in H2O at High Pressure and Temperature, and Its Implications for Ti Mobility in Subduction Zones.American Mineralogist, 90(2-3):502-505. https://dx.doi.org/10.2138/am.2005.1806 [103] Turcotte, D.L., Kellogg, L.H., 1986.Isotopic Modeling of the Evolution of the Mantle and Crust.Reviews of Geophysics, 24(2):311. https://dx.doi.org/10.1029/rg024i002p00311 [104] Wade, J., Wood, B.J., 2001.The Earth's 'Missing' Niobium may be in the Core.Nature, 409(6816):75-78. https://dx.doi.org/10.1038/35051064 [105] Wang, L., He, H.L., Li, B., 2003.Multi-Element Determination in Geological Samples by Inductively Coupled Plasma Mass Spectrometry after Fusion-Precipitation Treatment.Rock and Mineral Analysis, 22(2):86-92 (in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S0003267008013378 [106] Weyer, S., Münker, C., Mezger, K., 2003.Nb/Ta, Zr/Hf and REE in the Depleted Mantle:Implications for the Differentiation History of the Crust-Mantle System.Earth and Planetary Science Letters, 205(3-4):309-324. https://dx.doi.org/10.1016/s0012-821x(02)01059-2 [107] Weyer, S., Münker, C., Rehkämper, M., et al., 2002.Determination of Ultra-Low Nb, Ta, Zr and Hf Concentrations and the Chondritic Zr/Hf and Nb/Ta Ratios by Isotope Dilution Analyses with Multiple Collector ICP-MS.Chemical Geology, 187(3-4):295-313. https://dx.doi.org/10.1016/s0009-2541(02)00129-8 [108] Wood, B.J., Wade, J., Kilburn, M.R., 2008.Core Formation and the Oxidation State of the Earth:Additional Constraints from Nb, V and Cr Partitioning.Geochimica et Cosmochimica Acta, 72(5):1415-1426. https://dx.doi.org/10.1016/j.gca.2007.11.036 [109] Workman, R.K., Hart, S.R., 2005.Major and Trace Element Composition of the Depleted MORB Mantle (DMM).Earth and Planetary Science Letters, 231(1-2):53-72. https://dx.doi.org/10.1016/j.epsl.2004.12.005 [110] Xiao, Y.L., Sun, W.D., Hoefs, J., et al., 2006.Making Continental Crust through Slab Melting:Constraints from Niobium-Tantalum Fractionation in UHP Metamorphic Rutile.Geochimica et Cosmochimica Acta, 70(18):4770-4782. https://dx.doi.org/10.1016/j.gca.2006.07.010 [111] Xie, Q., Jain, J., Sun, M., et al., 1994.ICP-MS Analysis of Basalt Bir-1 for Trace Elements.Geostandards and Geoanalytical Research, 18(1):53-63. https://dx.doi.org/10.1111/j.1751-908x.1994.tb00504.x [112] Xiong, X.L., Adam, J., Green, T.H., 2005.Rutile Stability and Rutile/Melt HFSE Partitioning during Partial Melting of Hydrous Basalt:Implications for TTG Genesis.Chemical Geology, 218(3-4):339-359. https://dx.doi.org/10.1016/j.chemgeo.2005.01.014 [113] Xiong, X.L., Keppler, H., Audétat, A., et al., 2011.Partitioning of Nb and Ta between Rutile and Felsic Melt and the Fractionation of Nb/Ta during Partial Melting of Hydrous Metabasalt.Geochimica et Cosmochimica Acta, 75(7):1673-1692. https://dx.doi.org/10.1016/j.gca.2010.06.039 [114] Zack, T., Kronz, A., Foley, S.F., et al., 2002.Trace Element Abundances in Rutiles from Eclogites and Associated Garnet Mica Schists.Chemical Geology, 184(1-2):97-122. https://dx.doi.org/10.1016/s0009-2541(01)00357-6 [115] Zack, T., Moraes, R., Kronz, A., 2004a.Temperature Dependence of Zr in Rutile:Empirical Calibration of a Rutile Thermometer.Contributions to Mineralogy and Petrology, 148(4):471-488. https://dx.doi.org/10.1007/s00410-004-0617-8 [116] Zack, T., von Eynatten, H., Kronz, A., 2004b.Rutile Geochemistry and Its Potential Use in Quantitative Provenance Studies.Sedimentary Geology, 171(1-4):37-58. https://dx.doi.org/10.1016/j.sedgeo.2004.05.009 [117] Zhang, Z.M., Shen, K., Sun, W.D., et al., 2008.Fluids in Deeply Subducted Continental Crust:Petrology, Mineral Chemistry and Fluid Inclusion of UHP Metamorphic Veins from the Sulu Orogen, Eastern China.Geochimica et Cosmochimica Acta, 72(13):3200-3228. https://dx.doi.org/10.1016/j.gca.2008.04.014 [118] 何红蓼, 李冰, 韩丽荣, 等, 2002.封闭压力酸溶ICP-MS法分析地质样品中47个元素的评价.分析试验室, 21(5):8-12. https://www.wenkuxiazai.com/doc/4a99198852ea551811a6870b.html [119] 胡圣虹, 陈爱芳, 林守麟, 等, 2000.地质样品中40个微量、痕量、超痕量元素的ICP-MS分析研究.地球科学, 25(2):186-190. http://www.earth-science.net/WebPage/Article.aspx?id=922 [120] 李献华, 刘颖, 涂湘林, 等, 2002.硅酸盐岩石化学组成的ICP-AES和ICP-MS准确测定:酸溶与碱熔分解样品方法的对比.地球化学, 31(3):289-294. http://www.doc88.com/p-0691407872928.html [121] 彭松柏, 刘松峰, 林木森, 等, 2016.华夏早古生代俯冲作用Ⅱ:大爽高镁-镁质安山岩新证据.地球科学, 41(6):931-947. http://www.earth-science.net/WebPage/Article.aspx?id=3309 [122] 王蕾, 何红蓼, 李冰, 2003.碱熔沉淀-等离子体质谱法测定地质样品中的多元素.岩矿测试, 22(2):86-92. http://mall.cnki.net/magazine/Article/YKCS200103006.htm