Metamorphic Evolution of Mafic Granulites from the Wuhe Complex at the Southeastern Margin of the North China Craton
-
摘要: 华北东南缘五河杂岩的变质演化过程研究有助于揭示研究区前寒武纪变质基底的形成与演化历史.基于对五河杂岩中镁铁质麻粒岩进行的详细岩相学观察、矿物电子探针及锆石LA-ICP-MS U-Pb定年和微量元素分析,识别出古元古代变质演化的3个阶段,重建了峰期后近等温减压及降压冷却的顺时针P-T-t轨迹.峰期高压麻粒岩相变质阶段的代表性矿物组合为石榴子石(富Ca核部)+单斜辉石(富Al)+斜长石+石英+金红石±角闪石(富Ti),所记录的峰期温压条件为850~900 ℃、1.5 GPa;峰期后近等温减压麻粒岩相变质阶段,富Ti角闪石分解在周围形成石榴子石+斜方辉石+斜长石±单斜辉石的矿物组合,所记录的温压条件为~900 ℃、1.1~1.2 GPa;晚期角闪岩相退变质阶段,石榴子石分解产生角闪石+斜长石±石英,所记录的温压条件为600~680 ℃、0.65~0.75 GPa.锆石U-Pb定年结果表明,高压麻粒岩相、中压麻粒岩相和角闪岩相变质时代分别为~1.90 Ga、~1.85 Ga和~1.78 Ga.因此,研究区镁铁质麻粒岩的变质演化过程与胶北地体可以对比,结合已有的2.1 Ga花岗质岩石的成因和锆石年代学等方面研究成果,进一步证明五河杂岩属于胶-辽-吉带的西延,二者共同构成了华北克拉通东部一条古元古代碰撞造山带.Abstract: Investigations on metamorphic processes of the Wuhe complex provide new insights into the formation and evolution of Precambrian metamorphic basement at the southeastern margin of the North China Craton (NCC). In this paper, three Paleoproterozoic stages of metamorphic assemblages from mafic granulites in the Wuhe complex is recognized and a clockwise P-T-t path characterized by post-peak near-isothermal decompression and subsequent decompression-cooling by conducting detailed petrographic observations, mineral electron microprobe analysis, zircon LA-ICP-MS U-Pb dating and trace element analysis is reconstructed. The peak HP granulite-facies metamorphism (M1) is characterized by high-Ca cores in granet, high-Al cores in clinopyrexene, plagioclase, quartz and rutile, yielding P-T conditions of 850-900℃ and 1.5 GPa. The medium-pressure (MP) granulite facies assemblage (M2) mainly consists of garnet+orthopyrexene+plagioclase±clinopyrexene surrounding the amphibole porphyroblasts, recording P-T conditions of~900℃ and 1.1-1.2 GPa. Symplectites or coronas composed of hornblende+plagioclase (M3) surrounding the garnet porphyroblasts indicate garnet decompressional reactions occurred at 600-680℃ and 0.65-0.75 GPa. The zircon dating results can be categorized into three groups of~1.90 Ga, ~1.85 Ga and~1.78 Ga, corresponding to the time of HP granulite facies, MP granulite facies and amphibolite facies metamorphism. The comparable metamorphic evolution of mafic granulites from the Wuhe complex to Jiaobei terrane, combined with previous studies on petrogenesis and U-Pb ages of 2.1 Ga granitic rocks, suggest that the Wuhe complex is the west extension of the Jiao-Liao-Ji belt (JLJB) and they constitute a Paleoproterozoic collisional orogen as a whole in the eastern block of the NCC.
-
图 1 华北东南缘五河杂岩及相邻地区地质简图
MTZ.门台子;MJ.梅家;FY.凤阳;图据刘贻灿等(2015a)
Fig. 1. Geological sketch of the Wuhe complex and adjacent parts of the southeastern margin of the North China Craton
图 2 华北东南缘五河杂岩中变基性岩的野外照片
a.石榴斜长角闪岩及其围岩大理岩;b, c, d.部分熔融及混合岩化作用;图 2a和2b来自于刘贻灿等(2015b)
Fig. 2. Photographs showing the field occurrence of the metabasic rocks from the Wuhe complex in southeastern margin of the North China Craton
图 4 五河杂岩变基性岩中角闪石AlⅣ-Ti和Ti-(Na+K)
Fig. 4. AlⅣ-Ti and Ti-(Na+K) diagrams of the amphiboles from meta-basic rocks from the Wuhe complex
图 10 石榴斜长角闪岩(07FY01)和石榴二辉麻粒岩(07MJ4)锆石中稀土元素球粒陨石标准化配分模式图
图中颜色符号含义见图 9
Fig. 10. Chondrite-normalized zircon trace elements diagrams of garnet amphibolite (07FY01) and garnet two-pyroxene granulite (07MJ4)
图 11 华北东南缘五河杂岩中镁铁质高压麻粒岩的变质P-T-t轨迹
Am.角闪岩相;Gn.麻粒岩相;E-HPG.榴辉岩-高压麻粒岩相,据Brown(2014);P-T轨迹1和2.胶北地体1.85~1.90 Ga镁铁质麻粒岩;线1据Tam et al.(2012a);线2据Liu et al.(2013a);线3为本文结果
Fig. 11. Generalized P-T-t path for the HP mafic granulites in the Wuhe complex, southeastern margin of the North China Craton
表 1 五河杂岩石榴单辉麻粒岩中代表性石榴子石的化学成分(%)
Table 1. Chemical composition (%) of representative garnets from garnet clinopyroxene granulites in the Wuhe complex
样品 12MTZ6 12MTZ2 1403MJ2-6 1403FY1-2 SiO2 37.86 38.12 37.64 37.16 38.38 37.94 38.91 38.76 TiO2 0.12 0.10 0.14 0.10 0.14 0.15 0.01 0.06 Al2O3 20.80 20.99 20.56 20.80 21.10 21.14 21.66 21.64 Cr2O3 - - - - - - 0.04 0.06 FeOT 26.55 26.77 26.85 27.41 25.10 21.95 26.17 27.04 MnO 0.61 0.68 0.60 0.55 0.60 0.61 0.26 0.23 MgO 5.91 5.97 4.60 4.08 7.24 5.52 5.97 5.71 CaO 6.80 6.80 8.85 8.75 6.85 11.77 7.46 7.20 Total 98.69 99.45 99.28 98.89 99.41 99.09 100.49 100.76 以12个氧为标准计算的阳离子系数 Si 2.99 2.99 2.98 2.96 2.98 2.96 3.01 3.00 Ti 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 Al 1.94 1.94 1.92 1.96 1.93 1.95 1.97 1.97 Cr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Fe3+ 0.06 0.06 0.09 0.07 0.07 0.07 0.02 0.02 Fe2+ 1.69 1.69 1.68 1.76 1.56 1.36 1.67 1.73 Mn 0.04 0.05 0.04 0.04 0.04 0.04 0.02 0.02 Mg 0.70 0.70 0.54 0.48 0.84 0.64 0.69 0.66 Ca 0.58 0.57 0.75 0.75 0.57 0.98 0.62 0.60 Ura 0.00 0.00 0.00 0.00 0.00 0.00 0.13 0.19 And 3.23 3.20 4.66 3.26 3.62 3.62 1.02 1.09 Pyr 23.18 23.22 17.99 15.99 27.89 21.23 22.99 21.97 Spe 1.37 1.51 1.32 1.23 1.31 1.34 0.57 0.51 Gro 15.94 15.80 20.22 21.40 15.36 28.89 19.48 18.62 Alm 56.28 56.27 55.80 58.12 51.82 44.92 55.81 57.61 表 2 五河杂岩石榴单辉麻粒岩中代表性单斜辉石的化学成分(%)
Table 2. Chemical composition (%) of representative clinopyroxenes from garnet clinopyroxene granulite in the Wuhe complex
样品 12MTZ6 12MTZ2 1403MJ2-6 1403FY1-2 SiO2 50.91 50.13 49.92 49.32 52.07 51.40 51.71 51.65 TiO2 1.10 1.14 1.18 1.18 0.83 0.66 0.66 0.70 Al2O3 5.43 5.22 6.54 6.52 4.03 4.14 3.27 3.70 FeOT 9.82 9.61 12.15 12.89 8.49 9.76 9.41 9.79 MnO 0.04 0.02 0.09 0.09 0.04 0.11 0.01 0.03 MgO 11.70 11.34 9.06 8.54 12.21 11.69 12.63 12.17 CaO 20.29 21.11 20.26 20.66 21.52 21.40 22.61 22.05 Na2O 0.63 0.60 0.58 0.52 0.42 0.47 0.50 0.51 K2O 0.01 0.00 0.01 0.01 0.01 0.03 - - Total 99.96 99.20 99.80 99.72 99.68 99.72 100.81 100.63 以6个氧为标准计算的阳离子系数 Si 1.90 1.89 1.88 1.87 1.94 1.92 1.92 1.92 AlⅣ 0.10 0.11 0.12 0.13 0.06 0.08 0.08 0.08 AlⅥ 0.13 0.12 0.17 0.16 0.11 0.11 0.06 0.08 Ti 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 Fe3+ 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 Fe2+ 0.31 0.30 0.39 0.41 0.27 0.31 0.27 0.30 Mg 0.65 0.64 0.51 0.48 0.68 0.65 0.70 0.67 Ca 0.81 0.85 0.82 0.84 0.86 0.86 0.90 0.88 Na 0.05 0.04 0.04 0.04 0.03 0.03 0.04 0.04 En 44.65 46.36 46.53 47.27 46.79 46.28 46.68 46.33 Fs 35.82 34.67 28.93 27.21 36.94 35.16 36.30 35.59 Ac 17.04 16.57 22.14 23.36 14.60 16.73 15.15 16.13 Wo 2.49 2.40 2.40 2.16 1.66 1.82 1.87 1.95 表 3 五河杂岩石榴单辉麻粒岩中代表性角闪石的化学成分(%)
Table 3. Chemical composition (%) of representative amphiboles from garnet clinopyroxene granulite in the Wuhe complex
样品 12MTZ6 12MTZ2 1403MJ2-6 M2 M3 SiO2 40.31 41.43 40.43 40.80 40.77 41.02 42.11 TiO2 3.41 1.31 0.12 0.12 0.19 4.90 3.88 Al2O3 13.70 15.63 16.71 16.15 15.38 13.79 12.43 FeOT 17.28 15.15 17.24 19.47 20.71 14.85 13.71 MnO 0.15 0.10 0.10 0.14 0.20 0.06 0.04 MgO 7.63 9.84 8.61 7.77 6.91 8.82 11.23 CaO 10.93 10.49 10.90 11.00 11.21 11.26 11.07 Na2O 2.06 2.33 2.05 2.09 1.64 1.31 1.33 K2O 1.32 0.66 0.35 0.35 0.48 0.51 0.97 Total 97.08 97.18 96.71 98.06 97.50 96.59 96.81 以23个氧为标准计算的阳离子系数 Si 6.16 6.19 6.13 6.16 6.22 6.16 6.29 AlⅣ 1.84 1.81 1.87 1.84 1.78 1.84 1.71 AlⅥ 0.63 0.95 1.11 1.03 0.99 0.61 0.47 Ti 0.39 0.15 0.01 0.01 0.02 0.55 0.44 Fe3+ 0.35 0.32 0.30 0.27 0.34 0.70 0.53 Fe2+ 1.85 1.58 1.89 2.19 2.31 1.17 1.18 Mn 0.02 0.01 0.01 0.02 0.03 0.01 0.01 Mg 1.74 2.19 1.94 1.75 1.57 1.97 2.50 Ca 1.79 1.68 1.77 1.78 1.83 1.81 1.77 Na 0.61 0.68 0.60 0.61 0.49 0.38 0.38 K 0.26 0.13 0.07 0.07 0.09 0.10 0.19 表 4 五河杂岩石榴单辉麻粒岩中代表性斜长石化学成分(%)
Table 4. Chemical composition (%) of representative plagioclases from garnet clinopyroxene granulite in the Wuhe complex
样品 12MTZ6 12MTZ2 1403FY1-2 1403MTZ2-6 M2 M3 SiO2 57.51 57.46 48.84 45.02 58.14 57.00 54.85 54.55 58.29 58.51 TiO2 - - 0.01 - 0.02 0.08 - 0.05 0.04 0.04 Al2O3 27.21 27.25 33.01 35.55 27.04 26.97 28.40 28.93 26.38 26.25 FeO 0.16 0.05 0.46 0.35 0.04 0.15 0.08 0.39 0.02 0.09 CaO 8.59 8.35 15.39 18.48 8.32 8.79 11.44 11.85 8.08 7.77 Na2O 6.25 6.58 2.51 0.44 6.36 6.15 4.96 4.84 6.72 6.45 K2O 0.04 0.06 0.01 0.01 0.02 - 0.12 0.06 0.19 0.18 Total 99.83 99.80 100.24 99.90 99.98 99.24 99.84 100.71 99.75 99.35 以8个氧为标准计算的阳离子系数 Si 2.58 2.58 2.23 2.08 2.60 2.58 2.48 2.46 2.61 2.63 Al 1.44 1.44 1.78 1.94 1.42 1.44 1.51 1.54 1.39 1.39 Ca 0.41 0.40 0.75 0.92 0.40 0.43 0.55 0.57 0.39 0.37 Na 0.54 0.57 0.22 0.04 0.55 0.54 0.43 0.42 0.58 0.56 K 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.01 An 43.09 41.07 77.14 95.80 41.88 44.12 55.66 57.28 39.50 39.53 Ab 56.70 58.61 22.77 4.14 58.00 55.88 43.67 42.36 59.42 59.39 Or 0.22 0.32 0.08 0.07 0.13 0.00 0.67 0.36 1.08 1.08 表 5 五河杂岩石榴二辉麻粒岩中代表性石榴子石的化学成分(%)
Table 5. Chemical composition (%) of representative garnets from garnet two-pyroxene granulite in the Wuhe complex
样品 1310FY5-3基质中的石榴子石从核部-边部-核部 1310FY5-3 M2 07MJ4 SiO2 37.72 37.62 37.38 38.10 38.21 38.05 38.08 38.37 38.01 37.84 38.19 38.63 38.86 39.02 38.12 37.86 TiO2 0.09 0.04 0.09 0.12 0.09 0.07 0.11 0.11 - 0.05 - 0.06 0.01 - 0.10 0.08 Al2O3 21.08 20.77 20.46 20.79 20.64 20.73 20.44 20.64 20.57 20.56 21.00 20.67 21.10 21.01 20.80 20.57 Cr2O3 0.04 0.04 - 0.00 - - 0.05 0.04 0.03 0.07 0.04 0.10 0.00 - - - FeOT 26.77 24.22 23.41 21.80 21.90 23.03 23.52 22.81 22.73 27.48 26.71 27.75 26.57 25.04 26.81 27.41 MnO 0.82 0.59 0.54 0.56 0.43 0.53 0.60 0.61 0.56 0.86 0.52 0.56 0.43 0.48 0.92 0.87 MgO 5.55 4.78 4.66 4.50 4.42 4.64 4.39 4.24 4.13 4.82 6.91 6.19 6.90 7.47 6.09 6.07 CaO 6.66 10.83 12.40 13.24 13.01 11.90 12.33 12.29 12.91 7.30 5.89 5.88 6.03 6.58 6.19 6.04 Total 98.78 98.89 98.97 99.10 98.72 98.96 99.53 99.14 98.94 99.02 99.28 99.87 99.92 99.69 99.07 98.93 以12个氧为标准计算的阳离子系数 Si 2.99 2.97 2.95 2.98 3.00 2.99 2.98 3.01 2.99 3.00 2.99 3.02 3.01 3.02 3.00 2.99 Ti 0.01 0.00 0.01 0.01 0.01 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 Al 1.97 1.93 1.90 1.92 1.91 1.92 1.89 1.91 1.91 1.92 1.94 1.90 1.93 1.91 1.93 1.91 Cr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 Fe3+ 0.04 0.09 0.13 0.09 0.09 0.09 0.12 0.08 0.10 0.07 0.07 0.08 0.06 0.07 0.07 0.09 Fe2+ 1.74 1.51 1.41 1.34 1.35 1.43 1.42 1.42 1.40 1.75 1.68 1.73 1.66 1.55 1.70 1.72 Mn 0.05 0.04 0.04 0.04 0.03 0.04 0.04 0.04 0.04 0.06 0.03 0.04 0.03 0.03 0.06 0.06 Mg 0.65 0.56 0.55 0.52 0.52 0.54 0.51 0.50 0.48 0.57 0.81 0.72 0.80 0.86 0.71 0.71 Ca 0.56 0.92 1.05 1.11 1.09 1.00 1.03 1.03 1.09 0.62 0.49 0.49 0.50 0.54 0.52 0.51 Ura 0.13 0.11 0.00 0.00 0.00 0.00 0.15 0.12 0.10 0.20 0.11 0.31 0.01 0.00 0.00 0.00 And 1.85 4.28 6.37 4.43 4.26 4.26 5.85 4.01 4.83 3.62 3.45 4.00 3.17 3.70 3.37 4.44 Pyr 21.74 18.57 17.99 17.43 17.29 18.05 17.03 16.60 16.11 18.99 26.75 24.16 26.71 28.86 23.86 23.79 Spe 1.83 1.31 1.18 1.24 0.95 1.18 1.32 1.35 1.25 1.92 1.15 1.24 0.95 1.06 2.05 1.93 Gro 16.79 25.82 28.02 32.45 32.29 29.05 28.38 30.47 31.24 16.87 12.82 12.18 13.59 14.56 14.06 12.56 Alm 57.66 49.90 46.44 44.44 45.20 47.46 47.28 47.45 46.48 58.39 55.71 58.12 55.57 51.82 56.67 57.29 表 6 五河杂岩石榴二辉麻粒岩中代表性辉石的化学成分(%)
Table 6. Chemical compositions (%) of representative pyroxenes from garnet two-pyroxene granulite in the Wuhe complex
样品 单斜辉石 斜方辉石 1310FY5-3 07MJ4 1310FY5-3 07MJ4 M1 M2 SiO2 49.90 50.16 51.93 51.59 51.25 51.71 51.96 52.25 51.81 51.86 52.40 51.70 51.47 TiO2 0.48 0.54 0.27 0.22 0.59 0.59 0.52 - 0.08 0.01 0.03 0.10 0.21 Al2O3 5.41 5.17 4.29 4.58 3.58 4.08 3.66 2.31 2.56 2.58 1.55 2.03 2.09 FeOT 9.73 10.44 7.96 9.27 11.81 11.26 11.10 25.31 24.69 23.38 28.03 28.08 28.61 MnO 0.13 0.09 0.08 0.31 0.15 0.16 0.02 0.22 0.38 0.33 0.30 0.32 0.27 MgO 11.46 11.78 12.62 12.54 11.35 10.75 11.26 19.69 20.46 21.23 17.66 17.25 16.75 CaO 20.73 19.66 22.25 21.06 20.11 20.72 20.88 0.37 0.42 0.52 0.54 0.82 0.71 Na2O 1.19 1.09 0.78 0.81 0.42 0.44 0.44 - - 0.00 0.01 0.02 0.02 K2O 0.01 0.02 - - - - - - 0.00 - 0.00 0.00 0.00 Total 99.06 98.96 100.26 100.43 99.28 99.82 99.84 100.16 100.42 99.90 100.54 100.34 100.13 以6个氧为标准计算的阳离子系数 Si 1.89 1.90 1.92 1.91 1.94 1.94 1.95 1.96 1.94 1.94 1.99 1.97 1.97 AlⅣ 0.11 0.10 0.08 0.09 0.06 0.06 0.05 0.04 0.06 0.06 0.01 0.03 0.03 AlⅥ 0.13 0.13 0.11 0.11 0.10 0.12 0.11 0.07 0.05 0.05 0.06 0.06 0.06 Ti 0.01 0.02 0.01 0.01 0.02 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.01 Fe3+ 0.07 0.04 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 Fe2+ 0.23 0.29 0.24 0.26 0.38 0.36 0.35 0.80 0.77 0.72 0.89 0.90 0.92 Mn 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 Mg 0.65 0.66 0.70 0.69 0.64 0.60 0.63 1.10 1.14 1.18 1.00 0.98 0.96 Ca 0.84 0.80 0.88 0.84 0.82 0.83 0.84 0.01 0.02 0.02 0.02 0.03 0.03 Na 0.09 0.08 0.06 0.06 0.03 0.03 0.03 0.00 0.00 0.00 0.00 0.00 0.00 En 44.61 42.55 46.85 44.41 43.68 45.57 45.31 0.77 0.86 1.07 1.14 1.74 1.51 Fs 34.30 35.46 36.98 36.77 34.30 32.90 33.99 57.36 58.75 60.83 51.88 50.94 49.90 Ac 16.46 17.73 13.20 15.75 20.36 19.76 18.97 41.88 40.39 38.09 46.95 47.24 48.52 Wo 4.63 4.26 2.97 3.07 1.65 1.77 1.74 0.00 0.00 0.01 0.03 0.08 0.06 表 7 五河杂岩石榴二辉麻粒岩中代表性角闪石的化学成分(%)
Table 7. Chemical composition (%) of representative amphiboles from garnet two-pyroxene granulites in the Wuhe complex
样品 07MJ4 1310FY5-3从核部到边部 1310FY5-3 SiO2 41.48 42.22 41.61 41.59 41.07 41.02 40.95 41.05 41.05 41.37 41.29 40.93 41.02 40.83 40.52 40.49 41.00 TiO2 4.08 4.23 4.12 4.01 1.75 1.94 1.75 1.84 1.85 1.73 1.67 1.81 1.73 1.39 3.58 3.69 3.88 Al2O3 12.40 12.20 12.14 12.11 13.66 13.52 13.36 13.32 13.57 13.34 13.58 13.53 13.86 14.44 12.63 12.79 12.28 FeOT 15.23 12.03 15.94 15.92 13.49 13.05 13.17 12.95 13.21 12.98 12.87 13.15 12.63 12.25 14.30 14.56 14.01 MnO 0.09 0.06 0.05 0.09 0.04 0.12 0.05 0.09 0.10 0.16 0.11 0.01 0.05 0.13 0.05 0.05 MgO 9.75 11.54 9.54 9.38 11.05 10.87 11.02 11.17 11.08 11.20 10.99 11.18 11.15 12.15 10.40 10.02 10.51 CaO 10.81 11.10 11.00 10.83 10.95 11.29 11.20 11.15 11.25 11.18 11.15 11.33 11.18 11.50 10.32 10.37 10.51 Na2O 1.35 1.47 1.35 1.32 1.76 1.73 1.69 1.75 1.71 1.83 1.79 1.82 1.86 1.88 1.90 1.79 1.82 K2O 0.90 0.65 0.93 0.98 2.08 2.06 2.09 2.20 2.20 2.04 1.87 1.97 1.89 1.67 2.01 2.00 1.87 Total 96.13 95.54 96.70 96.28 96.87 96.64 96.37 96.58 97.05 96.83 96.32 96.66 96.28 97.12 96.80 96.72 96.81 以23个氧为标准计算的阳离子系数 Si 6.28 6.33 6.29 6.31 6.19 6.20 6.21 6.21 6.18 6.23 6.24 6.18 6.19 6.10 6.15 6.15 6.20 AlⅣ 1.72 1.67 1.71 1.69 1.81 1.80 1.79 1.79 1.82 1.77 1.76 1.82 1.81 1.90 1.85 1.85 1.80 AlⅥ 0.50 0.49 0.45 0.48 0.62 0.61 0.60 0.58 0.59 0.60 0.65 0.59 0.66 0.65 0.41 0.44 0.39 Ti 0.46 0.48 0.47 0.46 0.20 0.22 0.20 0.21 0.21 0.20 0.19 0.21 0.20 0.16 0.41 0.42 0.44 Fe3+ 0.57 0.61 0.55 0.57 0.31 0.33 0.32 0.30 0.30 0.30 0.35 0.29 0.33 0.24 0.37 0.41 0.43 Fe2+ 1.36 0.90 1.46 1.46 1.39 1.32 1.35 1.34 1.36 1.33 1.27 1.37 1.27 1.29 1.44 1.44 1.34 Mn 0.01 0.01 0.01 0.01 0.00 0.02 0.01 0.01 0.01 0.02 0.01 0.00 0.00 0.01 0.02 0.01 0.01 Mg 2.20 2.58 2.15 2.12 2.48 2.45 2.49 2.52 2.49 2.52 2.47 2.52 2.51 2.71 2.35 2.27 2.37 Ca 1.75 1.78 1.78 1.76 1.77 1.83 1.82 1.81 1.81 1.80 1.80 1.83 1.81 1.84 1.68 1.69 1.70 Na 0.40 0.43 0.40 0.39 0.51 0.51 0.50 0.51 0.50 0.54 0.52 0.53 0.54 0.55 0.56 0.53 0.53 K 0.17 0.12 0.18 0.19 0.40 0.40 0.40 0.42 0.42 0.39 0.36 0.38 0.36 0.32 0.39 0.39 0.36 表 8 五河杂岩石榴二辉麻粒岩中代表性斜长石的化学成分(%)
Table 8. Chemical composition (%) of representative plagioclases from garnet two-pyroxene granulites in the Wuhe complex
样品 07MJ4 1310FY5-3 M1 M2 SiO2 59.37 58.84 59.51 57.82 55.63 55.27 59.58 59.40 59.05 TiO2 - 0.03 0.06 0.02 0.04 - 0.01 0.04 0.02 Al2O3 25.86 25.63 25.78 26.27 27.62 27.75 24.68 24.77 24.83 FeO 0.10 0.10 0.06 0.11 0.13 0.16 0.63 0.77 0.38 CaO 7.16 7.30 7.22 9.06 10.45 10.53 7.22 7.10 7.14 Na2O 7.07 6.91 7.00 6.40 5.67 5.51 7.49 7.21 7.23 K2O 0.05 0.13 0.13 0.10 0.03 0.07 0.03 0.02 0.05 Total 99.62 98.98 99.77 99.78 103.29 98.75 99.66 99.36 98.69 以8个氧为标准计算的阳离子系数 Si 2.65 2.65 2.66 2.60 2.52 2.51 2.68 2.68 2.67 Al 1.36 1.36 1.36 1.39 1.47 1.48 1.31 1.32 1.32 Ca 0.34 0.35 0.35 0.44 0.51 0.51 0.35 0.34 0.35 Na 0.61 0.60 0.61 0.56 0.50 0.48 0.65 0.63 0.63 K 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 An 35.78 36.56 36.03 43.65 50.38 51.17 34.70 35.20 35.19 Ab 63.93 62.65 63.21 55.80 49.44 48.42 65.15 64.67 64.54 Or 0.29 0.79 0.77 0.55 0.18 0.42 0.15 0.13 0.26 表 9 石榴麻粒岩中石榴子石-单斜辉石地质温度计数据
Table 9. Calculated results using the garnrt-clinopyroxene geothermometer for the garnet granulite
样品号 矿物对 T1(℃) T2(℃) T3(℃) P(GPa) T4(℃) 12MTZ6 4 913~942 874~908 886~916 1.3 881~916 12MTZ2 4 845~894 807~863 817~868 1.3 800~860 1403MJ2-6 4 826~879 772~838 801~856 1.2 737~802 1403FY1-2 6 755~814 692~757 724~784 1.0 670~735 注:T1据Elllis and Green, 1979;T2据Krogh(1988);T3据Powell(1985);T4据Ravna(2000a);所用压力值来自于表 10计算结果. 表 10 石榴麻粒岩中石榴子石-单斜辉石-斜长石-石英地质压力计数据
Table 10. Calculated results using the garnrt-clinopyroxene-plagioclase-quartz geobarometer for the garnet granulite
样品号 变质阶段 Cpx Grt Pl aDi XFe XMg XCa XAn T(℃) P(GPa) 12MTZ6 M1 0.46 0.55 0.23 0.21 0.43 900 1.33 0.49 0.55 0.23 0.23 0.41 900 1.35 0.46 0.55 0.23 0.22 0.42 900 1.38 0.42 0.56 0.22 0.22 0.41 900 1.36 0.44 0.56 0.25 0.19 0.44 900 1.31 12MTZ2 M1 0.49 0.54 0.20 0.26 0.29 850 1.38 0.42 0.57 0.19 0.25 0.32 850 1.33 0.48 0.56 0.18 0.26 0.28 850 1.34 0.44 0.56 0.19 0.25 0.28 850 1.38 0.42 0.57 0.18 0.25 0.29 850 1.38 1403MJ2-6 M1 0.48 0.54 0.29 0.18 0.41 800 1.22 0.59 0.54 0.29 0.17 0.43 800 1.14 0.55 0.54 0.28 0.18 0.43 800 1.14 1403FY1-2 M1 0.55 0.57 0.23 0.21 0.57 750 0.92 0.51 0.58 0.22 0.20 0.58 750 0.90 0.56 0.57 0.23 0.21 0.56 750 0.92 注:所用温度值来自于表 9计算结果. 表 11 石榴二辉麻粒岩中石榴子石-单斜辉石地质温度计数据
Table 11. Calculated results using the garnrt-clinopyroxene geothermometer for the garnet two-pyroxene granulite
样品号 矿物对 T1(℃) T2(℃) T3(℃) P(GPa) T4(℃) 1310FY5-3 Grt+Cpx+Pl M1 8 845~913 820~892 831~902 1.5 773~844 1310FY5-3富钛角闪石周围Grt+Cpx+Opx+Pl交生体 M2 5 730~776 677~728 723~771 1.2 692~712 07MJ4 M1 5 913~942 874~908 886~916 1.2 881~916 注:T1据Elllis and Green(1979);T2据Krogh(1988);T3据Powell(1985);T4据Ravna(2000a);所用压力值来自于表 13计算结果. 表 12 石榴二辉麻粒岩中单斜辉石-斜方辉石地质温度计数据
Table 12. Calculated results using the clinopyroxene-orthopyroxene geothermometer for the garnet two-pyroxene granulite
Cpx
aEnOpx
aEnlnKD T(℃) Cpx
aEnOpx
aEnlnKd P
(GPa)T
(℃)07MJ4 0.04 0.25 -1.87 878 0.11 0.91 -2.13 1.2 935 0.04 0.24 -1.75 898 0.11 0.88 -2.10 1.2 937 0.04 0.25 -1.89 873 0.10 0.90 -2.20 1.2 909 0.05 0.23 -1.57 926 0.13 0.87 -1.89 1.2 982 0.04 0.24 -1.83 882 0.11 0.88 -2.11 1.2 935 1310FY5-3富钛角闪石周围Grt+Cpx+Opx+Pl交生体 0.05 0.31 -1.83 908 0.10 0.89 -2.23 1.2 930 0.04 0.33 -2.21 849 0.06 0.86 -2.59 1.2 832 0.04 0.35 -2.06 887 0.08 0.86 -2.32 1.2 910 0.05 0.31 -1.72 932 0.11 0.87 -2.08 1.2 957 0.05 0.33 -1.93 900 0.09 0.88 -2.24 1.2 909 注:所用压力值来自于表 13计算结果. 表 13 石榴二辉麻粒岩中石榴子石-单斜辉石-斜长石-石英和石榴子石-斜方辉石-斜长石-石英地质压力计数据
Table 13. Calculated results using the garnrt-clinopyroxene-plagioclase-quartz and garnrt-orthopyroxene-plagioclase-quartz geobarometer for the garnet two-pyroxene granulite
样品号 变质阶段 Cpx Grt Pl aDi XFe XMg XCa XAn T(℃) P(GPa) 1310FY5-3 Grt+Cpx+Pl M1 0.48 0.47 0.18 0.35 0.44 850 1.51 0.45 0.45 0.18 0.37 0.50 850 1.52 0.47 0.46 0.17 0.37 0.50 850 1.49 1310FY5-3富钛角闪石周围Grt+Cpx+Pl交生体 M2 0.44 0.61 0.22 0.17 0.38 750 1.13 0.45 0.59 0.24 0.17 0.39 750 1.13 0.46 0.58 0.25 0.17 0.38 750 1.20 Opx Grt Pl aDi XFe XMg XCa XAn T(℃) P(GPa) 1310FY5-3富钛角闪石周围Grt+Cpx+Opx+Pl M2 0.65 0.56 0.27 0.16 0.39 900 1.20 0.66 0.58 0.24 0.16 0.37 900 1.13 0.67 0.56 0.27 0.17 0.39 900 1.18 0.65 0.58 0.25 0.16 0.36 900 1.17 0.65 0.58 0.24 0.17 0.35 900 1.17 07MJ4 M1 0.59 0.57 0.24 0.17 0.36 900 1.23 0.58 0.57 0.24 0.17 0.37 900 1.23 0.57 0.56 0.24 0.18 0.36 900 1.22 0.58 0.57 0.23 0.18 0.38 900 1.25 0.57 0.58 0.23 0.17 0.37 900 1.29 注:所用温度值来自于表 11和12计算结果. 表 14 石榴斜长角闪岩(07FY01)和石榴二辉麻粒岩(07SMJ4)LA-ICP-MS锆石U-Pb数据
Table 14. LA-ICP-MS zircon U-Pb data for sample garnet amphibolite (07FY01) and garnet two-pyroxene granulite (07SMJ4)
点号 U(10-6) Th(10-6) Th/U 206Pb*(10-6) 207Pb*/206Pb* ±1σ 207Pb*/235U ±1σ 206Pb*/238U ±1σ 年龄(Ma) 207Pb*/206Pb* ±1σ 206Pb*/238U ±1σ 样品07FY01 1.1 17 2 0.14 6 0.124 0.010 5.683 0.462 0.332 0.011 2 016 132 1 848 53 2.1 73 21 0.29 25 0.107 0.006 4.990 0.272 0.339 0.008 1 742 91 1 884 36 3.1 49 13 0.26 17 0.123 0.007 5.906 0.348 0.349 0.008 1 997 96 1 930 40 4.1 36 11 0.31 12 0.106 0.007 4.888 0.323 0.336 0.008 1 725 110 1 866 40 5.1 59 18 0.30 20 0.107 0.006 4.915 0.299 0.334 0.008 1 744 101 1 858 37 6.1 93 22 0.24 32 0.114 0.006 5.406 0.283 0.345 0.007 1 860 85 1 909 35 7.1 11 1 0.13 4 0.108 0.009 5.072 0.450 0.340 0.012 1 770 148 1 886 56 8.1 10 1 0.13 3 0.126 0.011 6.010 0.526 0.346 0.012 2 044 151 1 914 59 9.1 57 15 0.27 19 0.112 0.006 5.158 0.283 0.335 0.007 1 825 92 1 864 36 10.1 12 2 0.16 4 0.114 0.009 5.152 0.431 0.328 0.012 1 864 138 1 828 58 11.1 33 17 0.53 11 0.112 0.007 5.188 0.324 0.336 0.008 1 830 105 1 869 39 12.1 10 2 0.16 3 0.098 0.009 4.828 0.454 0.358 0.013 1 581 163 1 974 62 13.1 102 30 0.29 33 0.109 0.005 4.918 0.247 0.326 0.007 1 787 83 1 821 32 14.1 82 22 0.26 28 0.105 0.005 4.925 0.256 0.339 0.007 1 719 86 1 883 34 15.1 73 20 0.27 25 0.113 0.006 5.316 0.287 0.343 0.007 1 840 91 1 900 34 16.1 28 9 0.31 9 0.120 0.007 5.679 0.357 0.344 0.009 1 951 104 1 907 41 17.1 64 24 0.38 22 0.108 0.006 5.138 0.282 0.344 0.008 1 770 92 1 908 37 18.1 53 10 0.18 17 0.101 0.006 4.666 0.269 0.334 0.008 1 651 97 1 856 37 19.1 11 1 0.11 4 0.110 0.011 5.412 0.501 0.358 0.012 1 793 171 1 973 57 20.1 23 7 0.31 8 0.124 0.008 5.700 0.363 0.333 0.009 2 017 107 1 852 42 21.1 21 6 0.31 7 0.120 0.008 5.634 0.391 0.341 0.009 1 953 118 1 892 44 22.1 69 22 0.32 22 0.110 0.006 4.953 0.288 0.327 0.008 1 795 99 1 826 37 23.1 41 10 0.23 15 0.109 0.007 5.284 0.333 0.351 0.008 1 788 109 1 937 40 样品07MJ4 1.1 8 2 0.22 3 0.129 0.009 5.761 0.560 0.324 0.011 2 082 120 1 811 51 2.1 6 1 0.20 2 0.151 0.010 6.823 0.707 0.327 0.014 2 362 114 1 823 68 3.1 31 12 0.37 10 0.111 0.005 5.246 0.346 0.343 0.008 1 817 82 1 899 39 4.1 53 12 0.23 17 0.110 0.005 5.043 0.309 0.332 0.007 1 804 79 1 847 32 5.1 12 3 0.26 4 0.116 0.007 5.311 0.440 0.333 0.010 1 891 101 1 853 49 6.1 15 5 0.30 5 0.112 0.006 5.699 0.462 0.370 0.011 1 828 99 2 029 52 7.1 15 5 0.35 5 0.118 0.006 5.531 0.437 0.340 0.010 1 923 96 1 889 47 8.1 17 4 0.26 6 0.115 0.006 5.349 0.386 0.337 0.009 1 883 89 1 871 42 9.1 843 391 0.46 265 0.108 0.004 4.728 0.248 0.318 0.005 1 764 68 1 779 26 10.1 130 46 0.36 42 0.110 0.004 5.008 0.282 0.330 0.006 1 802 72 1 837 30 11.1 43 9 0.22 14 0.112 0.005 5.044 0.306 0.326 0.007 1 834 76 1 820 34 12.1 45 10 0.24 15 0.114 0.005 5.579 0.349 0.356 0.008 1 859 78 1 963 38 13.1 15 7 0.47 5 0.122 0.007 5.315 0.421 0.316 0.009 1 984 96 1 772 45 14.1 11 4 0.38 4 0.110 0.006 5.139 0.418 0.338 0.011 1 804 98 1 877 52 15.1 35 10 0.28 11 0.118 0.005 5.406 0.341 0.332 0.007 1 930 79 1 846 34 16.1 11 4 0.36 3 0.119 0.009 5.155 0.533 0.315 0.011 1 936 131 1 766 52 17.1 187 87 0.47 61 0.109 0.004 4.985 0.271 0.331 0.006 1 789 71 1 841 28 18.1 147 64 0.44 48 0.106 0.004 4.823 0.264 0.330 0.006 1 733 71 1 838 28 19.1 23 7 0.29 8 0.111 0.005 5.044 0.329 0.328 0.007 1 823 82 1 830 36 20.1 20 6 0.33 6 0.109 0.006 5.087 0.384 0.337 0.009 1 790 95 1 872 43 21.1 32 13 0.40 11 0.114 0.005 5.279 0.356 0.337 0.008 1 857 84 1 873 38 22.1 16 5 0.30 5 0.113 0.006 5.227 0.400 0.336 0.010 1 843 94 1 870 46 23.1 232 98 0.42 75 0.105 0.004 4.794 0.261 0.332 0.006 1 712 71 1 846 29 24.1 36 17 0.46 12 0.115 0.005 5.411 0.352 0.342 0.008 1 873 82 1 898 36 25.1 33 9 0.28 11 0.119 0.005 5.553 0.363 0.338 0.008 1 943 80 1 878 38 表 15 石榴斜长角闪岩(07FY01)和石榴二辉麻粒岩(07SMJ4)中锆石LA-ICP-MS微量元素(10-6)
Table 15. LA-ICP-MS trace element (10-6) analysis for zircon in sample garnet amphibolite (07FY01) and garnet two-pyroxene granulite (07SMJ4)
点号 Ti Nb La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta Pb Th U Y Th/U δEu 07FY01 1.1 3.02 0.12 0.00 0.49 0.00 0.08 0.07 0.11 1.02 0.30 1.76 0.65 1.32 0.21 1.36 0.27 8 019.99 0.02 6.55 2.34 17.09 15.85 0.14 1.23 2.1 10.71 0.11 0.01 0.61 0.01 0.19 0.44 0.24 2.37 0.71 6.15 1.69 4.79 0.83 6.06 1.05 9 455.11 0.02 27.20 20.60 67.99 49.28 0.30 0.72 3.1 5.42 0.14 0.01 0.63 0.02 0.30 0.58 0.27 2.26 0.69 6.37 1.52 5.31 0.72 5.78 0.78 8 429.82 0.02 20.60 14.19 50.48 52.24 0.28 0.71 4.1 4.23 0.15 0.01 0.47 0.00 0.06 0.06 0.11 0.70 0.28 3.08 0.61 2.30 0.37 2.26 0.32 8 787.17 0.02 13.66 10.47 33.13 23.73 0.32 1.71 5.1 6.59 0.10 0.00 0.66 0.01 0.17 0.68 0.48 3.82 0.92 6.76 1.46 3.86 0.53 3.29 0.46 8 814.61 0.00 23.44 18.18 56.67 44.03 0.32 0.92 6.1 7.49 0.13 0.00 0.73 0.01 0.12 0.46 0.39 2.68 0.85 7.68 1.69 5.97 0.80 6.53 1.06 8 640.02 0.02 35.14 20.90 87.08 55.61 0.24 1.09 7.1 5.46 0.21 0.00 0.25 0.00 0.08 0.18 0.02 0.36 0.09 0.98 0.27 0.70 0.13 0.78 0.10 8 380.63 0.06 4.09 1.38 10.31 8.37 0.13 0.26 8.1 4.52 0.11 0.00 0.24 0.01 0.02 0.01 0.06 0.48 0.14 1.44 0.38 1.03 0.17 1.02 0.18 8 400.30 0.02 3.78 1.25 9.27 11.62 0.13 2.26 9.1 4.69 0.13 0.01 0.39 0.00 0.08 0.27 0.25 1.42 0.51 4.03 0.94 2.71 0.36 2.14 0.32 9 450.66 0.02 19.70 13.21 48.90 30.78 0.27 1.23 10.1 5.54 0.07 0.00 0.20 0.00 0.05 0.04 0.20 1.25 0.30 2.92 0.69 1.87 0.30 1.96 0.27 8 672.59 0.04 4.01 1.62 9.97 22.48 0.16 2.73 11.1 4.42 0.15 0.00 0.39 0.01 0.12 0.24 0.11 1.52 0.43 4.56 1.23 4.45 0.70 5.24 0.85 9 112.26 0.01 11.88 13.07 27.94 42.49 0.47 0.55 12.1 6.01 0.17 0.00 0.24 0.00 0.07 0.30 0.24 1.20 0.37 2.71 0.69 2.02 0.26 1.98 0.29 8 498.38 0.03 4.01 1.81 9.96 23.14 0.18 1.22 13.1 12.46 0.32 0.00 0.91 0.18 0.37 1.09 0.28 5.13 1.46 13.50 3.70 11.18 1.70 12.96 1.99 10 104.76 0.19 32.51 23.37 81.40 102.36 0.29 0.36 14.1 6.11 0.03 0.00 0.55 0.00 0.13 0.31 0.22 3.35 0.93 7.73 2.09 6.00 1.04 6.38 1.00 9 443.08 0.02 28.51 18.38 71.10 60.26 0.26 0.66 15.1 58.74 0.31 0.10 1.12 0.05 0.50 1.12 0.30 5.71 1.47 12.70 3.78 11.64 1.79 12.63 1.90 9 788.69 0.24 36.24 26.63 89.77 104.27 0.30 0.36 16.1 6.40 0.12 0.01 0.34 0.00 0.05 0.07 0.14 1.02 0.38 3.90 1.12 3.53 0.59 3.83 0.71 8 973.97 0.03 11.15 8.39 27.05 36.63 0.31 1.58 17.1 109.65 0.30 0.28 1.99 0.19 1.64 1.31 0.27 7.14 1.72 15.19 4.42 14.55 2.56 18.43 3.00 9 809.56 0.26 32.64 30.11 85.13 130.49 0.35 0.27 18.1 5.38 0.13 0.01 0.69 0.02 0.09 0.16 0.15 1.79 0.46 3.35 0.72 2.55 0.31 2.15 0.29 8 509.85 0.01 18.65 8.92 48.85 23.56 0.18 0.86 19.1 5.52 0.14 0.00 0.22 0.00 0.01 0.04 0.06 0.77 0.21 1.82 0.48 1.58 0.16 1.36 0.22 8 646.36 0.03 4.16 1.09 10.01 14.42 0.11 0.97 20.1 6.03 0.11 0.00 0.35 0.01 0.09 0.19 0.19 1.45 0.43 5.06 1.52 5.41 0.88 6.75 1.06 9 508.28 0.03 8.60 6.53 21.22 50.14 0.31 1.12 21.1 5.70 0.12 0.00 0.32 0.01 0.10 0.16 0.20 1.28 0.54 5.14 1.50 4.62 0.66 5.40 0.80 9 524.80 0.05 8.99 7.71 21.37 46.17 0.36 1.36 22.1 52.90 0.09 0.01 0.62 0.00 0.14 0.32 0.13 1.98 0.52 4.69 1.30 3.97 0.56 5.89 0.76 9 533.47 0.02 21.69 17.49 57.64 40.44 0.30 0.49 23.1 4.45 0.05 0.01 0.49 0.01 0.11 0.47 0.17 1.78 0.53 4.67 1.23 3.51 0.56 3.74 0.56 8 944.21 0.01 19.73 11.42 48.52 36.12 0.24 0.56 Spot Ti Nb La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta Pb Th U Y Th/U Eu* 07MJ4 1.1 4.22 0.20 0.00 0.47 0.01 0.06 0.18 0.08 0.46 0.33 3.10 1.14 3.96 0.71 5.77 0.89 7 677.69 0.04 3.06 1.78 8.00 38.30 0.22 0.81 2.1 6.05 0.12 0.01 0.27 0.00 0.00 0.07 0.03 0.38 0.14 1.60 0.59 2.10 0.36 3.00 0.44 8 028.25 0.02 2.08 1.09 5.38 18.55 0.20 0.60 3.1 8.02 0.11 0.01 3.28 0.02 0.41 0.47 0.27 2.11 0.49 4.02 0.91 2.83 0.36 2.35 0.39 7 447.86 0.05 12.52 11.44 30.80 28.69 0.37 0.83 4.1 6.94 0.10 0.00 2.43 0.01 0.01 0.18 0.18 1.56 0.48 5.17 1.27 3.83 0.65 3.58 0.58 8 139.66 0.02 19.50 11.48 49.70 39.86 0.23 1.02 5.1 5.83 0.15 0.00 0.49 0.00 0.02 0.25 0.21 1.58 0.58 6.70 2.01 6.92 1.14 9.28 1.55 8 672.44 0.04 4.59 3.02 11.35 68.28 0.27 1.02 6.1 7.68 0.18 0.00 1.20 0.01 0.08 0.10 0.15 1.50 0.38 3.98 1.06 3.25 0.59 4.57 0.71 7 689.97 0.04 7.04 5.19 16.90 34.33 0.31 1.23 7.1 9.36 0.14 0.01 0.61 0.01 0.00 0.24 0.13 1.20 0.53 6.41 2.53 9.86 1.74 14.26 2.50 8 675.34 0.02 5.61 4.64 13.70 79.76 0.34 0.74 8.1 1.92 0.17 0.00 0.48 0.00 0.01 0.06 0.08 0.39 0.20 2.51 1.06 4.08 0.71 5.99 1.10 8 828.53 0.06 6.45 4.31 16.36 34.44 0.26 1.54 9.1 3.37 0.13 0.01 2.51 0.08 1.86 3.15 1.41 12.87 2.75 19.89 4.57 12.05 1.52 10.23 1.52 7 541.33 0.08 286.32 364.60 708.35 137.35 0.51 0.68 10.1 7.16 0.22 0.00 1.19 0.02 0.17 0.44 0.11 2.14 0.78 8.16 3.12 12.92 2.55 23.71 4.45 7 200.69 0.16 49.47 44.52 124.60 97.75 0.36 0.34 11.1 7.85 0.07 0.00 3.07 0.01 0.08 0.49 0.28 2.29 0.71 5.81 1.22 3.66 0.49 3.29 0.45 7 790.97 0.02 15.52 9.06 40.45 38.41 0.22 0.80 12.1 3.94 0.15 0.00 1.83 0.00 0.11 0.18 0.11 1.54 0.43 4.26 1.21 3.75 0.56 4.08 0.64 8 128.50 0.03 18.57 11.09 45.84 36.93 0.24 0.61 13.1 9.39 0.11 0.00 1.52 0.00 0.06 0.32 0.11 0.94 0.28 2.99 0.95 3.18 0.53 3.61 0.58 8 452.57 0.05 5.63 6.57 14.05 30.05 0.47 0.61 14.1 8.39 0.13 0.01 1.26 0.01 0.11 0.17 0.11 0.97 0.36 3.70 1.18 3.94 0.64 5.33 0.88 8 611.00 0.04 4.25 3.98 10.43 37.53 0.38 0.84 15.1 6.91 0.09 0.00 3.02 0.01 0.20 0.74 0.46 3.60 1.01 8.34 1.99 4.46 0.70 4.85 0.67 7 627.96 0.02 12.90 9.52 32.59 56.54 0.29 0.86 16.1 10.39 0.13 0.07 0.73 0.03 0.26 0.22 0.20 1.78 0.64 6.41 2.21 7.88 1.43 11.59 1.98 8 616.69 0.03 4.06 3.72 10.24 69.08 0.36 0.98 17.1 7.48 0.35 0.00 1.43 0.01 0.36 0.47 0.28 3.11 1.07 10.80 3.46 13.23 2.44 21.12 3.97 7 267.18 0.20 73.92 86.08 181.16 108.79 0.48 0.69 18.1 6.89 0.26 0.00 1.17 0.02 0.22 0.81 0.26 3.64 1.15 11.51 3.82 14.76 2.54 23.26 4.40 6 902.06 0.15 56.26 61.94 139.87 119.11 0.44 0.47 19.1 8.18 0.17 0.00 1.32 0.00 0.05 0.23 0.10 1.37 0.58 6.21 1.88 7.36 1.26 9.49 1.65 8 286.46 0.08 8.55 6.50 21.83 65.74 0.30 0.57 20.1 2.45 0.20 0.02 0.72 0.00 0.00 0.07 0.13 0.51 0.30 3.53 1.21 5.19 0.95 8.62 1.38 8 443.06 0.07 7.50 5.98 18.48 43.87 0.32 2.07 21.1 7.97 0.11 0.00 1.45 0.02 0.12 0.39 0.47 3.29 1.15 10.49 2.98 8.48 1.21 8.59 1.33 8 077.99 0.03 11.91 11.35 29.16 82.65 0.39 1.25 22.1 7.30 0.19 0.00 0.72 0.00 0.11 0.11 0.28 2.11 0.79 9.87 3.84 15.47 2.84 24.81 4.41 8 500.78 0.06 5.99 4.58 14.86 122.02 0.31 1.73 23.1 5.58 0.30 0.00 1.35 0.01 0.25 0.31 0.14 1.58 0.51 5.26 1.68 5.58 1.05 7.78 1.44 7 533.90 0.21 90.29 97.21 224.38 49.24 0.43 0.61 24.1 7.97 0.10 0.00 2.89 0.01 0.51 1.43 0.93 5.61 1.53 11.32 2.67 6.96 1.07 7.42 1.23 7 166.62 0.01 15.31 18.37 36.51 77.53 0.50 1.01 25.1 9.26 0.08 0.01 3.36 0.03 0.56 1.33 0.70 5.02 1.09 8.32 2.03 6.12 0.88 6.55 1.09 7 168.28 0.02 12.35 8.34 30.96 60.76 0.27 0.83 注:δEu=EuN/(SmN·GdN)1/2. -
[1] Anovitz, L.M., 1991.Al Zoning in Pyroxene and Plagioclase:Window on Late Prograde to Early Retrograde P-T Paths in Granulite Terranes.American Mineralogist, 76(7-8):1328-1343. http://www.academia.edu/13089861/Paragenesis_of_sodic_pyroxene-bearing_quartz_schists_implications_for_the_P-T_history_of_the_Sanbagawa_belt [2] Bhattacharya, A., Krishnakumar, K.R., Raith, M., et al., 1991.An Improved Set of A-X Parameters for Fe-Mg-Ca Garnets and Refinements of the Orthopyroxene-Garnet Thermometer and the Orthopyroxene-Garnet-Plagioclase-Quartz Barometer.Journal of Petrology, 32(3):629-656. https://dx.doi.org/10.1093/petrology/32.3.629 [3] Brown, M., 2014.The Contribution of Metamorphic Petrology to Understanding Lithosphere Evolution and Geodynamics.Geoscience Frontiers, 5(4):553-569. https://dx.doi.org/10.1016/j.gsf.2014.02.005 [4] Duan, Z.Z., Wei, C.J., Qian, J.H., 2015.Metamorphic P-T Paths and Zircon U-Pb Age Data for the Paleoproterozoic Metabasic Dykes of High-Pressure Granulite Facies from Eastern Hebei, North China Craton.Precambrian Research, 271:295-310. https://dx.doi.org/10.1016/j.precamres.2015.10.015 [5] Eckert, J.O., Newton, R.C., Kleppa, O.J., 1991.The △H of Reaction and Recalibration of Garnet-Pyroxene-Plagioclase-Quartz Geobarometers in the CMAS System by Solution Calorimetry.American Mineralogist, 76(1-2):148-160. https://pubs.geoscienceworld.org/ammin/article-lookup/76/1-2/148 [6] Ellis, D.J., Green, D.H., 1979.An Experimental Study of the Effect of Ca upon Garnet-Clinopyroxene Fe-Mg Exchange Equilibria.Contributions to Mineralogy and Petrology, 71(1):13-22. https://dx.doi.org/10.1007/bf00371878 [7] Frost, B.R., Chacko, T., 1989.The Granulite Uncertainty Principle:Limitations on Thermobarometry in Granulites.The Journal of Geology, 97(4):435-450. https://dx.doi.org/10.1086/629321 [8] Guo, J.H., O'Brien, P.J., Zhai, M.G., 2002.High-Pressure Granulites in the Sanggan Area, North China Craton:Metamorphic Evolution, P-T Paths and Geotectonic Significance.Journal of Metamorphic Geology, 20(8):741-756. https://dx.doi.org/10.1046/j.1525-1314.2002.00401.x [9] Guo, S.S., Li, S.G., 2009.SHRIMP Zircon U-Pb Ages for the Paleoproterozoic Metamorphic-Magmatic Events in the Southeast Margin of the North China Craton.Science in China (Series D), 39(6):694-699 (in Chinese). https://dx.doi.org/10.1007/s11430-009-0099-7 [10] Harley, S.L., 1989.The Origins of Granulites:A Metamorphic Perspective.Geological Magazine, 126(3):215. https://dx.doi.org/10.1017/s0016756800022330 [11] Jin, S.Q., 1991.Composition Characteristics of Calc-Amphiboles in Different Regional Metamorphic Facies.Chinese Science Bulletin, 36(11):851-854 (in Chinese). http://www.researchgate.net/publication/292397390_Composition_characteristics_of_calc-amphiboles_in_different_regional_metamorphic_facies [12] Krogh, E.J., 1988.The Garnet-Clinopyroxene Fe-Mg Geothermometer-A Reinterpretation of Existing Experimental Data.Contributions to Mineralogy and Petrology, 99(1):44-48. https://dx.doi.org/10.1007/bf00399364 [13] Li, Y.L., Zhang, H.F., Guo, J.H., et al., 2017.Petrogenesis of the Huili Paleoproterozoic Leucogranite in the Jiaobei Terrane of the North China Craton:A Highly Fractionated Albite Granite Forced by K-Feldspar Fractionation.Chemical Geology, 450:165-182. https://dx.doi.org/10.1016/j.chemgeo.2016.12.029 [14] Liu, F. L., Liu, L. S., Cai, J., et al., 2017a. A Widespread Paleoproterozoic Partial Melting Event within the Jiao-Liao-Ji Belt, North China Craton: Zircon U-Pb Dating of Granitic Leucosomes within Pelitic Granulites and Its Tectonic Implications. Precambrian Research (in Press). https: //dx. doi. org/10. 1016/j. precamres. 2017. 10. 017 [15] Liu, Y.C., Zhang, P.G., Wang, C.C., et al., 2017b.Petrology, Geochemistry and Zirconology of Impure Calcite Marbles from the Precambrian Metamorphic Basement at the Southeastern Margin of the North China Craton.Lithos, 290-291:189-209. https://dx.doi.org/10.1016/j.lithos.2017.08.011 [16] Liu, F.L., Liu, P.H., Wang, F., et al., 2014.U-Pb Dating of Zircons from Granitic Leucosomes in Migmatites of the Jiaobei Terrane, Southwestern Jiao-Liao-Ji Belt, North China Craton:Constraints on the Timing and Nature of Partial Melting.Precambrian Research, 245:80-99. https://dx.doi.org/10.1016/j.precamres.2014.01.001 [17] Liu, L., Yang, X.Y., Santosh, M., et al., 2015a.Neoarchean to Paleoproterozoic Continental Growth in the Southeastern Margin of the North China Craton:Geochemical, Zircon U-Pb and Hf Isotope Evidence from the Huoqiu Complex.Gondwana Research, 28(3):1002-1018. https://dx.doi.org/10.1016/j.gr.2014.08.011 [18] Liu, Y.C., Deng, L.P., Gu, X.F., et al., 2015b.Application of Ti-in-Zircon and Zr-in-Rutile Thermometers to Constrain High-Temperature Metamorphism in Eclogites from the Dabie Orogen, Central China.Gondwana Research, 27(1):410-423. https://dx.doi.org/10.1016/j.gr.2013.10.011 [19] Liu, P.H., Liu, F.L., Liu, C.H., et al., 2013a.Petrogenesis, P-T-t Path, and Tectonic Significance of High-Pressure Mafic Granulites from the Jiaobei Terrane, North China Craton.Precambrian Research, 233:237-258. https://dx.doi.org/10.1016/j.precamres.2013.05.003 [20] Liu, Y.C., Wang, A.D., Li, S.G., et al., 2013b.Composition and Geochronology of the Deep-Seated Xenoliths from the Southeastern Margin of the North China Craton.Gondwana Research, 23(3):1021-1039. https://dx.doi.org/10.1016/j.gr.2012.06.009 [21] Liu, P.H., Liu, F.L., Wang, F., et al., 2015.P-T-t Paths of the Multiple Metamorphic Events of the Jiaobei Terrane in the Southeastern Segment of the Jiao-Liao-Ji Belt (JLJB), in the North China Craton:Impication for Formation and Evolution of the JLJB.Acta Petrologica Sinica, 31(10):2889-2941 (in Chinese with English abstract). [22] Liu, Y, C., Zhang, P.G., Wang, C.C., et al., 2016.Paleoproterozoic Multistage Metamorphic Ages Registered in the Precambrian Basement Rocks at the Southeastern Margin of the North China Craton and Their Geological Implications.Acta Geologica Sinica (English Edition), 90(6):2265-2266. https://dx.doi.org/10.1111/1755-6724.13038 [23] Liu, Y.C., Wang, A.D., Rolfo, F., et al., 2009.Geochronological and Petrological Constraints on Palaeoproterozoic Granulite Facies Metamorphism in Southeastern Margin of the North China Craton.Journal of Metamorphic Geology, 27(2):125-138. https://dx.doi.org/10.1111/j.1525-1314.2008.00810.x [24] Liu, Y.C., Wang, C.C., Zhang, P.G., et al., 2015a.Granulite Facies Metamorphism, Partial Melting and Metasomatism in the Wuhe Complex at the Southeastern Margin of the North China Block.Journal of Earth Sciences and Environment, 37(1):1-11 (in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S167498711200059X [25] Liu, Y.C., Wang, C.C., Zhang, P.G., et al., 2015b.Growth and Metamorphic Evolution of the Precambrian Lower Crust at the Southeastern Margin of the North China Block.Acta Petrologica Sinica, 31(10):2847-2862 (in Chinese with English abstract). http://www.academia.edu/19260429/Growth_and_metamorphic_evolution_of_the_Precambrian_lower_crust_at_the_southeastern_margin_of_the_North_China_Block [26] Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008.In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard.Chemical Geology, 257(1-2):34-43. https://dx.doi.org/10.1016/j.chemgeo.2008.08.004 [27] Liu, Y.S., Hu, Z.C., Zong, K.Q., et al., 2010.Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS.Chinese Science Bulletin, 55(15):1535-1546. https://dx.doi.org/10.1007/s11434-010-3052-4 [28] Molina, J.F., Moreno, J.A., Castro, A., et al., 2015.Calcic Amphibole Thermobarometry in Metamorphic and Igneous Rocks:New Calibrations Based on Plagioclase/Amphibole Al-Si Partitioning and Amphibole/Liquid Mg Partitioning.Lithos, 232:286-305. https://dx.doi.org/10.1016/j.lithos.2015.06.027 [29] Pattison, D.R.M., 2003.Temperatures of Granulite-Facies Metamorphism:Constraints from Experimental Phase Equilibria and Thermobarometry Corrected for Retrograde Exchange.Journal of Petrology, 44(5):867-900. https://dx.doi.org/10.1093/petrology/44.5.867 [30] Powell, R., 1985.Regression Diagnostics and Robust Regression in Geothermometer/Geobarometer Calibration:The Garnet-Clinopyroxene Geothermometer Revisited.Journal of Metamorphic Geology, 3(3):231-243. https://dx.doi.org/10.1111/j.1525-1314.1985.tb00319.x [31] Ravna, E.K., 2000a.The Garnet-Clinopyroxene Fe2+-Mg Geothermometer:An Updated Calibration.Journal of Metamorphic Geology, 18(2):211-219. https://dx.doi.org/10.1046/j.1525-1314.2000.00247.x [32] Ravna, E.K., 2000b.Distribution of Fe2+ and Mg between Coexisting Garnet and Hornblende in Synthetic and Natural Systems:An Empirical Calibration of the Garnet-Hornblende Fe-Mg Geothermometer.Lithos, 53(3-4):265-277. https://dx.doi.org/10.1016/s0024-4937(00)00029-3 [33] Rubatto, D., 2002.Zircon Trace Element Geochemistry:Partitioning with Garnet and the Link between U-Pb Ages and Metamorphism.Chemical Geology, 184(1-2):123-138. https://dx.doi.org/10.1016/s0009-2541(01)00355-2 [34] Spear, F.S., Florence, F.P., 1992.Thermobarometry in Granulites:Pitfalls and New Approaches.Precambrian Research, 55(1-4):209-241. https://dx.doi.org/10.1016/0301-9268(92)90025-j [35] Tam, P.Y., Zhao, G.C., Liu, F.L., et al., 2011.Timing of Metamorphism in the Paleoproterozoic Jiao-Liao-Ji Belt:New SHRIMP U-Pb Zircon Dating of Granulites, Gneisses and Marbles of the Jiaobei Massif in the North China Craton.Gondwana Research, 19(1):150-162. https://dx.doi.org/10.1016/j.gr.2010.05.007 [36] Tam, P.Y., Zhao, G.C., Sun, M., et al., 2012a.Petrology and Metamorphic P-T Path of High-Pressure Mafic Granulites from the Jiaobei Massif in the Jiao-Liao-Ji Belt, North China Craton.Lithos, 155:94-109. https://dx.doi.org/10.1016/j.lithos.2012.08.018 [37] Tam, P.Y., Zhao, G.C., Zhou, X.W., et al., 2012b.Metamorphic P-T Path and Implications of High-Pressure Pelitic Granulites from the Jiaobei Massif in the Jiao-Liao-Ji Belt, North China Craton.Gondwana Research, 22(1):104-117. https://dx.doi.org/10.1016/j.gr.2011.09.006 [38] Taylor, W.R., 1998.An Experimental Test of Some Geothermometer and Geobaro-Meter Formulations for Upper Mantle Peridotites with Application to the Thermobarometry of Fertile Lherzolite and Garnet Websterite.Neues Jahrbuch für Mineralogie-Abhandlungen, 172(2):381-408. doi: 10.1007/s00410-012-0767-z.pdf [39] Wang, A.D., Liu, Y.C., Gu, X.F., et al., 2012.Late-Neoarchean Magmatism and Metamorphism at the Southeastern Margin of the North China Craton and Their Tectonic Implications.Precambrian Research, 220-221:65-79. https://dx.doi.org/10.1016/j.precamres.2012.07.011 [40] Wang, A.D., Liu, Y.C., Santosh, M., et al., 2013.Zircon U-Pb Geochronology, Geochemistry and Sr-Nd-Pb Isotopes from the Metamorphic Basement in the Wuhe Complex:Implications for Neoarchean Active Continental Margin along the Southeastern North China Craton and Constraints on the Petrogenesis of Mesozoic Granitoids.Geoscience Frontiers, 4(1):57-71. https://dx.doi.org/10.1016/j.gsf.2012.05.001 [41] Wang, C.C., Liu, Y.C., Zhang, P.G., et al., 2017.Zircon U-Pb Geochronology and Geochemistry of Two Types of Paleoproterozoic Granitoids from the Southeastern Margin of the North China Craton:Constraints on Petrogenesis and Tectonic Significance.Precambrian Research, 303:268-290. https://dx.doi.org/10.1016/j.precamres.2017.04.015 [42] Wang, J., Sheng, Y., Pu, X.P., et al., 2014.The Investigation on Metamorphic Petrology and P-T Conditions of Wuhe Complex Rocks:Evidences from Drill ZK02 in the South of Mengcheng Area.Chinese Journal of Geology, 49(2):556-575 (in Chinese with English abstract). https://dx.doi.org/10.3969/j.issn.0563-5020.2014.02.015 [43] Wang, J., Song, C.Z., 2016.Analysis of Metamorphic P-T Conditions and Zircon U-Pb Age for Garnet Pyroxenite in Bengbu Uplift Tectonic.Chinese Journal of Geology, 51(4):1223-1245 (in Chinese with English abstract). https://dx.doi.org/10.12017/dzkx.2016.056 [44] Wei, C.J., Qian, J.H., Zhou, X.W., 2014.Paleoproterozoic Crustal Evolution of the Hengshan-Wutai-Fuping Region, North China Craton.Geoscience Frontiers, 5(4):485-497. https://dx.doi.org/10.1016/j.gsf.2014.02.008 [45] Weinberg, R.F., Hasalová, P., 2015.Water-Fluxed Melting of the Continental Crust:A Review.Lithos, 212-215:158-188. https://dx.doi.org/10.1016/j.lithos.2014.08.021 [46] Wells, P.R.A., 1977.Pyroxene Thermometry in Simple and Complex Systems.Contributions to Mineralogy and Petrology, 62(2):129-139. https://dx.doi.org/10.1007/bf00372872 [47] Wu, Y.B., Zheng, Y.F., 2004.Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age.Chinese Science Bulletin, 49(16):1589-1604 (in Chinese). https://dx.doi.org/10.1007/bf03184122 [48] Xu, W.L., Yang, D.B., Pei, F.P., et al., 2006.Age of the Wuhe Complex in the Bengbu Uplift:Evidence from LA-ICP-MS Zircon U-Pb Dating.Geology in China, 33(1):132-137 (in Chinese with English abstract). doi: 10.1007/s11430-009-0099-7 [49] Zhai, M.G., 2009.Two Kinds of Granulites (HT-HP and HT-UHT) in North China Craton:Their Genetic Relation and Geotectonic Implications.Acta Petrologica Sinica, 25(8):1753-1771 (in Chinese with English abstract). https://www.researchgate.net/publication/283831884_Two_kinds_of_granulites_HT-HP_and_HT-UHT_in_North_China_Craton_Their_genetic_relation_and_geotectonic_implications [50] Zhai, M.G., 2015.Precambrian Geology of China.Spring-Verlag, Berlin. https://dx.doi.org/10.1007/978-3-662-47885-1 [51] Zhai, M.G., Guo, J.H., Li, Y.G., et al., 1995.The Discovery of Archean Retrograde Eclogites in the North China Craton.Chinese Science Bulletin, 40(17):1590-1594 (in Chinese). https://www.researchgate.net/publication/229404412_Late_Paleozoic_retrograded_eclogites_from_within_the_northern_margin_of_the_North_China_Craton_Evidence_for_subduction_of_the_Paleo-Asian_ocean [52] Zhai, M.G., Guo, J.H., Yan, Y.H., et al., 1992.Discovery and Preliminary Study of Archean High-Pressure Basic Granulites in North China.Science in China (Series B), (12):1325-1330 (in Chinese). https://www.researchgate.net/publication/289090929_Discovery_of_High-Pressure_Basic_Granulite_Terrain_in_North_China_Archaean_Craton_and_Preliminary_Study [53] Zhang, J., Zhao, G.C., Sun, M., et al., 2006.High-Pressure Mafic Granulites in the Trans-North China Orogen:Tectonic Significance and Age.Gondwana Research, 9(3):349-362. https://dx.doi.org/10.1016/j.gr.2005.10.005 [54] Zhao, G.C., 2014.Precambrian Evolution of the North China Craton.Elsevier, New York. https://dx.doi.org/10.1016/c2012-0-02689-0 [55] Zhao, G.C., Cawood, P., Lu, L.Z., 1999.Petrology and P-T History of the Wutai Amphibolites:Implications for Tectonic Evolution of the Wutai Complex, China.Precambrian Research, 93(2-3):181-199. https://dx.doi.org/10.1016/s0301-9268(98)00090-4 [56] Zhao, G.C., Wilde, S.A., Cawood, P.A., et al., 2000.Petrology and P-T Path of the Fuping Mafic Granulites:Implications for Tectonic Evolution of the Central Zone of the North China Craton.Journal of Metamorphic Geology, 18(4):375-391. https://dx.doi.org/10.1046/j.1525-1314.2000.00264.x [57] Zhou, L. G., Zhai, M. G., Lu, J. S., et al., 2017. Paleoproterozoic Metamorphism of High-Grade Granulite Facies Rocks in the North China Craton: Study Advances, Questions and New Issues. Precambrian Research, in Press. https: //dx. doi. org/10. 1016/j. precamres. 2017. 06. 025 [58] Zou, Y., Zhai, M.G., Santosh, M., et al., 2017.High-Pressure Pelitic Granulites from the Jiao-Liao-Ji Belt, North China Craton:A Complete P-T Path and Its Tectonic Implications.Journal of Asian Earth Sciences, 134:103-121. https://dx.doi.org/10.1016/j.jseaes.2016.10.015 [59] 郭素淑, 李曙光, 2009.华北克拉通东南缘古元古代变质和岩浆事件的锆石SHRIMP U-Pb年龄.中国科学(D辑), 39(6):694-699. https://www.cnki.com.cn/qikan-YSXB201104012.html [60] 靳是琴, 1991.不同区域变质相中钙质角闪石的成分特征.科学通报, 36(11):851-854. http://www.cqvip.com/qk/94252x/199111/552666.html [61] 刘平华, 刘福来, 王舫, 等, 2015.胶北地体多期变质事件的P-T-t轨迹及其对胶-辽-吉带形成与演化的制约.岩石学报, 31(10):2889-2941. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201510005 [62] 刘贻灿, 王程程, 张品刚, 等, 2015a.华北板块东南缘五河杂岩的麻粒岩相变质、部分熔融与交代作用.地球科学与环境学报, 37(1):1-11. http://mall.cnki.net/magazine/magadetail/XAGX201501.htm [63] 刘贻灿, 王程程, 张品刚, 等, 2015b.华北东南缘前寒武纪下地壳的生长和变质演化.岩石学报, 31(10):2847-2862. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20151003 [64] 王娟, 盛勇, 卜香萍, 等, 2014.五河杂岩的变质岩石学及P-T条件分析——来自蒙城南ZK02钻孔的研究.地质科学, 49(2):556-575. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkx201402016 [65] 王娟, 宋传中, 2016.蚌埠隆起区石榴辉石岩变质PT轨迹及年代学研究.地质科学, 51(4):1223-1245. doi: 10.12017/dzkx.2016.056 [66] 吴元保, 郑永飞, 2004.锆石成因矿物学研究及其对U-Pb年龄解释的制约.科学通报, 49(16):1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002 [67] 许文良, 杨德彬, 裴福萍, 等, 2006.蚌埠隆起区五河杂岩的形成时代:锆石LA-ICP-MS U-Pb定年证据.中国地质, 33(1):132-137. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi200601014 [68] 翟明国.2009.华北克拉通两类早前寒武纪麻粒岩(HT-HP和HT-UHT)及其相关问题.岩石学报, 25(8):1753-1771. http://npd.nsfc.gov.cn/projectDetail.action?pid=40721062 [69] 翟明国, 郭敬辉, 李永刚, 等, 1995.华北太古宙退变质榴辉岩的发现及其含义.科学通报, 40(17):1590-1590. doi: 10.3321/j.issn:0023-074X.1995.17.016 [70] 翟明国, 郭敬辉, 阎月华, 等, 1992.中国华北太古宙高压基性麻粒岩的发现及初步研究.中国科学(B辑), (12):1325-1330. doi: 10.1360/zb1992-22-12-1325