Metamorphism and Its Tectonic Implications of Early Mesozoic Pelitic Granulites from Badu Complex of Southwestern Zhejiang Province, South China
-
摘要: 遂昌-大柘泥质麻粒岩出露于华夏地块东北部的浙西南八都杂岩中,该岩石保留了典型的减压反应结构.但其变质演化特点、变质作用时代及构造意义目前尚不明确.通过系统的岩相学、矿物化学和同位素年代学分析,结果表明遂昌-大柘泥质麻粒岩记录了4个阶段的变质矿物组合,其中早期进变质阶段M1的矿物组合为石榴石+黑云母+石英;压力峰期变质阶段M2的矿物组合为石榴石+铝绿泥石+金红石+蓝晶石+刚玉+黑云母+石英±十字石,该矿物组合可能预示着岩石曾经历了超高压变质作用过程;峰期变质阶段M3的矿物组合为石榴石+黑云母+夕线石+石英±钾长石±斜长石±钛铁矿;峰后近等温降压M4-1阶段的矿物组合为石榴石+黑云母+夕线石+堇青石+石英+钛铁矿±尖晶石±斜长石±钾长石;M4-2阶段的矿物组合为石榴石+堇青石+夕线石+斜长石+黑云母+石英±钾长石.相平衡模拟结合传统地质温压计限定其峰期变质阶段的温压条件为T=780~810 ℃、P=8.0~9.2 kbar;峰期后近等温降压的M4-1阶段的温压条件为T=780~860 ℃和P=5.7~6.0 kbar,M4-2阶段的温压条件为T=~700 ℃和P=~4.4 kbar,具有典型的顺时针近等温减压型P-T轨迹特征.LA-ICP-MS U-Pb定年结果表明其麻粒岩相变质作用时代为233.5~238.9 Ma.变质作用历史说明浙西南地体可能卷入了古特提斯洋域内印支-华南-华北板块之间的俯冲-碰撞过程,并经历了早中生代的麻粒岩相变质作用后快速折返至地表.Abstract: Suichang-Dazhe pelitic granulites, showing distinct decompressional textures, crop out in Badu complex of the southwestern Zhejiang Province, the Cathaysia block. However, its metamorphic evolution characteristics, metamorphism ages and tectonic implications remain unclear. Results of our study of its petrology, mineral chemistry and LA-ICP-MS zircon U-Pb ages indicate that the rocks contain four distinct metamorphic assemblages, namely the early prograde (M1), pressure peak (M2), peak (M3) and the post-peak (M4) stages. The early prograde (M1) assemblage consists of garnet (core)+biotite+quartz. The pressure peak (M2) assemblage consists of garnet (mantle)+sudoite+rutile+kyanite+corundum+biotite+quartz±staurolite, the mineral assemblage may indicate that the rock has undergone the process of ultrahigh pressure metamorphism. The peak (M3) assemblage consists of garnet (rim-mantle)+biotite+sillimanite+quartz±K-feldspar±plagioclase±ilmenite. Post-peak near-isothermal decompressional (M4) stage following the peak stage could be subdivided into two stages M4-1 and M4-2. The M4-1 stage assemblage consists of garnet (rim)+cordierite+biotite+sillimanite+quartz+ilmenite±spinel±plagioclase±K-feldspar, and the M4-2 stage is represented by garnet (rim)+cordierite+sillimanite+plagioclase+biotite+quartz±K-feldspar. Quantitative phase equilibria modeling in the system Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2, in combination with traditional thermobarometry, was applied to obtain P-T conditions of 780-810℃ and 8.0-9.2 kbar for M3, 780-860℃ and 5.7-6.0 kbar for M4-1, about 700℃ and about 4.4 kbar for M4-2. The combination of the mineral assemblages, mineral compositions, and metamorphic reaction history in the Suichang-Dazhe pelitic granulite defines a clockwise P-T path that involves near-isothermal decompression that followed the peak granulite-facies metamorphism. Analyses of LA-ICP-MS zircon U-Pb dating indicate that metamorphic zircons recorded metamorphic age of the Suichang-Dazhe pelitic granulite is 233.5-238.9 Ma. The clockwise P-T path reveals that the southwestern Zhejiang Province terrane involved in the subduction or collision followed by exhumation and cooling events and experienced the Early Mesozoic (233.5-238.9 Ma) granulite-facies metamorphism with the amalgamation of the Indochina-South China-North China block in the paleo-Tethyan domain.
-
Key words:
- pelitic granulite /
- petrology /
- phase equilibria /
- U-Pb dating /
- Early Mesozoic /
- Badu complex /
- Cathaysia block
-
图 1 华南(a)及浙西南地区(b)区域地质简图
图 1据Yu et al.(2012)、Zhao et al.(2014)
Fig. 1. Geological sketch of South China (a) and southwestern Zhejiang Province (b)
图 3 浙西南遂昌-大柘地区泥质麻粒岩显微照片
a.石榴石变斑晶内包裹板柱状蓝晶石、粒状十字石、铝绿泥石、刚玉、金红石、石英和片状黑云母(SC80-6,PL图像);b.石榴石变斑晶边部可见明显的堇青石、黑云母后生合晶(SC80-6,PL图像);c.局部贫硅微域尖晶石、堇青石共生(SC80-7,PL图像);d.石榴石退变反应结构,边部常见堇青石、黑云母、夕线石、石英、钛铁矿等矿物(SC80-7,CPL图像);e.基质中片状堇青石和石榴石、黑云母、石英等共生, 堇青石内包裹夕线石微晶(SC80-4,CPL图像);f.石榴石边部残留的斜长石、堇青石,堇青石多发生绢云母化蚀变(SC80-6,CPL图像)
Fig. 3. Representative photomicrographs images of the pelitic granulite in the Suichang-Dazhe area
图 6 浙西南遂昌-大柘地区泥质麻粒岩(SC80-6)相平衡模拟结果
图据估算有效全岩成分;a.P-T视剖面图;b.根据石榴石Mg#(grt)(Mg/(Fe2++Mg))和XCa(grt)(Ca/(Ca+Mg+Fe2+))成分等值线限定峰期(M3)阶段温压条件;根据堇青石XMg(crd)(Mg/(Mg+Fe2+))和石榴石的Mg#(grt)成分等值线限定峰后减压阶段(M4-1和M4-2)的温压条件,各阶段均用彩色区域表示,得到近等温减压型顺时针P-T轨迹
Fig. 6. The result of phase equilibria modeling for pelitic granulite of the Suichang-Dazhe area
图 8 泥质麻粒岩锆石球粒陨石标准化稀土元素配分模式
Fig. 8. REE patterns of zircons from the pelitic granulite
图 10 浙西南八都杂岩高级变质岩的P-T演化轨迹
1.含石榴角闪岩,据Wang et al.(2012);2.变质成因紫苏花岗岩,据Yang et al.(2016);3.泥质麻粒岩,据赵磊和周喜文(2012);4.石榴二辉石麻粒岩,据赵磊(2012);5.石榴角闪斜长片麻岩,据赵磊(2012);6.泥质麻粒岩;变质反应线,据张翠光和魏春景(2004)
Fig. 10. P-T paths of high-grade metamorphic rocks from the Badu complex of the southwestern Zhejiang Province
附表 1 泥质麻粒岩中石榴石变斑晶的化学成分(SC80-6)(%)
附表 1. Representative compositions of garnet in the pelitic granulite (%)
Ps. 1 2 3 4 5 6 7 8 9 10 11 12 13 rim ← core → rim SiO2 37.25 37.34 37.76 37.37 37.67 37.94 37.49 37.47 37.88 37.57 37.16 37.33 36.83 TiO2 0.01 0.00 0.04 0.00 0.00 0.02 0.02 0.03 0.05 0.00 0.04 0.02 0.02 Al2O3 21.08 20.98 21.30 21.12 21.46 21.13 21.05 21.33 21.56 21.59 20.89 20.97 20.93 FeOT 34.99 33.72 32.77 33.08 32.88 32.75 32.43 32.77 32.65 32.90 33.08 33.90 35.30 MnO 1.04 0.78 0.66 0.70 0.66 0.60 0.61 0.60 0.58 0.66 0.70 0.88 1.23 MgO 3.78 5.36 5.75 5.63 6.01 5.86 5.82 6.29 6.33 6.02 5.55 4.63 3.48 CaO 1.45 1.28 1.15 1.24 1.45 1.40 1.37 1.25 1.17 1.21 1.38 1.42 1.72 Na2O 0.03 0.00 0.00 0.03 0.00 0.02 0.02 0.03 0.02 0.01 0.04 0.04 0.00 K2O 0.02 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.02 0.01 Cr2O3 0.00 0.00 0.00 0.05 0.06 0.00 0.02 0.04 0.00 0.00 0.00 0.06 0.00 Total 99.66 99.48 99.42 99.22 100.20 99.71 98.85 99.80 100.24 99.96 98.87 99.25 99.51 基于12个氧原子计算的阳离子数 Si 2.99 2.98 3.00 2.98 2.97 3.00 2.99 2.96 2.97 2.96 2.97 2.99 2.97 Ti 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Al 2.00 1.97 2.00 1.98 1.99 1.97 1.98 1.98 2.00 2.01 1.97 1.98 1.99 Fe2+ 2.34 2.18 2.18 2.15 2.10 2.15 2.14 2.07 2.10 2.11 2.14 2.25 2.33 Fe3+ 0.02 0.07 0.00 0.06 0.07 0.02 0.03 0.10 0.05 0.06 0.08 0.03 0.06 Mn 0.07 0.05 0.04 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.06 0.08 Mg 0.45 0.64 0.68 0.67 0.71 0.69 0.69 0.74 0.74 0.71 0.66 0.55 0.42 Ca 0.12 0.11 0.10 0.11 0.12 0.12 0.12 0.11 0.10 0.10 0.12 0.12 0.15 Na 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Cr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Total 8.00 8.01 8.00 8.01 8.01 8.00 8.00 8.01 8.00 8.01 8.01 8.00 8.01 Alm 0.783 0.732 0.726 0.723 0.707 0.717 0.715 0.701 0.705 0.712 0.721 0.753 0.781 Prp 0.152 0.214 0.227 0.225 0.237 0.230 0.232 0.250 0.249 0.239 0.223 0.185 0.140 Sps 0.024 0.018 0.015 0.016 0.015 0.013 0.014 0.014 0.013 0.015 0.016 0.020 0.028 Grs 0.042 0.037 0.032 0.036 0.041 0.039 0.039 0.036 0.033 0.034 0.040 0.041 0.050 Mg# 0.163 0.226 0.238 0.237 0.251 0.243 0.244 0.263 0.261 0.251 0.236 0.198 0.152 XCa 0.043 0.037 0.033 0.036 0.042 0.040 0.040 0.036 0.033 0.035 0.041 0.042 0.051 注:FeOT=FeO+Fe2O3;Mg#=Mg/(Fe2++Mg);XCa=Ca/(Fe2++Mg+Ca). 附表 2 泥质麻粒岩中黑云母的化学成分(SC80-6)(%)
附表 2. Representative compositions of biotites in the pelitic granulite (%)
样品号 SC80-6 点位 BI(Grt) B(Grt) B(Grt) BM BM BI(Crd) SiO2 35.77 34.51 34.81 34.45 35.65 35.79 TiO2 3.63 3.77 4.73 3.89 4.04 4.17 Al2O3 17.48 18.12 17.18 18.62 18.29 17.88 FeOT 15.05 19.25 19.12 19.38 17.56 18.48 MnO 0.00 0.00 0.02 0.06 0.06 0.07 MgO 11.86 8.71 8.63 9.56 9.75 9.73 CaO 0.00 0.00 0.02 0.02 0.03 0.00 Na2O 0.25 0.23 0.22 0.20 0.28 0.23 K2O 10.07 9.86 9.94 8.65 9.68 9.74 Cr2O3 0.17 0.14 0.13 0.09 0.06 0.16 Total 94.28 94.60 94.80 94.91 95.38 96.25 基于11个氧原子计算的阳离子数 Si 2.713 2.664 2.683 2.631 2.694 2.694 Ti 0.207 0.219 0.274 0.223 0.230 0.236 Al 1.563 1.649 1.561 1.677 1.630 1.587 Cr 0.010 0.009 0.008 0.005 0.004 0.010 Fe3+ 0.000 0.000 0.000 0.000 0.000 0.000 Fe2+ 0.955 1.243 1.233 1.238 1.110 1.164 Mn 0.000 0.000 0.001 0.004 0.004 0.004 Mg 1.341 1.002 0.991 1.088 1.098 1.092 Ca 0.000 0.000 0.002 0.002 0.002 0.000 Na 0.037 0.034 0.033 0.030 0.041 0.034 K 0.974 0.971 0.977 0.843 0.933 0.936 Total 7.800 7.792 7.764 7.741 7.747 7.756 XMg 0.584 0.446 0.446 0.468 0.497 0.484 Fe2+/(Fe2++Mg) 0.416 0.554 0.554 0.532 0.503 0.516 注:FeOT=FeO+Fe2O3;XMg=Mg/(Fe2++Mg);BI(Grt).包裹于石榴石中的黑云母;B(Grt).石榴石边部的黑云母;BM.基质中的黑云母;BI(Crd).包裹于堇青石中的黑云母. 附表 3 泥质麻粒岩中长石的化学成分(SC80-6)(%)
附表 3. Representative compositions of feldspars in the pelitic granulite (%)
样品号 SC80-6 点位 P(Grt) P(Grt) MP MP MK MP(Kf) MK(Pl) MP(Pth) MK(Pth) SiO2 58.90 60.59 58.25 60.05 64.36 60.61 64.56 68.51 63.90 TiO2 0.00 0.00 0.01 0.01 0.00 0.00 0.03 0.01 0.11 Al2O3 25.17 25.53 25.53 25.02 18.65 24.77 18.99 19.85 18.96 FeOT 0.22 0.06 0.02 0.00 0.00 0.03 0.01 0.01 0.00 MnO 0.00 0.03 0.00 0.01 0.00 0.00 0.00 0.03 0.04 MgO 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 CaO 6.65 6.53 8.07 6.20 0.12 5.95 0.09 0.24 0.04 Na2O 8.00 8.27 7.38 8.32 0.87 8.45 2.21 11.64 1.39 K2O 0.18 0.23 0.17 0.26 16.24 0.19 14.03 0.69 15.62 Cr2O3 0.24 0.00 0.00 0.00 0.00 0.04 0.02 0.00 0.04 Total 99.37 101.24 99.43 99.86 100.24 100.05 99.95 100.98 100.10 基于8个氧原子计算的阳离子数 Si 2.655 2.670 2.639 2.681 2.976 2.698 2.970 2.977 2.961 Al 1.337 1.326 1.363 1.316 1.016 1.299 1.030 1.017 1.035 Ca 0.321 0.308 0.392 0.296 0.006 0.284 0.005 0.011 0.002 Na 0.699 0.707 0.648 0.720 0.078 0.729 0.197 0.981 0.124 K 0.011 0.013 0.010 0.015 0.958 0.011 0.823 0.038 0.923 Total 5.031 5.026 5.052 5.028 5.034 5.022 5.025 5.024 5.046 An 31.143 29.991 37.333 28.752 0.570 27.741 0.447 1.098 0.175 Ab 67.836 68.756 61.758 69.829 7.480 71.221 19.250 95.216 11.861 Or 1.021 1.253 0.909 1.420 91.950 1.037 80.303 3.686 87.964 注:FeOT=FeO+Fe2O3;P(Grt).石榴石边部斜长石;MP.基质中的斜长石;MK.基质中的钾长石;MP(Kf).基质中钾长石边部的斜长石;MK(Pl).基质中斜长石边部的钾长石;MP(Pth).基质条纹长石内的斜长石客晶;MK(Pth).基质条纹长石内的钾长石主晶. 附表 4 泥质麻粒岩中堇青石和尖晶石的化学成分(SC80-6)(%)
附表 4. Representative compositions of cordierite and spinel in the pelitic granulite (%)
样品号 SC80-6 矿物 Crd Spl 点位 C(Grt) C(Grt) C(Grt) CM C(Grt)NSpl SI(Crd) SI(Crd) SI(Crd) SI(Crd) SiO2 47.46 48.77 48.09 47.30 49.39 0.05 0.00 0.02 0.02 TiO2 0.00 0.00 0.00 0.00 0.02 0.01 0.05 0.03 0.00 Al2O3 32.98 32.43 33.23 31.96 33.30 58.05 58.82 59.08 58.62 FeOT 8.94 8.56 8.41 8.86 7.44 28.65 28.06 28.23 28.25 MnO 0.11 0.12 0.06 0.07 0.02 0.05 0.06 0.07 0.04 MgO 7.69 8.06 7.99 7.94 8.60 3.60 3.82 3.85 3.58 CaO 0.00 0.00 0.03 0.02 0.07 0.00 0.00 0.00 0.00 Na2O 0.15 0.13 0.17 0.18 0.24 0.23 0.23 0.22 0.29 K2O 0.03 0.00 0.00 0.02 0.03 0.02 0.00 0.04 0.03 ZnO 0.00 0.09 0.00 0.00 0.05 7.63 7.46 7.58 7.83 Cr2O3 0.00 0.00 0.00 0.03 0.00 0.85 0.80 0.50 0.82 NiO 0.00 0.00 0.00 0.00 0.07 0.10 0.04 0.04 0.01 Total 97.34 98.14 97.97 96.37 99.23 99.23 99.34 99.67 99.52 基于18个氧原子计算的阳离子数 基于4个氧原子计算的阳离子数 Si 4.939 5.036 4.961 4.969 5.017 0.001 0.000 0.001 0.001 Ti 0.000 0.000 0.000 0.000 0.002 0.000 0.001 0.001 0.000 Al 4.046 3.948 4.042 3.959 3.988 1.961 1.977 1.978 1.971 Fe2+ 0.668 0.733 0.656 0.639 0.605 0.659 0.655 0.651 0.649 Fe3+ 0.110 0.006 0.069 0.139 0.027 0.030 0.015 0.022 0.027 Mn 0.010 0.010 0.005 0.006 0.002 0.001 0.002 0.002 0.001 Mg 1.193 1.240 1.229 1.243 1.302 0.154 0.162 0.163 0.152 Ca 0.000 0.000 0.003 0.002 0.008 0.000 0.000 0.000 0.000 Na 0.030 0.026 0.034 0.037 0.047 0.013 0.012 0.012 0.016 K 0.004 0.000 0.000 0.003 0.004 0.001 0.000 0.001 0.001 Zn 0.000 0.000 0.000 0.000 0.000 0.161 0.157 0.159 0.165 Cr 0.000 0.000 0.000 0.002 0.000 0.019 0.018 0.011 0.018 Ni 0.000 0.000 0.000 0.000 0.000 0.002 0.001 0.001 0.000 Total 11.000 11.000 11.000 11.000 11.000 3.003 3.001 3.002 3.002 XMg 0.641 0.628 0.652 0.660 0.683 0.189 0.199 0.200 0.190 注:FeOT=FeO+Fe2O3;XMg=Mg/(Fe2++Mg);C(Grt).石榴石边部的堇青石后生合晶;CM.基质中的堇青石;C(Grt)NSpl.石榴石边部的堇青石与尖晶石直接接触;SI(Crd).堇青石内的尖晶石. 附表 5 泥质麻粒岩中十字石和铝绿泥石化学成分(SC80-6)(%)
附表 5. Representative compositions of staurolite and Sudoite in the pelitic granulite (%)
样品号 SC80-6 矿物名 St Sud SiO2 24.63 24.70 24.85 25.28 34.60 36.08 35.25 35.12 TiO2 1.12 1.00 1.06 0.72 0.84 0.52 0.81 0.74 Al2O3 56.15 56.86 56.11 56.02 34.11 33.92 34.46 34.53 FeOT 11.61 11.67 11.26 10.77 5.70 4.84 5.01 5.20 MnO 0.00 0.00 0.03 0.06 0.04 0.00 0.06 0.00 MgO 2.54 2.53 2.53 2.64 6.78 7.02 6.94 6.59 CaO 0.00 0.03 0.01 0.01 1.85 0.68 1.29 1.45 Na2O 0.02 0.03 0.03 0.08 1.61 2.08 1.90 1.75 K2O 0.00 0.00 0.00 0.00 0.02 0.08 0.10 0.12 Cr2O3 0.13 0.05 0.10 0.30 0.14 0.06 0.10 0.19 Total 96.21 96.88 95.96 95.89 85.68 85.27 85.92 85.68 基于46个氧原子计算的阳离子数 基于14个氧原子计算的阳离子数 Si 6.912 6.882 6.975 7.084 3.242 3.361 3.276 3.275 Ti 0.236 0.210 0.224 0.152 0.059 0.036 0.057 0.052 Al 18.578 18.676 18.567 18.508 3.768 3.725 3.775 3.796 Cr 0.029 0.011 0.022 0.066 0.010 0.004 0.007 0.014 Fe2+ 2.725 2.719 2.643 2.524 0.447 0.377 0.389 0.406 Mn 0.000 0.000 0.007 0.014 0.003 0.000 0.005 0.000 Mg 1.062 1.051 1.058 1.103 0.947 0.974 0.961 0.916 Ca 0.000 0.009 0.003 0.003 0.186 0.068 0.128 0.145 Na 0.011 0.016 0.016 0.043 0.293 0.376 0.342 0.316 K 0.000 0.000 0.000 0.000 0.002 0.010 0.012 0.014 Total 29.553 29.573 29.515 29.498 8.957 8.931 8.953 8.934 XMg 0.280 0.279 0.286 0.304 0.679 0.721 0.712 0.693 注:FeOT=FeO+Fe2O3;XMg=Mg/(Fe2++Mg). 附表 6 泥质麻粒岩(样品SC80-6)的温度条件计算
附表 6. Geothermometry of the pelitic granulite (sample SC80-6)
温度计 LnKD T(℃) 峰期变质阶段 Grt-Bt
(9 kbar)0.948 780 823 809 0.964 786 817 811 0.884 773 847 825 0.912 761 836 817 峰后减压变质阶段 Grt-Crd
(6.2 kbar)2.166 633 639 648 672 2.241 614 620 626 650 2.137 641 646 657 681 2.192 626 632 640 664 2.238 615 621 627 651 2.221 619 625 632 656 Grt-Bt
(6.2 kbar)1.608 715 612 638 638 1.511 751 636 659 666 1.445 778 653 670 687 参考文献 1 2 3 4 5 注:地质温度计引用文献:1.Holdaway(2000);2.Holdaway and Lee(1977);3. Perchuk et al.(1985) ;4.Thompson(1976);5.Bhattacharya et al.(1988) .附表 7 泥质麻粒岩(样品SC80-6)的压力条件计算
附表 7. Geobarometry of the pelitic granulite (sample SC80-6)
压力计 P(kbar) 峰期变质阶段 Grt-Pl-Sil-Qz
(800 ℃)6.1 8.0 6.9 7.7 9.4 8.5 5.4 7.3 6.3 5.6 8.0 6.1 峰后减压变质阶段 Grt-Crd-Sil-Qz
(650 ℃)5.9 6.2 6.6 5.8 6.1 6.7 5.7 6.0 6.7 6.0 6.3 6.4 5.9 6.2 6.6 6.0 6.2 6.4 Grt-Bt-Pl-Qz
(750 ℃)4.4 5.1 4.5 参考文献 1 2 3 4 5 6 7 -
[1] Andersen, T., Griffin, W.L., Pearson, N.J., 2002.Crustal Evolution in the SW Part of the Baltic Shield:The Hf Isotope Evidence.Journal of Petrology, 43(9):1725-1747. https://dx.doi.org/10.1093/petrology/43.9.1725 [2] Bhattacharya, A., Mazumdar, A.C., Sen, S.K., 1988.Fe-Mg Mixing in Cordierite:Constraints from Natural Data and Implications for Cordierite-Garnet Geothermometry in Granulites.American Mineralogist, 73(3-4):338-344. https://pubs.geoscienceworld.org/ammin/article-lookup/73/3-4/338 [3] Brown, M., 2002.Retrograde Processes in Migmatites and Granulites Revisited.Journal of Metamorphic Geology, 20(1):25-40. https://dx.doi.org/10.1046/j.0263-4929.2001.00362.x [4] Chen, D.F., Li, X.H., Pan, J.M., et al., 1998.Metamorphic Newly Produced Zircons, SHRIMP Ion Microprobe U-Pb Age of Amphibolite of Hexi Group, Zhejiang and Its Implications.Acta Mineralogica Sinica, 18(4):396-400 (in Chinese with English abstract). https://www.deepdyve.com/lp/elsevier/zircon-u-th-pb-hf-isotopes-of-the-basement-rocks-in-northeastern-mxI0rr580h [5] Chen, J.F., Foland, K.A., Xing, F.M., et al., 1991.Magmatism along the Southeast Margin of the Yangtze Block:Precambrian Collision of the Yangtze and Cathysia Blocks of China.Geology, 19(8):815-818.https://dx.doi.org/10.1130/0091-7613(1991)019<0815:MATSMO>2.3.CO;2 doi: 10.1130/0091-7613(1991)019<0815:MATSMO>2.3.CO;2 [6] Chen, R., Xing, G.F., Yang, Z.L., et al., 2007.Early Jurassic Zircon SHRIMP U-Pb Age of the Dacitic Volcanic Rocks in the Southeastern Zhejiang Province Determined Firstly and Its Geological Significances.Geological Review, 53(1):31-35 (in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S1342937X15002440 [7] Chinner, G.A., 1961.The Origin of Sillimanite in Glen Clova, Angus.Journal of Petrology, 2(3):312-323. https://dx.doi.org/10.1093/petrology/2.3.312 [8] Connolly, J.A.D., 2005.Computation of Phase Equilibria by Linear Programming:A Tool for Geodynamic Modeling and Its Application to Subduction Zone Decarbonation.Earth and Planetary Science Letters, 236(1):524-541. https://dx.doi.org/10.1016/j.epsl.2005.04.033 [9] Douce, A.E.P., Johnston, A.D., 1991.Phase Equilibria and Melt Productivity in the Pelitic System:Implications for the Origin of Peraluminous Granitoids and Aluminous Granulites.Contributions to Mineralogy and Petrology, 107(2):202-218. https://dx.doi.org/10.1007/BF00310707 [10] Froese, E., 1973.The Oxidation of Almandine and Iron Cordierite.Odontología Chilena, 37(2):245-250. http://www.minsocam.org/ammin/AM64/AM64_337.pdf [11] Gan, X.C., Li, H.M., Sun, D.Z., et al., 1995.A Geochronological Study on Early Proterozoic Granitic Rocks, Southwestern Zhejiang.Acta Petrologica et Mineralogica, 14(1):1-8 (in Chinese with English abstract). doi: 10.1007/s11434-007-0015-5 [12] Gao, W.L., Wang, Z.X., Li, C.L., 2017.Triassic Magmatism in the Eastern Part of the South China Block:Geochronological and Petrogenetic Constraints from Indosinian Granites.Geoscience Frontiers, 8(3):445-456. https://dx.doi.org/10.1016/j.gsf.2016.03.003 [13] Geng, Y.S., Shen, Q.H., Du, L.L., et al., 2016.Regional Metamorphism and Continental Growth and Assembly in China.Acta Petrologica Sinica, 32(9):2579-2608 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201609001.htm [14] Gilder, S.A., Gill, J., Coe, R.S., et al., 1996.Isotopic and Paleomagnetic Constraints on the Mesozoic Tectonic Evolution of South China.Journal of Geophysical Research Solid Earth, 101(B7):16137-16154. https://dx.doi.org/10.1029/96JB00662 [15] Gupta, S., Rodgers, J., Hsü, K.J., et al., 1989.Comments and Reply on "Mesozoic Overthrust Tectonics in South China".Geology, 17(4):384.https://dx.doi.org/10.1130/0091-7613(1989)017<0669:CAROMO>2.3.CO;2 doi: 10.1130/0091-7613(1989)017<0669:CAROMO>2.3.CO;2 [16] Han, R., Ree, J.H., Cho, D.L., et al., 2006.SHRIMP U-Pb Zircon Ages of Pyroclastic Rocks in the Bansong Group, Taebaeksan Basin, South Korea and Their Implication for the Mesozoic Tectonics.Gondwana Research, 9(1-2):106-117. https://dx.doi.org/10.1016/j.gr.2005.06.006 [17] Holdaway, M.J., 2000.Application of New Experimental and Garnet Margules Data to the Garnet-Biotite Geothermometer.American Mineralogist, 85(7-8):881-892. https://dx.doi.org/10.2138/am-2000-0701 [18] Holdaway, M.J., Lee, S.M., 1977.Fe-Mg Cordierite Stability in High-Grade Pelitic Rocks Based on Experimental, Theoretical, and Natural Observations.Contributions to Mineralogy and Petrology, 63(2):175-198. https://dx.doi.org/10.1007/bf00398778 [19] Holland, T.J.B., Powell, R., 1998.An Internally Consistent Thermodynamic Data Set for Phases of Petrological Interest.Journal of Metamorphic Geology, 16(3):309-343. https://dx.doi.org/10.1111/j.1525-1314.1998.00140.x [20] Hsü, K.J., Sun, S., Li, J.L., et al., 1988.Mesozoic Overthrust Tectonics in South China.Geology, 16(5):418-421.https://dx.doi.org/10.1130/0091-7613(1988)016<0418:motisc>2.3.co;2 doi: 10.1130/0091-7613(1988)016<0418:motisc>2.3.co;2 [21] Hu, X.J., Xu, J.K., Tong, Z.X., et al., 1991.The Precambrian Geology of Southwestern Zhejiang Province.Geological Publishing house, Beijing (in Chinese). [22] Jin, X.D., Zhu, H.P., 2000.Determination of 43 Trace Elements in Rock Samples by Double Focusing High Resolution Inductively Coupled Plasma Mass Spectrometry.Chinese Journal of Analytical Chemistry, 28(5):563-567 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-FXHX200005007.htm [23] John, B.M., Zhou, X.H., Li, J.L., 1990.Formation and Tectonic Evolution of Southeastern China and Taiwan:Isotopic and Geochemical Constraints.Tectonophysics, 183(1-4):145-160. doi: 10.1016/0040-1951(90)90413-3 [24] Koziol, A.M., Newton, R.C., 1988.Redetermination of the Anorthite Breakdown Reaction and Improvement of the Plagioclase-Garnet-Al2SiO5-Quartz Geobarometer.Circulation, 73(1):216-223. https://www.sciencedirect.com/science/article/pii/S0012821X12003603 [25] Koziol, A.M., Newton, R.C., 1989.Grossular Activity-Composition Relationships in Ternary Garnets Determined by Reversed Displaced-Equilibrium Experiments.Contributions to Mineralogy and Petrology, 103(4):423-433. https://dx.doi.org/10.1007/bf01041750 [26] Li, J.H., Zhang, Y.Q., Zhao, G.C., et al., 2017.New Insights into Phanerozoic Tectonics of South China:Early Paleozoic Sinistral and Triassic Dextral Transpression in the East Wuyishan and Chencai Domains, NE Cathaysia.Tectonics, 36(5):819-853. https://dx.doi.org/10.1002/2016TC004461 [27] Li, W.Y., Ma, C.Q., Liu, Y.Y., et al., 2012.Discovery of the Indosinian Aluminum A-Type Granite in Zhejiang Province and Its Geological Significance.Science in China (Series D), 42(2):164-177 (in Chinese). https://dx.doi.org/10.1007/s11430-011-4351-6 [28] Li, X.H., Li, Z.X., Li, W.X., et al., 2006.Initiation of the Indosinian Orogeny in South China:Evidence for a Permian Magmatic Arc on Hainan Island.Journal of Geology, 114(3):341-353. https://dx.doi.org/10.1086/501222 [29] Li, Z.X., Li, X.H., 2007.Formation of the 1 300-km-Wide Intracontinental Orogen and Postorogenic Magmatic Province in Mesozoic South China:A Flat-Slab Subduction Model.Geology, 35(2):179-182. https://dx.doi.org/10.1130/G23193A.1 [30] Liu, F.L., Shen, Q.H., Geng, Y.S., et al., 1998.Genetic Relationship of Metamorphic Reaction and Dehydration-Melting.Science China Earth Science, 41(1):49-56. https://dx.doi.org/10.1007/bf02932420 [31] Liu, Q., 2013. Geochemistry and Tectonic Significance of Paleoproterozoic High-Temperature and Low-Temperature Granites in Southwestern Zhejiang Province, Northeastern Cathaysia Block (Dissertation). Nanjing University, Nanjing (in Chinese with English abstract). [32] Liu, R., 2009. Pre-Hercynian Crustal Anatexis in the Cathaysia Block: A Case Study from Zhejiang and Fujian Provinces (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract). [33] Liu, Y.S., Gao, S., Hu, Z.C., et al., 2010a.Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths.Journal of Petrology, 51(1-2):537-571. https://dx.doi.org/10.1093/petrology/egp082 [34] Liu, Y.S., Hu, Z.C., Zong, K.Q., et al., 2010b.Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS.Chinese Science Bulletin, 55(15):1535-1546. https://dx.doi.org/10.1007/s11434-010-3052-4 [35] Lu, L.Z., Xu, X.C., Liu, F.L., 1996.The Early Precambrian Khondalite Series in the North China.Changchun Publishing House, Changchun, 16-100 (in Chinese). https://www.researchgate.net/publication/258357573_The_Precambrian_Khondalite_Belt_in_the_Daqingshan_area_North_China_Craton_evidence_for_multiple_metamorphic_events_in_the_Palaeoproterozoic_era [36] Ludwig, K. R., 2003. User's Manual for Isoplot 3. 0: A Geochronological, Toolkit for Microsoft Excel. Berkeley Geochronology Center. No. 4. Berkeley Geochronological Center, Berkeley. [37] Mao, J.R., Ye, H.M., Liu, K., et al., 2013.The Indosinian Collision-Extension Event between the South China Block and the Palaeo-Pacific Plate:Evidence from Indosinian Alkaline Granitic Rocks in Dashuang, Eastern Zhejiang, South China.Lithos, 172(4):81-97. https://dx.doi.org/10.1016/j.lithos.2013.04.004 [38] Newton, R. C., Haselton, H. T., 1981. Thermodynamics of the Garnet-Plagioclase-Al2SiO5-Quartz Geobarometer. In: Newton, R. C., Navrotsky, A., Wood, B. J., et al., eds., Thermodynamics of Minerals and Melts. Springer-Verlag, New York, 131-147. [39] Perchuk, L.L., Aranovich, L.Y., Podlesskii, K.K., et al., 1985.Precambrian Granulites of the Aldan Shield, Eastern Siberia, USSR.Journal of Metamorphic Geology, 3(3):265-310. https://dx.doi.org/10.1111/j.1525-1314.1985.tb00321.x [40] Powell, R., Holland, T.J.B., 1988.An Internally Consistent Dataset with Uncertainties and Correlations:3.Applications to Geobarometry, Worked Examples and a Computer Program.Journal of Metamorphic Geology, 6(2):173-204. https://dx.doi.org/10.1111/j.1525-1314.1988.tb00415.x [41] Powell, R., Holland, T.J.B., 2008.On Thermobarometry.Journal of Metamorphic Geology, 26(2):155-179.http://dx.doi.org/155-179.10.1111/j.1525-1314.2007.00756.x doi: 10.1111/jmg.2008.26.issue-2 [42] Reche, J., Martinez, F.J., 1996.GPT:An Excel Spreadsheet for Thermobarometric Calculations in Metapelitic Rocks.Computers & Geosciences, 22(7):775-784. https://dx.doi.org/10.1016/0098-3004(96)00007-6 [43] Rowley, D.B., Ziegler, A.M., Nie, G., 1989.Comment on"Mesozoic Overthrust Tectonics in South China".Geology, (17):384-386.https://dx.doi.org/10.1130/0091-7613(1989)017<0384:CAROMO>2.3.CO;2 doi: 10.1130/0091-7613(1989)017<0384:CAROMO>2.3.CO;2 [44] Shu, L.S., 2012.An Analysis of Principal Features of Tectonic Evolution in South China Block.Geological Bulletin of China, 31(7):1035-1053 (in Chinese with English abstract). doi: 10.1007/s11430-014-5006-1 [45] Sun, S.S., Mcdonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, Special Publications, London, 42(1):313-345. http://dx.doi.org/10.1144/GSL.SP.1989.042.01.19 [46] Sun, Y., Ma, C.Q., Liu, Y.Y., et al., 2011.Geochronological and Geochemical Constraints on the Petrogenesis of Late Triassic Aluminous A-Type Granites in Southeast China.Journal of Asian Earth Sciences, 42(6):1117-1131. https://dx.doi.org/10.1016/j.jseaes.2011.06.007 [47] Thompson, A.B., 1976.Mineral Reactions in Pelitic Rocks Ⅱ.Calculation of Some P-T-X(Fe-Mg) Phase Relations.American Journal of Science, 276(4):425-454. https://dx.doi.org/10.2475/ajs.276.4.425 [48] Vielzeuf, D., Montel, J.M., 1994.Partial Melting of Metagreywackes Part Ⅰ.Fluid-Absent Experiments and Phase Relationships.Contributions to Mineralogy and Petrology, 117(4):375-393. https://dx.doi.org/10.1007/bf00307272 [49] Wang, Q., Li, J.W., Jian, P., et al., 2005.Alkaline Syenites in Eastern Cathaysia (South China):Link to Permian-Triassic Transtension.Earth and Planetary Science Letters, 230(3-4):339-354. https://dx.doi.org/10.1016/j.epsl.2004.11.023 [50] Wang, X., Chen, J., Luo, D., 2008.Study on Petrogenesis of Zircons from the Danzhu Granodiorite and Its Geological Implications.Geological Review, 54(3):387-398 (in Chinese with English abstract). https://www.researchgate.net/publication/284316803_Study_on_petrogenesis_of_zircons_from_the_Danzhu_granodiorite_and_its_geological_implications [51] Wang, Y.J., Fan, W.M., Cawood, P.A., et al., 2007.Indosinian High-Strain Deformation for the Yunkaidashan Tectonic Belt, South China:Kinematics and 40Ar/39Ar Geochronological Constraints.Tectonics, 26(6):229-247. https://dx.doi.org/10.1029/2007TC002099 [52] Wang, Y.J., Fan, W.M., Zhang, G.W., et al., 2013.Phanerozoic Tectonics of the South China Block:Key Observations and Controversies.Gondwana Research, 23(4):1273-1305. https://dx.doi.org/10.1016/j.gr.2012.02.019 [53] Wang, Y.J., Wu, C.M., Zhang, A.M., et al., 2012.Kwangsian and Indosinian Reworking of the Eastern South China Block:Constraints on Zircon U-Pb Geochronology and Metamorphism of Amphibolites and Granulites.Lithos, 150(5):227-242. https://dx.doi.org/10.1016/j.lithos.2012.04.022 [54] Wei, C.J., Wang, W., 2007.Phase Equilibria in the Process of Anatexis in High-Grade Metapelites.Geoscience Frontiers, 14(1):125-134. https://dx.doi.org/10.1016/S1872-5791(07)60006-2 [55] Wei, C.J., Zhou, X.W., 2003.Progress in the Study of Metamorphic Phase Equilibrium.Earth Science Frontiers, 10(4):341-351 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200304003.htm [56] Wells, P.R.A., Richardson, S.W., 1979.Thermal Evolution of Metamorphic Rocks in the Central Highlands of Scotland.Geological Society, Special Publications, London, 8(1):339-344. https://dx.doi.org/10.1144/GSL.SP.1979.008.01.37 [57] White, R.W., Powell, R., 2002.Melt Loss and the Preservation of Granulite Facies Mineral Assemblages.Journal of Metamorphic Geology, 20(7):621-632. https://dx.doi.org/10.1046/j.1525-1314.2002.00206.x [58] White, R.W., Powell, R., Halpin, J.A., 2004.Spatially-Focussed Melt Formation in Aluminous Metapelites from Broken Hill, Australia.Journal of Metamorphic Geology, 22(9):825-845. https://dx.doi.org/10.1111/j.1525-1314.2004.00553.x [59] White, R.W., Powell, R., Holland, T.J.B., 2007.Progress Relating to Calculation of Partial Melting Equilibria for Metapelites.Journal of Metamorphic Geology, 25(5):511-527. https://dx.doi.org/10.1111/j.1525-1314.2007.00711.x [60] Whitney, D.L., Evans, B.W., 2010.Abbreviations for Names of Rock-Forming Minerals.American Mineralogist, 95(1):185-187. https://dx.doi.org/10.2138/am.2010.3371 [61] Wu, C.M., Zhang, J., Ren, L.D., 2004.Empirical Garnet-Biotite-Plagioclase-Quartz (GBPQ) Geobarometry in Medium-to High-Grade Metapelites.Journal of Petrology, 45(9):1097-1921. https://dx.doi.org/10.1093/petrology/egh038 [62] Xia, Y., Xu, X.S., Zhu, K.Y., 2012.Paleoproterozoic S-and A-Type Granites in Southwestern Zhejiang:Magmatism, Metamorphism and Implications for the Crustal Evolution of the Cathaysia Basement.Precambrian Research, 216-219:177-207. https://dx.doi.org/10.1016/j.precamres.2012.07.001 [63] Xiang, H., Zhang, L., Zhou, H.W., et al., 2008.U-Pb Zircon Geochronology and Hf Isotope Study of Metamorphosed Basic-Ultrabasic Rocks from Metamorphic Basement in Southwestern Zhejiang:The Response of the Cathaysia Block to Indosinian Orogenic Event.Science China Earth Science, 51(6):788-800. https://dx.doi.org/10.1007/s11430-008-0053-0 [64] Yang, X.Q., Li, Z.L., Yu, S.Q., 2016.Phase Equilibrium Modeling, Fluid Inclusions and Origin of Charnockites in the Datian Region of the Northeastern Cathaysia Block, South China.Journal of Asian Earth Sciences, 126:14-28. https://dx.doi.org/10.1016/j.jseaes.2016.05.024 [65] Yu, J.H., O'Reilly, S.Y., Zhou, M.F., et al., 2012.U-Pb Geochronology and Hf-Nd Isotopic Geochemistry of the Badu Complex, Southeastern China:Implications for the Precambrian Crustal Evolution and Paleogeography of the Cathaysia Block.Precambrian Research, 222-223:424-449. https://dx.doi.org/10.1016/j.precamres.2011.07.014 [66] Yu, J.H., Wang, L.J., O'Reilly, S.Y., et al., 2009.A Paleoproterozoic Orogeny Recorded in a Long-Lived Cratonic Remnant (Wuyishan Terrane), Eastern Cathaysia Block, China.Precambrian Research, 174(3-4):347-363. https://dx.doi.org/10.1016/j.precamres.2009.08.009 [67] Yu, J.H., Wang, L.J., Wei, Z.Y., et al., 2007.Phanerozoic Metamorphic Episodes and Characteristics of Cathaysia Block.Geological Journal of China Universities, 13(3):474-483 (in Chinese with English abstract). https://dx.doi.org/10.16108/j.issn1006-7493.2007.03.008 [68] Zhang, C.G., Wei, C.J., 2004.Phase Equilibria for Metapelites in the K2O-FeO-MgO-Al2O3-SiO2-H2O (KFMASH).Acta Petrologica Sinica, 20(3):725-736 (in Chinese with English abstract). https://www.researchgate.net/publication/249278368_Calculated_phase_relations_in_high-pressure_metapelites_in_the_system_NKFMASH_Na2O-K2O-FeO-MgO-Al2O3-SiO2-H2O_with_application_to_natural_rocks [69] Zhang, Y.Q., Xu, X.B., Jia, D., et al., 2009.Deformation Record of the Change from Indosinian Collision-Related Tectonic System to Yanshanian Subduction-Related Tectonic System in South China during the Early Mesozoic.Earth Science Frontiers, 16(1):234-247 (in Chinese with English abstract). https://www.researchgate.net/profile/Xianbing_Xu2 [70] Zhao, L., 2012. Study on the Early Precambrian Metamorphic Evolution and Geochronology of the Badu Group in Southwestern Zheiiang Province (Dissertation). Chinese Academy of Geological Sciences, Beijing (in Chinese with English abstract). [71] Zhao, L., Zhai, M.G., Santosh, M., et al., 2017.Early Mesozoic Retrograded Eclogite and Mafic Granulite from the Badu Complex of the Cathaysia Block, South China:Petrology and Tectonic Implications.Gondwana Research, 42:84-103. https://dx.doi.org/10.1016/j.gr.2016.10.002 [72] Zhao, L., Zhou, X.W., 2012.The Metamorphic Evolution and P-T Path of Pelitic Granulite from the Badu Group in Southwestern Zhejiang Province.Acta Petrologica et Mineralogica, 31(1):61-72 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSKW201201009.htm [73] Zhao, L., Zhou, X.W., Zhai, M.G., et al., 2014.Paleoproterozoic Tectonic Transition from Collision to Extension in the Eastern Cathaysia Block, South China:Evidence from Geochemistry, Zircon U-Pb Geochronology and Nd-Hf Isotopes of a Granite-Charnockite Suite in Southwestern Zhejiang.Lithos, 184-187(1):259-280. https://dx.doi.org/10.1016/j.lithos.2013.11.005 [74] Zhao, L., Zhou, X.W., Zhai, M.G., et al., 2015.Zircon U-Th-Pb-Hf Isotopes of the Basement Rocks in Northeastern Cathaysia Block, South China:Implications for Phanerozoic Multiple Metamorphic Reworking of a Paleoproterozoic Terrane.Gondwana Research, 28(1):246-261. https://dx.doi.org/10.1016/j.gr.2014.03.019 [75] Zhou, X.M., Sun, T., Shen, W.Z., et al., 2006.Petrogenesis of Mesozoic Granitoids and Volcanic Rocks in South China:A Response to Tectonic Evolution.Episodes, 29(1):26-33. https://dx.doi.org/10.18814/epigsi/2006/v29i1/62224 [76] 陈多福, 李献华, 潘晶铭, 等, 1998.浙江景宁鹤溪群斜长角闪岩变质新生锆石特征、离子探针(SHRIMP) U-Pb年龄及地质意义.矿物学报, 18(4):396-400. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=kwxb199804002&dbname=CJFD&dbcode=CJFQ [77] 陈荣, 邢光福, 杨祝良, 等, 2007.浙东南英安质火山岩早侏罗世锆石SHRIMP年龄的首获及其地质意义.地质论评, 53(1):31-35. https://wap.cnki.net/qikan-YSXB200901008.html [78] 甘晓春, 李惠民, 孙大中, 等, 1995.浙西南早元古代花岗质岩石的年代.岩石矿物学杂志, 14(1):1-8. http://cdmd.cnki.com.cn/Article/CDMD-10335-1016294528.htm [79] 耿元生, 沈其韩, 杜利林, 等, 2016.区域变质作用与中国大陆地壳的形成与演化.岩石学报, 32(9):2579-2608. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20160901 [80] 胡雄健, 许金坤, 童朝旭, 等, 1991.浙西南前寒武纪地质.北京:地质出版社. [81] 靳新娣, 朱和平, 2000.岩石样品中43种元素的高分辨等离子质谱测定.分析化学, 28(5):563-567. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fxhx200005008 [82] 李万友, 马昌前, 刘园园, 等, 2012.浙江印支期铝质A型花岗岩的发现及其地质意义.中国科学:地球科学, 42(2):164-177. http://earth.scichina.com:8080/sciD/CN/Y2002/V32/I6/491 [83] 刘潜, 2013. 浙西南古元古代高温和低温花岗岩的地球化学特征及地质意义(硕士学位论文). 南京: 南京大学. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2949015 [84] 刘锐, 2009. 华夏地块前海西期地壳深熔作用——以浙闽地区为例(博士学位论文). 武汉: 中国地质大学. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1661556 [85] 卢良兆, 徐学纯, 刘福来, 1996.中国北方早前寒武纪孔兹岩系.长春:长春出版社, 16-100. [86] 舒良树, 2012.华南构造演化的基本特征.地质通报, 31(7):1035-1053. http://www.doc88.com/p-907234015097.html [87] 汪相, 陈洁, 罗丹, 2008.浙西南淡竹花岗闪长岩中锆石的成因研究及其地质意义.地质论评, 54(3):387-398. https://www.wenkuxiazai.com/doc/b45604261ed9ad51f01df2a4.html [88] 魏春景, 周喜文, 2003.变质相平衡的研究进展.地学前缘, 10(4):341-351. http://www.doc88.com/p-9773790745160.html [89] 于津海, 王丽娟, 魏震洋, 等, 2007.华夏地块显生宙的变质作用期次和特征.高校地质学报, 13(3):474-483. doi: 10.3969/j.issn.1006-7493.2007.03.016 [90] 张翠光, 魏春景, 2004.中-低压泥质岩在KFMASH体系中的相平衡关系.岩石学报, 20(3):725-736. http://www.ysxb.ac.cn/ysxb/ch/reader/create_pdf.aspx?file_no=20160603&journal_id=ysxb&year_id=2016 [91] 张岳桥, 徐先兵, 贾东, 等, 2009.华南早中生代从印支期碰撞构造体系向燕山期俯冲构造体系转换的形变记录.地学前缘, 16(1):234-247. https://www.wenkuxiazai.com/doc/038c95707fd5360cba1adb2b-3.html [92] 赵磊, 2012. 浙西南八都群早前寒武纪变质演化与年代学研究(硕士学位论文). 北京: 中国地质科学院. http://cdmd.cnki.com.cn/Article/CDMD-82501-1012371258.htm [93] 赵磊, 周喜文, 2012.浙西南八都群泥质麻粒岩的变质演化与P-T轨迹.岩石矿物学杂志, 31(1):61-72. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yskwxzz201201006