40Ar/39Ar Dating of Muscovite from the Guishan Complex in the Tongbai Orogen, Central China, and Its Geological Implications
-
摘要: 出露于桐柏造山带松扒-龟梅断裂带南侧的龟山杂岩经历了两阶段变质及多期变形作用,但其变质变形时代及其与秦岭造山带中产于相同构造部位的武关杂岩的构造关系尚缺乏深入研究.为此,对取自于龟山杂岩中的4件变质沉积岩和2件变质火山岩样品中的白云母进行了40Ar/39Ar同位素定年.结果表明,白云母的40Ar/39Ar坪年龄从306.7±1.7 Ma(保存最好的白云母斑晶)延续到279.2±2.6 Ma(经历后期变形改造的白云母).结合前期锆石U-Pb定年结果推测龟山杂岩的两阶段变质及主期逆冲推覆变形均发生在石炭纪,并在二叠纪遭受到左行走滑剪切作用的改造.龟山杂岩与武关杂岩具有类似的岩石组成和变质变形演化历史,二者共同构成一条>500 km的晚古生代中级变质带,是华北-华南陆块最终碰撞之前大洋俯冲-增生的产物.
-
关键词:
- 桐柏造山带 /
- 龟山杂岩 /
- 40Ar/39Ar定年 /
- 晚古生代 /
- 岩石学
Abstract: The Guishan complex exposed to the south of the Songpa-Guimei fault in the Tongbai orogen underwent two-stage metamorphism and multiple deformation. However, the timing of metamorphism and deformation of the complex and its relation to the Wuguan complex occurring in the same tectonic position in the Qinling orogen remain poorly constrained. In this paper, 4 metasedimentary rocks and 2 metavolcanic rocks from the Guishan complex were performed for muscovite 40Ar/39Ar dating. The results suggest that the plateau ages of muscovite range from 306.7±1.7 Ma (well-preserved muscovite porphyroblasts) to 279.2±2.6 Ma (muscovites overprinted by late deformation). Coupled with published U-Pb zircon data, it is infered that two-stage metamorphism and main thrust deformation of the Guishan complex took place during the Carboniferous, and the reworking of sinistral slid-slip shearing occurred in the Permian. The Guishan and Wuguan complexes have similar rock associations and share the same metamorphic and deformational history. The two complexes constitute a >500 km-long Late Paleozoic medium-grade metamorphic belt, which was resulted from the oceanic subduction-accretion prior to the final collision between the North and South China blocks.-
Key words:
- Tongbai orogen /
- Guishan complex /
- 40Ar/39Ar dating /
- Late Paleozoic /
- petrology
-
表 1 龟山杂岩中定年样品的位置、岩性、矿物组合和定年结果
Table 1. Sampling locations, lithologies, mineral assemblages and age results of the dated samples from the Guishan complex
样品 位置 经纬度 岩性 矿物组合 年龄(Ma) 变质沉积岩 YJZ06-8 老河堰 32°28′29″N
113°16′52″E含石榴白云石英片岩 Grt+Ms+Pl+Qtz+Tur +Oq 306.7±1.7 LW01-6 老湾 32°27′50″N
113°19′30″E白云石英片岩 Ms+Pl+Qtz+Cal+Tur+Oq 279.2±2.6 XY30-10 震雷山 32°04′51″N
114°07′17″E含石榴十字白云石英片岩 Grt+St+Ms+Bt+Qtz+Tur+Oq 286.5±1.7 XY32-1 双桥 32°03′30″N
114°08′17″E含石榴绢云片岩 Grt+Ms+Ser+Qtz+Tur+Oq 297.7±1.6 变质火山岩 XY13-6 十三里桥 32°04′32″N
114°02′54″E白云钾长浅粒岩 Ms+Kfs+Qtz+Oq 292.9±1.7 XY22-6 大石门 32°04′04″N
114°04′46″E白云钾长浅粒岩 Ms+Kfs+Qtz+Oq 280.6±1.6 注:Bt.黑云母;Cal.方解石;Grt.石榴石;Kfs.钾长石;Ms.白云母;Oq.不透明矿物;Pl.斜长石;Qtz.石英;Ser.绢云母;St.十字石;Tur.电气石. 表 2 龟山杂岩中白云母的40Ar/39Ar同位素分析及年
Table 2. 40Ar/39Ar isotopic analyses of muscovites from the Guishan complex
加热阶段 T
(℃)40Ar/39Ar
m36Ar/39Ar
m37Ar/39Ar
m38Ar/39Ar
m40Ar
(%)F 39Ar
(10-14 mol)39Ar (cum.)
(%)年龄
(Ma)±2σ YJZ06-8(样品重量W=28.88 mg,照射参数J=0.007 789) 1 700 44.0566 0.080 2 0.000 0 0.027 6 46.21 20.358 4 0.17 0.35 265.5 7.3 2 800 34.0635 0.036 0 0.016 4 0.019 3 68.79 23.433 5 0.98 2.35 302.4 3.1 3 840 24.9599 0.005 2 0.032 1 0.013 6 93.84 23.422 6 1.47 5.34 302.3 2.9 4 880 24.4288 0.001 6 0.000 0 0.012 6 98.07 23.957 4 4.26 14.01 308.7 2.9 5 920 24.1891 0.000 3 0.0000 0.012 4 99.63 24.099 2 14.34 43.23 310.3 2.9 6 950 23.9250 0.000 2 0.000 0 0.012 3 99.79 23.8738 6.15 55.76 307.7 2.8 7 990 23.7561 0.000 3 0.004 6 0.012 3 99.55 23.648 7 4.81 65.56 305.0 2.8 8 1030 23.7545 0.000 7 0.000 0 0.012 4 99.11 23.544 0 2.72 71.09 303.8 2.8 9 1070 23.9970 0.000 6 0.000 0 0.012 5 99.21 23.807 8 2.81 76.81 306.9 2.8 10 1100 24.1220 0.000 7 0.012 9 0.012 4 99.10 23.904 1 2.92 82.75 308.0 2.8 11 1150 24.0357 0.000 2 0.006 1 0.012 3 99.72 23.968 1 5.86 94.69 308.8 2.8 12 1200 23.9635 0.000 3 0.000 0 0.012 1 99.65 23.878 8 2.46 99.70 307.7 2.8 13 1300 25.1150 0.002 7 0.041 5 0.014 8 96.82 24.316 8 0.12 99.94 312.9 7.0 14 1400 32.5910 0.025 7 0.000 0 0.012 5 76.69 24.992 8 0.03 100.00 321.0 23.0 LW01-6(样品重量W=46.75 mg,照射参数J=0.009 837) 1 600 26.895 6 0.075 1 0.000 0 0.028 8 17.45 4.693 4 0.05 0.06 81.0 46.0 2 700 7.536 1 0.016 3 0.000 0 0.018 1 36.20 2.728 4 0.31 0.44 47.8 2.8 3 800 12.520 6 0.005 8 0.002 3 0.013 5 86.24 10.797 4 2.96 4.13 182.1 1.8 4 880 17.512 4 0.005 4 0.000 6 0.012 8 90.84 15.907 6 14.19 21.81 262.3 2.4 5 910 16.648 2 0.001 3 0.000 0 0.011 9 97.65 16.256 4 16.46 42.31 267.6 2.5 6 940 15.774 7 0.001 7 0.007 5 0.012 2 96.84 15.276 4 5.56 49.22 252.6 2.4 7 970 16.141 8 0.002 4 0.004 5 0.012 5 95.53 15.419 9 3.36 53.41 254.8 2.4 8 1000 16.811 8 0.002 2 0.009 5 0.012 2 96.15 16.165 4 3.89 58.26 266.2 2.5 9 1040 17.349 9 0.002 1 0.000 5 0.012 0 96.39 16.723 7 6.59 66.46 274.8 2.6 10 1080 17.709 6 0.002 4 0.011 0 0.012 1 96.05 17.011 1 10.28 79.26 279.1 2.6 11 1120 17.400 3 0.001 0 0.001 7 0.011 7 98.34 17.111 1 13.80 96.45 280.6 2.6 12 1200 17.593 5 0.001 4 0.000 0 0.011 6 97.64 17.178 6 2.70 99.81 281.7 2.7 13 1300 21.499 6 0.013 9 0.000 0 0.013 8 80.83 17.378 3 0.15 100.00 284.7 8.0 XY30-10(样品重量W=28.10 mg,照射参数J=0.008 578) 1 700 21.733 6 0.024 8 0.000 0 0.019 4 66.22 14.392 7 0.23 0.44 210.0 5.3 2 800 22.253 8 0.009 3 0.006 5 0.014 5 87.58 19.491 0 1.31 2.90 278.9 2.6 3 840 20.664 7 0.002 4 0.018 9 0.013 2 96.50 19.942 7 1.98 6.61 284.9 2.7 4 880 20.380 1 0.001 6 0.000 6 0.012 7 97.72 19.916 4 3.01 12.24 284.5 2.7 5 920 20.554 6 0.001 3 0.017 6 0.012 6 98.14 20.172 8 8.35 27.87 287.9 2.7 6 960 20.326 3 0.000 6 0.002 8 0.012 5 99.09 20.141 9 10.23 47.02 287.5 2.7 7 1000 20.214 6 0.000 9 0.003 1 0.012 6 98.63 19.937 7 4.75 55.92 284.8 2.6 8 1040 20.325 1 0.001 5 0.024 9 0.012 7 97.74 19.865 4 3.17 61.86 283.9 2.6 9 1080 20.433 3 0.001 4 0.022 6 0.012 7 97.90 20.004 4 3.03 67.53 285.7 2.7 10 1120 20.453 7 0.001 1 0.030 1 0.012 7 98.33 20.113 2 3.19 73.49 287.1 2.7 11 1160 20.452 1 0.000 8 0.001 9 0.012 6 98.86 20.219 1 5.43 83.66 288.5 2.7 12 1200 20.490 7 0.000 4 0.002 6 0.012 5 99.44 20.375 1 6.43 95.70 290.6 2.7 13 1300 20.711 2 0.000 6 0.007 2 0.012 4 99.19 20.542 7 1.93 99.31 292.8 2.7 14 1400 21.316 2 0.002 0 0.000 0 0.011 9 97.16 20.711 1 0.37 100.00 295.0 3.7 XY32-1(样品重量W=26.85 mg,照射参数J=0.009 058) 1 700 20.792 2 0.015 1 0.000 0 0.017 1 78.52 16.326 6 0.52 0.99 248.8 2.6 2 800 22.291 1 0.008 0 0.000 7 0.014 3 89.40 19.929 1 2.08 4.98 299.4 2.8 3 840 20.803 4 0.002 8 0.001 0 0.012 9 96.00 19.970 5 3.00 10.77 300.0 2.8 4 880 20.267 6 0.001 5 0.015 4 0.012 5 97.79 19.820 5 4.48 19.41 297.9 2.8 5 910 19.974 4 0.000 7 0.000 0 0.012 4 98.89 19.753 3 6.32 31.58 296.9 2.7 6 950 19.910 5 0.000 4 0.003 2 0.012 4 99.31 19.773 1 8.83 48.57 297.2 2.7 7 980 19.873 5 0.000 6 0.001 7 0.012 4 99.07 19.689 5 4.13 56.53 296.1 2.7 8 1020 19.915 4 0.001 1 0.003 9 0.012 6 98.32 19.580 4 3.11 62.52 294.5 2.7 9 1060 20.016 9 0.001 1 0.000 9 0.012 5 98.41 19.699 4 3.20 68.68 296.2 2.7 10 1100 20.086 2 0.001 0 0.005 6 0.012 4 98.53 19.791 0 3.53 75.47 297.5 2.8 11 1140 20.078 5 0.000 9 0.009 2 0.012 5 98.72 19.821 9 5.02 85.14 297.9 2.8 12 1180 19.972 2 0.000 4 0.003 7 0.012 5 99.46 19.863 8 6.14 96.97 298.5 2.8 13 1300 20.150 3 0.000 3 0.000 0 0.012 3 99.51 20.051 8 1.32 99.52 301.1 2.9 14 1400 21.582 6 0.005 9 0.000 0 0.014 4 91.88 19.829 7 0.25 100.00 298.0 3.6 XY13-6(样品重量W=28.03 mg,照射参数J=0.008 219) 1 700 24.919 7 0.025 1 0.000 0 0.020 9 70.23 17.500 0 0.23 0.39 242.4 3.9 2 800 25.137 0 0.011 9 0.025 9 0.015 1 85.95 21.605 1 0.91 1.90 294.9 2.8 3 850 22.690 5 0.003 8 0.000 0 0.013 1 95.03 21.562 2 2.75 6.48 294.3 2.7 4 890 22.268 5 0.002 6 0.000 0 0.012 8 96.51 21.490 2 4.91 14.64 293.4 2.7 5 920 21.869 4 0.001 5 0.014 2 0.012 7 97.95 21.421 9 8.59 28.92 292.6 2.7 6 960 21.684 4 0.001 0 0.003 4 0.012 6 98.57 21.373 5 12.31 49.37 292.0 2.7 7 1000 21.719 8 0.001 3 0.001 0 0.012 6 98.21 21.330 1 10.56 66.93 291.4 2.7 8 1040 21.937 6 0.001 9 0.005 1 0.012 7 97.41 21.369 0 7.16 78.83 291.9 2.7 9 1080 21.857 9 0.001 5 0.000 0 0.012 7 97.93 21.405 4 6.13 89.03 292.4 2.7 10 1120 21.684 6 0.000 6 0.005 4 0.012 4 99.17 21.504 9 4.24 96.08 293.6 2.7 11 1160 21.653 2 0.000 4 0.000 0 0.012 4 99.43 21.530 8 1.71 98.93 293.9 2.7 12 1240 22.097 7 0.002 7 0.000 0 0.012 8 96.39 21.300 7 0.44 99.65 291.0 3.1 13 1400 23.892 4 0.004 4 0.000 0 0.013 3 94.58 22.597 1 0.21 100.00 307.3 3.8 XY22-6(样品重量W=26.38 mg,照射参数J=0.008 578) 1 700 19.206 0 0.026 8 0.120 8 0.037 5 58.78 11.289 5 0.32 0.57 166.8 2.6 2 800 22.135 7 0.009 7 0.012 0 0.029 1 87.04 19.266 6 1.07 2.49 275.9 2.6 3 840 20.440 1 0.002 5 0.000 0 0.012 7 96.38 19.700 8 1.46 5.13 281.7 2.6 4 880 19.999 3 0.001 5 0.015 3 0.012 5 97.71 19.542 0 2.12 8.95 279.6 2.6 5 920 20.246 7 0.001 5 0.000 0 0.012 7 97.82 19.805 5 5.93 19.63 283.1 2.6 6 960 19.953 9 0.000 7 0.001 8 0.012 5 98.93 19.739 5 13.56 44.07 282.2 2.6 7 990 19.737 0 0.000 6 0.008 5 0.012 5 99.08 19.555 1 6.94 56.56 279.8 2.6 8 1030 19.849 3 0.001 2 0.002 8 0.012 7 98.25 19.501 5 5.52 66.51 279.0 2.6 9 1070 19.894 0 0.001 4 0.011 5 0.012 7 97.89 19.473 8 4.52 74.66 278.7 2.6 10 1130 19.837 9 0.000 6 0.007 7 0.012 5 99.12 19.663 5 9.67 92.08 281.2 2.6 11 1180 20.017 5 0.000 4 0.012 0 0.012 5 99.45 19.908 5 4.19 99.63 284.4 2.6 12 1300 21.108 0 0.002 3 0.000 0 0.012 9 96.73 20.417 9 0.18 99.94 291.2 4.4 13 1400 27.964 4 0.013 1 0.000 0 0.018 3 86.16 24.093 9 0.03 100.00 339.0 19.0 注:m代表样品中测定的同位素比值;F为40Ar*/39Ar比值,即放射性成因40Ar与39Ar比值;39Ar(cum.)代表39Ar累积. -
[1] Chen, L.Y., Liu, X.C., Qu, W., et al., 2014.U-Pb Zircon Ages and Geochemistry of the Wuguan Complex in the Qinling Orogen, Central China:Implications for the Late Paleozoic Tectonic Evolution between the Sino-Korean and Yangtze Cratons.Lithos, 192-195:192-207. https://doi.org/10.1016/j.lithos.2014.01.014 [2] Chen, W., Zhang, Y., Zhang, Y.Q., et al., 2006.Late Cenozoic Episodic Uplifting in Southeastern Part of the Tibetan Plateau-Evidence from Ar-Ar Thermochronology.Acta Petrologica Sinica, 22(4):867-872 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200604010.htm [3] Cheng, H., King, R.L., Nakamura, E., et al., 2009.Transitional Time of Oceanic to Continental Subduction in the Dabie Orogen:Constraints from U-Pb, Lu-Hf, Sm-Nd and Ar-Ar Multichronometric Dating.Lithos, 110(1-4):327-342. https://doi.org/10.1016/j.lithos.2009.01.013 [4] Cheng, H., Liu, X.C., Vervoort, J.D., et al., 2016.Micro-Sampling Lu-Hf Geochronology Reveals Episodic Garnet Growth and Multiple High-P Metamorphic Events.Journal of Metamorphic Geology, 34(4):363-377. https://doi.org/10.1111/jmg.12185 [5] Cheng, H., Zhang, C., Vervoort, J.D., et al., 2011.New Lu-Hf Geochronology Constrains the Onset of Continental Subduction in the Dabie Orogen.Lithos, 121(1-4):41-54. https://doi.org/10.1016/j.lithos.2010.10.004 [6] Faure, M., Lin, W., Schärer, U., et al., 2003.Continental Subduction and Exhumation of UHP Rocks:Structural and Geochronological Insights from the Dabieshan (East China).Lithos, 70(3-4):213-241. https://doi.org/10.1016/s0024-4937(03)00100-2 [7] Hames, W.E., Bowring, S.A., 1994.An Empirical Evaluation of the Argon Diffusion Geometry in Muscovite.Earth and Planetary Science Letters, 124(1-4):161-169. https://doi.org/10.1016/0012-821x(94)00079-4 [8] Huang, P., Song, C.Z., Ren, S.L., et al., 2016.Tectonic Property of the Beihuaiyang Tectonic Belt and Its Implications for the Location of the Suture Zone between Yangtze Block and North China Block.Acta Geologica Sinica, 90(6):1112-1129 (in Chinese with English abstract). doi: 10.1007/s11434-010-4093-4 [9] Huang, S.Y., Xu, B., Wang, C.Q., et al., 2006.Geometry, Kinematics and Evolution of the Tongbai Orogenic Belt.Science in China (Series D), 36(3):242-251 (in Chinese). doi: 10.1007/s11430-006-0828-0 [10] Jian, P., Yang, W.R., Li, Z.C., et al., 1997.Isotopic Geochronological Evidence for the Caledonian Xiongdian Eclogite in the Western Dabie Mountains, China.Acta Geologica Sinica, 71(2):133-141 (in Chinese with English abstract). doi: 10.1007/BF03183215 [11] Liu, X.C., Jahn, B.M., Cui, J.J., et al., 2010.Triassic Retrograded Eclogites and Cretaceous Gneissic Granites in the Tongbai Complex, Central China:Implications for the Architecture of the HP/UHP Tongbai-Dabie-Sulu Collision Zone.Lithos, 119(3-4):211-237. https://doi.org/10.1016/j.lithos.2010.06.005 [12] Liu, X.C., Jahn, B.M., Dong, S.W., et al., 2008.High-Pressure Metamorphic Rocks from Tongbaishan, Central China:U-Pb and 40Ar/39Ar Age Constraints on the Provenance of Protoliths and Timing of Metamorphism.Lithos, 105(3-4):301-318. https://doi.org/10.1016/j.lithos.2008.04.009 [13] Liu, X.C., Jahn, B.M., Hu, J., et al., 2011a.Metamorphic Patterns and SHRIMP Zircon Ages of Medium-to-High Grade Rocks from the Tongbai Orogen, Central China:Implications for Multiple Accretion/Collision Processes Prior to Terminal Continental Collision.Journal of Metamorphic Geology, 29(9):979-1002. https://doi.org/10.1111/j.1525-1314.2011.00952.x [14] Liu, X., Li, S.Z., Suo, Y.H., et al., 2011b.Structural Anatomy of the Exhumation of High-Pressure Rocks:Constraints from the Tongbai Collisional Orogen and Surrounding Units.Geological Journal, 46(2-3):156-172. https://doi.org/10.1002/gj.1245 [15] Liu, X.C., Jiang, B.M., Li, S.Z., 2013.Diachroneity of Continental Subduction and Exhumation:Constraints from the Permian-Triassic HP Metamorphic Terrane in the Tongbai Orogen, Central China.Chinese Science Bulletin, 58(23):2251-2258 (in Chinese). doi: 10.1007/s11434-013-6067-9.pdf [16] Liu, X.C., Jahn, B.M., Li, S.Z., et al., 2013.U-Pb Zircon Age and Geochemical Constraints on Tectonic Evolution of the Paleozoic Accretionary Orogenic System in the Tongbai Orogen, Central China.Tectonophysics, 599:67-88. https://doi.org/10.1016/j.tecto.2013.04.003 [17] Liu, X.C., Jahn, B.M., Liu, D.Y., et al., 2004a.SHRIMP U-Pb Zircon Dating of a Metagabbro and Eclogites from Western Dabieshan (Hong'an Block), China, and Its Tectonic Implications.Tectonophysics, 394(3-4):171-192. https://doi.org/10.1016/j.tecto.2004.08.004 [18] Liu, X., Wei, C., Li, S., et al., 2004b.Thermobaric Structure of a Traverse across Western Dabieshan:Implications for Collision Tectonics between the Sino-Korean and Yangtze Cratons.Journal of Metamorphic Geology, 22(4):361-379. https://doi.org/10.1111/j.1525-1314.2004.00519.x [19] Liu, X.C., Li, S.Z., Jiang, B.M., 2015.Tectonic Evolution of the Tongbai-Hong'an Orogen in Central China:From Oceanic Subduction/Accretion to Continent-Continent Collision.Science in China (Series D), 45(8):1088-1108 (in Chinese). https://www.researchgate.net/publication/282540270_Tectonic_evolution_of_the_Tongbai-Hong%27an_orogen_in_central_China_From_oceanic_subductionaccretion_to_continent-continent_collision [20] Liu, X., Li, S.Z., Suo, Y.H., et al., 2012.Structural Analysis of the Northern Tongbai Metamorphic Terranes, Central China:Implications for Paleozoic Accretionary Process on the Southern Margin of the North China Craton.Journal of Asian Earth Sciences, 47:143-154. https://doi.org/10.1016/j.jseaes.2011.09.002 [21] Liu, X.C., Lou, Y.X., Dong, S.W., 2005.P-T Path of Low-Temperature Eclogites from the Tongbaishan Area.Acta Petrologica Sinica, 21(4):1081-1093 (in Chinese with English abstract). http://www.academia.edu/2049908/Metamorphic_structure_of_the_Western_and_Ligurian_Alps [22] Liu, Z.G., Fu, Y.L., Niu, B.G., et al., 1993.40Ar/39Ar Dating of Metabasic Complexes from the Sujiahe Group and the Guishan Formation of the Xinyang Group at the Northern Foot of the Dabie Mountains and Its Geological Implications.Chinese Science Bulletin, 38(13):1214-1218 (in Chinese). [23] Liu, Z.G., Niu, B.G., Fu, Y.L., et al., 1994.The Tectonostratigraphic Units at the Northern Foot of the Dabie Mountains.Regional Geology of China, (3):246-253 (in Chinese with English abstract). doi: 10.1007/BF02882254 [24] Liu, Z.G., Niu, B.G., Ren, J.S., 1992.Disintegration of the Xinyang Group and Its Tectonic Implications.Geological Review, 38 (4):293-301 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZDZ198201001.htm [25] Mattauer, M., Matte, P., Malavieille, J., et al., 1985.Tectonics of the Qinling Belt:Build-up and Evolution of Eastern Asia.Nature, 317(6037):496-500. https://doi.org/10.1038/317496a0 [26] Meng, Q.R., Zhang, G.W., 2000.Geologic Framework and Tectonic Evolution of the Qinling Orogen, Central China.Tectonophysics, 323(3-4):183-196. https://doi.org/10.1016/s0040-1951(00)00106-2 [27] Niu, B.G., Fu, Y.L., Liu, Z.G., et al., 1994.Main Tectonothermal Events and 40Ar/39Ar Dating of the Tongbai-Dabie Mts.Acta Geoscientia Sinica, (1-2):20-34 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQXB4Z1.004.htm [28] Niu, H.J., 1995.The Redivision of Liuling Group in Eastern Qinling Area of Central China.Scientia Geologica Sinica, 30 (4):313-320 (in Chinese with English abstract). https://pubs.geoscienceworld.org/sepm/jsedres/article-abstract/82/1/9/99462/geochemical-constraints-on-the-provenance-and [29] Ratschbacher, L., Franz, L., Enkelmann, E., et al., 2006. The Sino-Korean-Yangtze Suture, the Huwan Detachment, and the Paleozoic-Tertiary Exhumation of (Ultra)High-Pressure Rocks along the Tongbai-Xinxian-Dabie Mountains. In: Hacker, B. R., McClelland, W. C., Liou, J. G., eds., Ultrahigh-Pressure Metamorphism: Deep Continental Subduction. Geological Society of America Special Paper, 226: 45-75. https://doi.org/10.1130/2006.2403(03) [30] Ratschbacher, L., Hacker, B.R., Calvert, A., et al., 2003.Tectonics of the Qinling (Central China):Tectonostratigraphy, Geochronology, and Deformation History.Tectonophysics, 366(1-2):1-53. https://doi.org/10.1016/s0040-1951(03)00053-2 [31] Ren, J.S., Chen, T.Y., Niu, B.G., et al., 1990.Tectonic Evolution of the Continental Lithosphere and Metallogeny in Eastern China and Adjacent Areas.Science Press, Beijing (in Chinese). [32] Ren, J.S., Jiang, C.F., Zhang, Z.K., et al., 1980.The Geotectonic Evolution of China.Science Press, Beijing (in Chinese). [33] Ren, J. S., Zhang, Z. K., Niu, B. G., et al., 1991. On the Qinling Orogenic Belt Integration of the Sino-Korean and Yangtze Blocks. In: Ye, L. J., Qian, X. L., Zhang, G. W., eds., A Selection of Papers Presented at the Conference on the Qinling Orogenic Belt. Northwest University Press, Xi'an, 99-110 (in Chinese with English abstract). [34] Sun, W.D., Williams, I.S., Li, S.G., 2002.Carboniferous and Triassic Eclogites in the Western Dabie Mountains, East-Central China:Evidence for Protracted Convergence of the North and South China Blocks.Journal of Metamorphic Geology, 20(9):873-886. https://doi.org/10.1046/j.1525-1314.2002.00418.x [35] Wu, Y.B., Hanchar, J.M., Gao, S., et al., 2009.Age and Nature of Eclogites in the Huwan Shear Zone, and the Multi-Stage Evolution of the Qinling-Dabie-Sulu Orogen, Central China.Earth and Planetary Science Letters, 277(3-4):345-354. https://doi.org/10.1016/j.epsl.2008.10.031 [36] Xu, B., Grove, M., Wang, C.Q., et al., 2000.40Ar/39Ar Thermochronology from the Northwestern Dabie Shan:Constraints on the Evolution of Qinling-Dabie Orogenic Belt, East-Central China.Tectonophysics, 322(3-4):279-301. https://doi.org/10.1016/s0040-1951(00)00092-5 [37] Xu, Z.Q., Lu, Y.L., Tang, Y.Q., et al., 1988.Formation and Evolution of the Composition Eastern Qinling Chains and Plate Dynamics.China Ervironmental Science Press, Beijing (in Chinese). [38] Xue, F., Lerch, M.F., Kröner, A., et al., 1996.Tectonic Evolution of the East Qinling Mountains, China, in the Palaeozoic:A Review and New Tectonic Model.Tectonophysics, 253(3-4):271-284. https://doi.org/10.1016/0040-1951(95)00060-7 [39] Yu, Z. P., Sun, Y., Zhang, G. W., 1988. Preliminary Research on Fore-Arc Sedimentary Wedge on the Qinling Suture in Shangdan Area. In: Zhang, G. W., et al., eds., Orogenesis and Evolution of the Qinling Orogen. Northwest University Press, Xi'an, 75-85 (in Chinese with English abstract). [40] Zhai, X.M., Day, H.W., Hacker, B.R., et al., 1998.Paleozoic Metamorphism in the Qinling Orogen, Tongbai Mountains, Central China.Geology, 26(4):371.https://doi.org/10.1130/0091-7613(1998)026<0371:pmitqo>2.3.co;2 doi: 10.1130/0091-7613(1998)026<0371:pmitqo>2.3.co;2 [41] Zhang, G.W., et al., 1988.Formation and Evolution of the Qinling Orogen.Northwest University Press, Xi'an (in Chinese with English abstract). [42] Zhang, G.W., Zhang B.R., Yuan X.C., et al., 2001.Qinling Orogenic Belt and Continental Dynamics.Science Press, Beijing (in Chinese with English abstract). [43] Zhang, Y., Chen, W., Chen, K.L., et al., 2006.Study on the Ar-Ar Age Spectrum of Diagenetic I/S and the Mechanism of 39Ar Recoil Loss-Example from the Clay Minerals of P-T Boundary in Changxing, Zhejiang Province.Geological Review, 52(4):556-561 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200604018.htm [44] 陈文, 张彦, 张岳桥, 等, 2006.青藏高原东南缘晚新生代幕式抬升作用的Ar-Ar热年代学证据.岩石学报, 22(4):867-872. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20060492&journal_id=ysxb [45] 黄鹏, 宋传中, 任升莲, 等, 2016.北淮阳构造带的属性及其对板块缝合线位置的启示.地质学报, 90(6):1112-1129. http://mall.cnki.net/magazine/magadetail/DZXE201606.htm [46] 黄少英, 徐备, 王长秋, 等, 2006.桐柏造山带几何学、运动学和演化.中国科学(D辑), 36(3):242-251. http://www.oalib.com/paper/4152365 [47] 简平, 杨巍然, 李志昌, 等, 1997.大别山西部熊店加里东期榴辉岩——同位素年代学的证据.地质学报, 71(2):133-141. http://www.oalib.com/paper/4893962 [48] 刘晓春, 江博明, 李三忠, 2013.大陆岩板俯冲与折返的穿时性:桐柏造山带晚二叠-三叠纪高压变质地体提供的制约.科学通报, 58(23):2251-2258. http://www.oalib.com/paper/4152365 [49] 刘晓春, 李三忠, 江博明, 2015.桐柏-红安造山带的构造演化:从大洋俯冲/增生到陆陆碰撞.中国科学(D辑), 45(8):1088-1108. http://www.oalib.com/paper/4152365 [50] 刘晓春, 娄玉行, 董树文, 2005.桐柏山地区低温榴辉岩变质作用的P-T轨迹.岩石学报, 21(4):1081-1093. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200504006 [51] 刘志刚, 富云莲, 牛宝贵, 等, 1993.大别山北坡苏家河群及原信阳群龟山组变基性杂岩40Ar/39Ar测年及其地质意义.科学通报, 38(13):1214-1218. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=kxtb199313017&dbname=CJFD&dbcode=CJFQ [52] 刘志刚, 牛宝贵, 富云莲, 等, 1994.大别山北麓主要构造岩相带浅析-以信阳地区为例.中国区域地质, (3):246-253. http://www.cnki.com.cn/Article/CJFDTOTAL-JLDZ502.001.htm [53] 刘志刚, 牛宝贵, 任纪舜, 1992.信阳群的解体及其大地构造意义.地质论评, 38(4):293-301. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200404007.htm [54] 牛宝贵, 富云莲, 刘志刚, 等, 1994.桐柏-大别山主要构造热事件及40Ar/39Ar地质定年研究.地球学报, (1-2):20-34. http://www.doc88.com/p-0894779254553.html [55] 牛宏建, 1995.东秦岭地区"刘岭群"的重新划分.地质科学, 30(4):313-320. http://www.cnki.com.cn/Article/CJFDTotal-ZQYD201409011.htm [56] 任纪舜, 陈廷愚, 牛宝贵, 等, 1990中国东部及邻区大陆岩石圈的构造演化与成矿.北京:科学出版社. [57] 任纪舜, 姜春发, 张正坤, 等, 1980.中国大地构造及其演化.北京:科学出版社. [58] 任纪舜, 张正坤, 牛宝贵, 等, 1991. 论秦岭造山带-中朝扬子板块的拼合过程. 见: 叶连俊, 钱祥麟, 张国伟主编, 秦岭造山带学术讨论会论文选集. 西安: 西北大学出版社, 99-110. [59] 许志琴, 卢一伦, 汤耀庆, 等, 1988.东秦岭复合山链的形成-变形、演化及板块动力学.北京:中国环境科学出版社. [60] 于在平, 孙勇, 张国伟, 1988. 商丹地区秦岭缝合带弧前沉积楔形体初探. 见: 张国伟等著, 秦岭造山带的形成及其演化. 西安: 西北大学出版社, 75-85. [61] 张国伟, 等, 1988.秦岭造山带的形成及其演化.西安:西北大学出版社. [62] 张国伟, 张本仁, 袁学诚, 等, 2001.秦岭造山带与大陆动力学.北京:科学出版社, 1-885. [63] 张彦, 陈文, 陈克龙, 等, 2006.成岩混层(I/S)Ar-Ar年龄谱型及39Ar核反冲丢失机理研究——以浙江长兴地区P-T界线粘土岩为例.地质论评, 52(4):556-561. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=OA000005036