• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    浙西南遂昌-大柘地区石榴角闪二长片麻岩成因及变质演化

    周枭 郑常青 周喜文 董云峰 王照元 宋旸 韩晓萌

    周枭, 郑常青, 周喜文, 董云峰, 王照元, 宋旸, 韩晓萌, 2018. 浙西南遂昌-大柘地区石榴角闪二长片麻岩成因及变质演化. 地球科学, 43(1): 199-219. doi: 10.3799/dqkx.2018.012
    引用本文: 周枭, 郑常青, 周喜文, 董云峰, 王照元, 宋旸, 韩晓萌, 2018. 浙西南遂昌-大柘地区石榴角闪二长片麻岩成因及变质演化. 地球科学, 43(1): 199-219. doi: 10.3799/dqkx.2018.012
    Zhou Xiao, Zheng Changqing, Zhou Xiwen, Dong Yunfeng, Wang Zhaoyuan, Song Yang, Han Xiaomeng, 2018. Genesis and Metamorphic Evolution of Garnet Amphibolite Monzogneiss from Suichang-Dazhe Region in Southwestern Zhejiang Province. Earth Science, 43(1): 199-219. doi: 10.3799/dqkx.2018.012
    Citation: Zhou Xiao, Zheng Changqing, Zhou Xiwen, Dong Yunfeng, Wang Zhaoyuan, Song Yang, Han Xiaomeng, 2018. Genesis and Metamorphic Evolution of Garnet Amphibolite Monzogneiss from Suichang-Dazhe Region in Southwestern Zhejiang Province. Earth Science, 43(1): 199-219. doi: 10.3799/dqkx.2018.012

    浙西南遂昌-大柘地区石榴角闪二长片麻岩成因及变质演化

    doi: 10.3799/dqkx.2018.012
    基金项目: 

    中国地质调查局项目 121201102000150020-06

    国家自然科学基金项目 41472164

    详细信息
      作者简介:

      周枭(1991-), 男, 硕士研究生, 主要从事变质岩石学研究

      通讯作者:

      郑常青

    • 中图分类号: P581

    Genesis and Metamorphic Evolution of Garnet Amphibolite Monzogneiss from Suichang-Dazhe Region in Southwestern Zhejiang Province

    • 摘要: 浙西南遂昌-大柘地区八都群中分布一套含石榴石、角闪石的二长片麻岩,发育典型石榴石"白眼圈"反应结构,但其成因及变质演化目前尚不明确.运用矿物X射线电子探针微区分析、LA-ICP-MS锆石U-Pb定年并结合全岩主微量元素进行了研究.识别出3个阶段的变质矿物共生组合:进变质阶段(M1)矿物组合为石榴石变斑晶内部的包裹体矿物石榴石+角闪石+斜长石+石英(Grt1+Amp1+Pl1+Q),变质峰期矿物组合(M2)为石榴子石变斑晶幔部和基质矿物钾长石+斜长石+黑云母+石英(Grt2+Kf2+Pl2+Bt2+Q),退变质阶段矿物组合(M3)为"白眼圈"后成合晶角闪石+斜长石+黑云母+钛铁矿(Amp3+Pl3+Bt3+Ilm).矿物地质温压计和相平衡模拟估算的3阶段P-T条件分别为:进变质阶段为600~700 ℃/0.60~0.65 GPa,变质峰期为800~820 ℃/0.94~0.96 GPa,退变质阶段为550~700 ℃/0.56~0.71 GPa,变质程度达到麻粒岩相,变质作用PTt轨迹显示顺时针型式,具有近等温降压(ITD)特征,暗示其经历了地壳加厚和快速折返过程.岩石地球化学特征显示其原岩为准铝质A型花岗岩,含有少量幔源组分,形成于造山后的陆壳拉张环境;锆石U-Pb定年呈现二阶段年龄特征,成岩年龄为1.83~1.85 Ga,表明石榴角闪二长片麻岩的原岩形成于古元古代,变质年龄为220~230 Ma,显示了印支期变质作用对古元古代花岗岩的改造,是浙西南地区对印支期古太平洋板块向华南板块俯冲过程的响应,也为浙西南地区印支期造山作用提供了新的证据.

       

    • 图  1  浙西南地区地质简图

      据文献胡雄健等(1991)甘晓春等(1993)Yu et al.(2009)Xia et al.(2012)Zhao et al.(2014)修改

      Fig.  1.  Geological sketch of South China and southeastern Zhejiang region (SZR)

      图  2  遂昌-大柘地区地质图

      Fig.  2.  Geological map of Suichang-Dazhe region

      图  3  石榴角闪二长片麻岩野外照片

      Fig.  3.  Field photographs showing the occurrences of the garnet amphibole monzogneiss

      图  4  石榴角闪二长片麻岩显微照片

      a.石榴石“白眼圈结构”;b.石榴石具有角闪石、斜长石包裹体,角闪石发育钛铁矿后成合晶;c.石榴石发育宽大斜长石冠状边,斜长石显示成分环带;d.退变质晚期石榴石水化生成绿色角闪石;e.基质中钾长石发生熔融,定向分布;f.钛铁矿发育榍石退变反应边.矿物缩写:Grt.石榴子石;Amp.角闪石;Kf.钾长石;Pl.斜长石;Q.石英;Bt.黑云母;Ilm.钛铁矿;Sph.榍石

      Fig.  4.  Photomicrographs of garnet amphibole monzogneiss

      图  5  石榴石变斑晶显微照片和探针测试点位置(a),石榴石成分剖面(b)

      Fig.  5.  Photomicrographs and location of test point in garnet (a) and compositional profile of Garnet (b)

      图  6  角闪石成分命名表(a);角闪石Ti-Na+K、Al-Ti与变质相关系图解(b和c)

      图a据Leake et al.(1997);图b、c据靳是琴(1991);图中坐标均为以23个氧原子为基础的角闪石分子式中的阳离子数

      Fig.  6.  Nomenclature diagrams of amphibole (a) and the diagram of relationship between Ti-Na+K、Al-Ti and metamorphic grade in amphiboles (b and c)

      图  7  样品在MTNCKF MASH体系下的P-T视剖面

      设石英过量,在视剖面上绘制石榴石的XMgXCa和斜长石的An等值线.黑十字代表所测石榴石成分区域,白粗线和箭头代表石榴角闪二长片麻岩的P-T轨迹,灰线代表饱和水固相线.主要矿物缩写:Grt.石榴石;Amp.角闪石;Pl.斜长石;Hed.钙铁辉石;Bt.黑云母;Ilm.钛铁矿;Sph.榍石;Kf.钾长石;Fa.铁橄榄石;Mu.白云母;Ab.钠长石;Zo.黝帘石;San.透长石;Mic.微斜长石;Melt.熔体

      Fig.  7.  P-T pseudosection calculated in the system MTNCKF MASH with the excess of quartz

      图  8  样品锆石形态和CL照片

      黄色小圈代表测试点位置

      Fig.  8.  Shape and CL images of zircons from samples

      图  9  锆石U-Pb年龄谐和图和稀土元素球粒陨石标准化配分曲线

      球粒陨石标准化数据来自Sun and McDonough(1989)

      Fig.  9.  Zircon U-Pb dating results and REE pattern of samples

      图  10  石榴角闪二长片麻岩TAS图解分类(a),样品的铝饱和度图解(b),FeOT/(FeOT+MgO) vs SiO2图解(c),K2O vs Na2O变化关系(d)

      图a据Middlemost(1994);图b、c据Frost et al.(2001)Frost and Frost(2011);图d据Turner et al.(1996).浙西南A型、S型花岗岩和华夏地区古元古代变质沉积岩、正变质岩及斜长角闪岩化学成分据胡雄健等(1991)王一先等(1998)李献华等(1999)Li et al.(2000)Yu et al.(2009)Liu et al.(2009)Xia et al.(2012)

      Fig.  10.  The total alkali vs silica (TAS) diagram (a), chemical compositions of samples in terms of aluminum saturation index (b), FeOT/(FeOT+MgO) vs SiO2 diagram for the monzogneiss (c), K2O vs Na2O relation (d)

      图  11  石榴角闪二长片麻岩原岩及构造背景判别图解

      图a、b据Sylvester(1998);图c据Harris et al.(1986);图d据Pearce et al.(1984)Pearce(1996);其他数据来源与图 10一致

      Fig.  11.  Source and tectonic setting discrimination diagrams of garnet amphibole mozogneiss

      图  12  石榴角闪二长片麻岩微量元素蛛网图和稀土元素球粒陨石标准化配分图解

      原始地幔成分据Taylor and McLennan(1985);球粒陨石成分据McDonough and Sun(1995);其他数据来源与图 10一致

      Fig.  12.  Primitive mantle-normalized multiple trace element diagrams and chondrite-normalized REE patterns of the monzogneiss

      表  1  石榴角闪二长片麻岩主要矿物的代表性电子探针测试结果(%)

      Table  1.   Representaive microprobe analyses of minerals from garnet amphibole monzogneiss (%)

      石榴石
      边部 幔部 核部 幔部 边部
      测试点号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
      SiO2 37.64 37.39 37.79 37.39 37.30 36.88 36.10 36.37 37.37 37.16 37.28 37.13 37.11 37.27 36.84 37.06 36.80 36.62
      TiO2 0.03 0.10 0.06 0.08 0.08 0.02 0.08 0.00 0.07 0.01 0.00 0.05 0.02 0.00 0.11 0.05 0.05 0.06
      Al2O3 20.67 20.98 20.78 20.94 20.60 20.82 20.54 20.41 20.73 20.61 20.65 20.65 20.61 21.07 20.60 20.78 20.51 20.26
      Cr2O3 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.05 0.06 0.00 0.00 0.01 0.07 0.00 0.06 0.00 0.00 0.00
      FeOT 29.70 29.54 28.52 28.55 28.35 29.19 29.80 31.14 29.90 29.56 29.01 28.84 28.85 28.62 28.71 28.75 29.43 29.30
      MnO 1.02 0.78 0.47 0.64 0.54 0.73 0.71 0.89 0.70 0.65 0.54 0.52 0.48 0.55 0.38 0.46 1.16 1.04
      MgO 1.00 1.20 1.36 1.29 1.30 1.20 1.25 1.14 1.25 1.38 1.29 1.39 1.42 1.47 1.41 1.36 0.83 0.78
      CaO 9.60 9.90 10.64 10.18 10.65 9.93 9.53 8.69 9.50 9.50 9.91 10.43 10.32 10.21 10.20 10.64 9.73 9.67
      Na2O 0.04 0.04 0.03 0.02 0.04 0.04 0.01 0.05 0.01 0.00 0.02 0.01 0.01 0.02 0.00 0.02 0.04 0.02
      K2O 0.01 0.01 0.02 0.00 0.00 0.00 0.02 0.00 0.00 0.02 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.02
      totals 99.71 99.93 99.68 99.07 98.86 98.81 98.07 98.73 99.57 98.90 98.72 99.02 98.89 99.21 98.31 99.13 98.54 97.77
      O 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12
      Si 3.02 2.99 3.02 3.01 3.01 2.98 2.95 2.96 3.00 3.00 3.01 2.99 2.99 2.99 2.99 2.98 2.99 3.00
      Ti 0.00 0.01 0.00 0.01 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00
      Al 1.96 1.98 1.96 1.99 1.96 1.98 1.98 1.96 1.96 1.96 1.97 1.96 1.96 1.99 1.97 1.97 1.97 1.96
      Cr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
      Fe3+ 0.00 0.04 0.00 0.00 0.03 0.06 0.13 0.13 0.02 0.03 0.01 0.06 0.05 0.03 0.04 0.07 0.05 0.03
      Fe2+ 1.99 1.94 1.91 1.92 1.89 1.92 1.91 1.99 1.99 1.97 1.95 1.89 1.90 1.89 1.91 1.87 1.96 1.98
      Mn 0.07 0.05 0.03 0.04 0.04 0.05 0.05 0.06 0.05 0.04 0.04 0.04 0.03 0.04 0.03 0.03 0.08 0.07
      Mg 0.12 0.14 0.16 0.16 0.16 0.15 0.15 0.14 0.15 0.17 0.16 0.17 0.17 0.18 0.17 0.16 0.10 0.10
      Ca 0.83 0.85 0.91 0.88 0.92 0.86 0.83 0.76 0.82 0.82 0.86 0.90 0.89 0.88 0.89 0.92 0.85 0.85
      Na 0.01 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00
      k 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
      totals 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00
      Py 3.98 4.73 5.38 5.15 5.16 4.77 4.97 4.50 4.93 5.49 5.17 5.50 5.63 5.82 5.64 5.34 3.31 3.15
      Alm 66.27 65.43 63.30 64.11 63.20 65.17 66.28 68.89 66.45 65.90 65.11 63.79 63.98 63.79 64.24 63.52 66.07 66.38
      Gro 27.45 28.09 30.26 29.28 30.42 28.40 27.16 24.63 27.04 27.14 28.50 29.56 29.32 29.15 29.25 30.10 27.97 28.08
      Sp 2.30 1.74 1.06 1.45 1.21 1.66 1.59 1.99 1.58 1.46 1.22 1.16 1.08 1.25 0.87 1.04 2.64 2.39
      进变质阶段矿物组合 峰期变质阶段矿物组合
      Amp Amp Amp Pl Pl Pl Amp Amp Amp Bt Bt Bt Pl Pl Pl Kf Kf Kf
      SiO2 38.61 39.80 39.39 57.18 56.49 57.18 37.92 38.64 38.50 34.56 34.15 34.74 58.51 58.63 58.00 63.93 64.68 64.06
      TiO2 1.42 1.27 1.37 0.05 0.00 0.05 2.05 1.77 1.87 5.41 5.10 5.31 0.00 0.03 0.00 0.00 0.00 0.02
      Al2O3 12.12 13.07 12.82 27.03 26.76 27.03 11.78 11.91 11.84 13.55 13.40 13.63 25.59 27.16 25.79 18.39 18.93 18.61
      Cr2O3 0.02 0.00 0.00 0.00 0.00 0.00 0.04 0.08 0.06 0.02 0.08 0.00 0.09 0.01 0.00 0.06 0.00 0.00
      FeOT 27.35 24.23 24.61 0.28 0.55 0.28 26.79 27.01 27.11 26.93 27.38 27.12 0.25 0.10 0.28 0.00 0.00 0.02
      MnO 0.35 0.14 0.03 0.00 0.03 0.00 0.20 0.22 0.22 0.06 0.03 0.10 0.02 0.00 0.00 0.00 0.00 0.00
      MgO 2.66 4.27 4.09 0.00 0.00 0.00 2.71 2.67 2.74 4.58 4.66 5.10 0.03 0.00 0.02 0.00 0.00 0.00
      CaO 11.41 11.04 10.78 8.69 9.04 8.69 11.14 10.53 10.35 0.00 0.01 0.00 6.17 7.92 7.85 0.13 0.08 0.02
      Na2O 1.31 1.55 1.54 6.87 6.39 6.87 1.43 1.31 1.36 0.11 0.10 0.05 7.63 6.62 6.90 1.86 1.94 1.53
      K2O 2.07 1.53 1.52 0.21 0.14 0.21 2.07 1.99 2.13 9.85 9.56 9.76 0.95 0.25 0.33 14.89 14.29 15.39
      Totals 97.32 96.89 96.16 100.30 99.40 100.30 96.12 96.13 96.18 95.06 94.47 95.80 99.22 100.71 99.17 99.25 99.92 99.64
      O 23 23 23 8 8 8 23 23 23 11 11 11 8 8 8 8 8 8
      Si 6.19 6.26 6.25 2.56 2.55 2.56 6.17 6.24 6.22 2.77 2.77 2.77 2.65 2.62 2.62 2.98 2.98 2.97
      Ti 0.17 0.15 0.16 0.00 0.00 0.00 0.25 0.22 0.23 0.33 0.31 0.32 0.00 0.00 0.00 0.00 0.00 0.00
      Al 2.29 2.42 2.40 1.43 1.46 1.43 2.26 2.27 2.26 1.28 1.28 1.28 1.35 1.40 1.37 1.01 1.03 1.02
      Cr 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
      Fe3+ 0.25 0.16 0.20 0.00 0.02 0.01 0.10 0.21 0.24 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00
      Fe2+ 3.41 3.03 3.07 0.00 0.00 0.00 3.54 3.44 3.42 1.81 1.86 1.81 0.00 0.00 0.00 0.00 0.00 0.00
      Mn 0.05 0.02 0.00 0.01 0.00 0.00 0.03 0.03 0.03 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00
      Mg 0.64 1.00 0.97 0.00 0.00 0.00 0.66 0.64 0.66 0.55 0.56 0.61 0.00 0.00 0.00 0.00 0.00 0.00
      Ca 1.96 1.86 1.83 0.42 0.44 0.42 1.94 1.82 1.79 0.00 0.00 0.00 0.30 0.37 0.38 0.01 0.00 0.00
      Na 0.41 0.47 0.47 0.60 0.56 0.60 0.45 0.41 0.43 0.02 0.00 0.01 0.66 0.56 0.60 0.17 0.17 0.14
      K 0.42 0.31 0.31 0.01 0.01 0.01 0.43 0.41 0.44 1.01 0.99 0.99 0.05 0.01 0.02 0.89 0.84 0.91
      Totals 15.79 15.69 15.67 5.03 5.01 5.02 15.84 15.71 15.73 7.77 7.78 7.78 5.02 4.97 5.00 5.05 5.02 5.04
      XFe/An 0.85 0.76 0.77 40.66 43.52 40.66 0.85 0.85 0.85 0.77 0.77 0.75 29.21 39.20 37.87
      XMg 0.15 0.24 0.23 0.15 0.15 0.15 0.23 0.23 0.25
      Na+K 0.83 0.78 0.79 0.87 0.81 0.86
      Al 1.81 1.74 1.75 1.83 1.76 1.78
      退变质阶段矿物组合
      Amp Amp Amp Bt Bt Bt Pl Pl Pl Ilm Ilm Ilm Sph Sph Sph
      SiO2 39.41 39.46 39.39 34.76 34.98 34.63 54.68 53.74 53.49 0.00 0.00 0.05 30.26 29.95 29.66
      TiO2 1.16 1.14 1.37 4.57 4.59 4.96 0.02 0.00 0.00 53.17 53.75 53.90 33.23 34.05 31.93
      Al2O3 12.79 13.09 12.82 13.93 13.83 13.43 28.54 29.42 29.61 0.00 0.02 0.00 4.27 3.60 4.46
      Cr2O3 0.00 0.04 0.00 0.04 0.00 0.00 0.05 0.02 0.00 0.01 0.02 0.00 0.00 0.00 0.00
      FeOT 24.87 25.26 24.61 27.40 26.51 26.78 0.22 0.12 0.19 46.66 43.89 45.98 0.87 1.14 3.55
      MnO 0.19 0.21 0.03 0.05 0.11 0.11 0.00 0.01 0.00 0.57 0.43 0.68 0.01 0.06 0.07
      MgO 3.70 3.81 4.09 5.10 5.03 5.14 0.00 0.02 0.00 0.00 0.05 0.02 0.04 0.03 0.47
      CaO 10.81 11.25 10.78 0.00 0.00 0.00 10.14 11.64 11.59 0.00 0.00 0.00 27.15 26.63 26.18
      Na2O 1.39 1.39 1.54 9.72 0.00 9.83 5.47 4.87 5.04 0.06 0.11 0.00 0.01 0.07 0.01
      K2O 2.05 1.96 1.52 0.07 9.56 0.09 0.28 0.10 0.05 0.03 0.05 0.02 0.00 0.00 0.06
      totals 96.36 97.61 96.16 95.64 94.61 94.97 99.39 99.94 99.96 100.51 98.33 100.65 95.83 95.54 96.39
      O 23 23 23 11 11 11 8 8 8 6 6 6 23 23 23
      Si 6.28 6.25 6.25 2.77 2.81 2.78 2.48 2.43 2.42 0.00 0.00 0.00 4.85 4.80 4.76
      Ti 0.14 0.14 0.16 0.27 0.28 0.30 0.00 0.00 0.00 2.01 2.05 2.02 4.01 4.11 3.85
      Al 2.40 2.41 2.40 1.31 1.31 1.27 1.53 1.57 1.58 0.00 0.00 0.00 0.81 0.68 0.84
      Cr 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
      Fe3+ 0.14 0.18 0.20 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00
      Fe2+ 3.17 3.15 3.07 1.83 1.78 1.80 0.00 0.00 0.00 1.96 1.87 1.92 0.12 0.15 0.48
      Mn 0.03 0.03 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.02 0.02 0.03 0.00 0.01 0.01
      Mg 0.88 0.89 0.97 0.61 0.60 0.62 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.11
      Ca 1.85 1.90 1.83 0.00 0.00 0.00 0.49 0.56 0.56 0.00 0.00 0.00 4.67 4.58 4.50
      Na 0.43 0.42 0.47 0.01 0.00 0.01 0.48 0.43 0.44 0.00 0.00 0.00 0.00 0.02 0.00
      k 0.42 0.39 0.31 0.99 0.98 1.01 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01
      totals 15.73 15.75 15.67 7.80 7.75 7.80 5.00 5.00 5.01 3.99 3.94 3.98 14.47 14.36 14.57
      XFe/An 0.79 0.79 0.77 0.75 0.75 0.75 49.76 56.60 55.82
      XMg 0.21 0.21 0.23 0.25 0.25 0.25
      Na+K 0.85 0.85 0.78
      Al 1.72 1.75 1.75
      注:XFe=Fe2+/(Fe2++Mg);XMg=Mg/(Fe2++Mg),Al=8-Si.
      下载: 导出CSV

      表  2  石榴角闪二长片麻岩代表性锆石的U-Th-Pb同位素数据

      Table  2.   U-Th-Pb isotope data for representative zircons from garnet amphibole monzogneiss

      测试点 U(10-6) Th(10-6) Th/U 206Pbc(%) 同位素比值 年龄(Ma)
      206Pb*/238U ±σ 207Pb*/235U ±σ 207Pb*/206Pb* ±σ 206Pb/238U ±σ 207Pb/206Pb ±σ
      SC76-1-01 473.312 403.837 0.853 0.051 0.286 0.003 4.447 0.114 0.112 0.003 1 621.016 16.753 1 829.320 47.535
      SC76-1-02 1 851.269 32.822 0.018 0.032 0.039 0.000 0.260 0.010 0.048 0.002 247.473 2.784 100.090 87.030
      SC76-1-03 1 737.446 1 843.054 1.061 0.050 0.301 0.003 4.717 0.095 0.113 0.002 1 698.593 14.316 1 842.905 37.808
      SC76-1-04 242.928 157.350 0.648 0.173 0.240 0.005 4.034 0.212 0.124 0.007 1 385.060 26.239 2 013.885 97.995
      SC76-1-05 798.194 12.916 0.016 0.117 0.035 0.001 0.292 0.041 0.060 0.017 222.082 7.595 590.770 526.820
      SC76-1-06 439.899 333.362 0.758 0.030 0.260 0.002 3.983 0.089 0.111 0.002 1 488.406 12.106 1 809.260 40.745
      SC76-1-07 349.908 7.371 0.021 0.034 0.038 0.001 0.299 0.024 0.058 0.005 240.310 4.218 546.330 185.163
      SC76-1-08 1 260.405 848.918 0.674 0.031 0.281 0.003 4.345 0.100 0.111 0.002 1 598.832 14.147 1 820.370 39.505
      SC76-1-09 2 322.051 1 635.419 0.704 0.044 0.253 0.003 3.883 0.085 0.111 0.002 1 455.002 13.272 1 810.800 38.890
      SC76-1-10 493.559 381.843 0.774 0.048 0.260 0.004 4.025 0.129 0.113 0.004 1 491.123 21.062 1 840.430 59.260
      SC76-1-11 202.768 191.003 0.942 0.033 0.311 0.004 4.822 0.143 0.113 0.003 1 746.062 20.492 1 847.840 55.248
      SC76-1-12 721.156 656.131 0.910 0.056 0.285 0.005 4.387 0.134 0.115 0.005 1 614.749 23.652 1 887.040 80.868
      SC76-1-13 1 649.093 94.415 0.057 0.024 0.061 0.001 0.656 0.023 0.077 0.003 383.173 6.932 1 132.415 64.815
      SC76-1-14 269.236 191.885 0.713 0.029 0.279 0.004 4.312 0.121 0.113 0.003 1 585.673 21.786 1 855.560 52.470
      SC76-1-15 218.551 170.054 0.778 0.043 0.203 0.004 3.022 0.124 0.108 0.004 1 192.806 21.813 1 769.440 72.530
      SC76-1-16 805.486 50.572 0.063 0.030 0.053 0.002 0.530 0.041 0.067 0.004 331.141 12.659 842.590 112.958
      SC76-1-17 252.379 176.705 0.700 0.048 0.291 0.008 4.491 0.134 0.113 0.003 1 646.371 37.914 1 847.840 50.000
      SC76-1-18 1 931.157 66.691 0.035 0.032 0.038 0.001 0.260 0.010 0.050 0.002 241.432 4.822 176.010 88.875
      SC76-1-19 594.382 735.103 1.237 0.029 0.314 0.008 4.861 0.174 0.111 0.003 1 760.150 41.509 1 821.910 48.918
      SC76-1-20 899.293 44.608 0.050 0.030 0.037 0.001 0.309 0.018 0.061 0.004 233.458 5.930 653.720 134.240
      SC76-1-21 1 713.825 1 017.399 0.594 0.039 0.271 0.005 4.238 0.116 0.113 0.003 1 547.696 24.439 1 842.595 46.760
      SC76-1-22 942.858 709.120 0.752 0.038 0.184 0.004 2.692 0.078 0.105 0.003 1 088.436 19.881 1 721.910 47.533
      SC76-1-23 284.842 230.108 0.808 0.026 0.299 0.006 4.573 0.142 0.112 0.004 1 684.452 30.826 1 838.890 54.630
      SC76-1-24 970.858 1 025.078 1.056 0.026 0.264 0.005 4.053 0.109 0.111 0.002 1 510.828 26.165 1 809.260 39.663
      SC76-1-25 1 172.066 35.266 0.030 0.027 0.052 0.001 1.907 0.071 0.262 0.008 329.712 8.280 3260.180 47.223
      SC76-1-26 1 409.326 1 041.667 0.739 0.031 0.179 0.004 2.618 0.098 0.106 0.004 1 062.835 19.496 1 736.105 70.838
      SC76-1-27 816.858 73.975 0.091 0.022 0.056 0.002 0.554 0.027 0.072 0.003 349.868 11.308 975.930 76.855
      SC76-1-28 596.782 446.082 0.747 0.021 0.252 0.005 3.804 0.119 0.109 0.003 1 448.885 27.012 1 790.740 50.773
      SC76-1-29 807.796 600.751 0.744 0.023 0.257 0.006 3.920 0.182 0.113 0.006 1 474.269 28.878 1 840.430 100.930
      SC76-1-30 557.360 529.190 0.949 0.021 0.297 0.006 4.615 0.276 0.110 0.004 1 673.965 32.084 1 805.555 97.073
      SC76-1-31 1 154.345 27.785 0.024 0.022 0.036 0.001 0.273 0.014 0.055 0.003 230.246 4.868 394.495 112.950
      SC76-1-32 217.659 163.175 0.750 0.031 0.305 0.007 4.709 0.205 0.112 0.005 1 715.879 34.471 1 828.085 72.995
      SC76-1-33 1 082.946 486.786 0.450 0.025 0.234 0.004 3.545 0.118 0.108 0.003 1 355.946 22.127 1 771.915 44.598
      SC76-1-34 800.298 568.000 0.710 0.023 0.223 0.005 3.377 0.142 0.108 0.003 1 297.568 24.196 1 768.515 53.550
      SC76-1-35 512.429 430.956 0.841 0.014 0.266 0.005 4.077 0.115 0.111 0.003 1 520.178 23.766 1 812.960 43.368
      SC76-1-36 1 123.849 582.947 0.519 0.021 0.262 0.005 3.975 0.176 0.109 0.004 1 500.747 24.084 1 784.260 63.735
      SC76-1-37 0.854 0.690 0.809 0.751 7.556 2.434 1 021.600 324.296 1.071 0.121 13 838.277 1 834.106 Error error
      SC76-1-38 1.021 0.496 0.486 0.727 6.053 1.776 480.403 115.580 1.111 0.122 12 592.804 1 623.237 Error error
      SC76-1-39 1 447.338 926.434 0.640 0.020 0.292 0.005 4.480 0.148 0.113 0.005 1 649.197 25.274 1 854.020 72.223
      SC76-1-40 277.872 351.607 1.265 0.018 0.313 0.005 4.853 0.197 0.112 0.005 1 756.825 23.346 1 828.700 74.075
      SC76-9-01 678.191 657.752 0.970 0.040 0.279 0.004 4.232 0.108 0.110 0.003 1 586.023 20.034 1 792.280 42.598
      SC76-9-02 280.751 191.093 0.681 0.028 0.261 0.004 3.971 0.115 0.110 0.003 1 495.126 19.654 1 811.110 49.850
      SC76-9-03 1 008.627 719.871 0.714 0.019 0.294 0.003 4.524 0.100 0.111 0.002 1 663.436 13.455 1 816.665 38.735
      SC76-9-04 1 530.015 1 501.375 0.981 0.033 0.312 0.003 4.791 0.087 0.111 0.002 1 752.059 13.814 1 812.960 27.315
      SC76-9-05 3 202.009 53.641 0.017 0.023 0.037 0.000 0.269 0.008 0.052 0.002 234.610 2.567 305.615 66.660
      SC76-9-06 1 493.557 565.136 0.378 0.020 0.250 0.002 3.750 0.067 0.108 0.002 1 439.517 12.528 1 772.225 33.335
      SC76-9-07 836.748 689.979 0.825 0.018 0.265 0.003 4.073 0.082 0.111 0.002 1 516.370 15.749 1 816.665 35.188
      SC76-9-08 397.371 344.021 0.866 0.016 0.303 0.003 4.708 0.113 0.112 0.003 1 708.173 16.692 1 831.485 40.740
      SC76-9-09 1 599.721 1 126.241 0.704 0.017 0.278 0.003 4.261 0.088 0.111 0.002 1 582.277 14.018 1 809.260 41.668
      SC76-9-10 314.060 249.115 0.793 0.019 0.296 0.007 4.572 0.184 0.112 0.004 1 670.568 37.219 1835.190 61.573
      SC76-9-11 1 203.673 23.955 0.020 0.020 0.038 0.000 0.307 0.012 0.058 0.002 241.688 2.867 538.925 83.320
      SC76-9-12 447.084 302.004 0.675 0.018 0.283 0.004 4.329 0.115 0.111 0.003 1 605.316 18.452 1 809.260 45.683
      SC76-9-13 297.405 269.165 0.905 0.014 0.304 0.004 4.686 0.116 0.112 0.003 1 710.898 19.809 1 824.380 40.898
      SC76-9-14 1 079.730 10.544 0.010 0.016 0.038 0.000 0.293 0.011 0.056 0.002 242.038 2.698 442.640 92.585
      SC76-9-15 424.658 358.546 0.844 0.012 0.281 0.003 4.313 0.110 0.110 0.003 1 597.390 13.558 1 807.100 44.138
      SC76-9-16 390.938 332.540 0.851 0.015 0.278 0.004 4.294 0.113 0.112 0.003 1 581.822 21.281 1 827.775 43.055
      SC76-9-17 1 076.808 30.633 0.028 0.012 0.038 0.000 0.293 0.012 0.056 0.002 241.787 3.006 455.600 90.733
      SC76-9-18 495.090 443.073 0.895 0.017 0.308 0.003 4.730 0.116 0.111 0.003 1 731.131 15.235 1 821.910 78.703
      SC76-9-19 934.909 51.948 0.056 0.018 0.037 0.001 0.327 0.021 0.062 0.004 236.442 3.213 687.050 319.428
      SC76-9-20 428.248 321.582 0.751 0.028 0.291 0.003 4.465 0.135 0.111 0.003 1 645.001 17.040 1 820.370 53.860
      SC76-9-21 1 309.637 590.346 0.451 0.013 0.233 0.003 3.504 0.094 0.109 0.003 1 351.364 13.442 1781.170 50.003
      SC76-9-22 710.966 554.426 0.780 0.035 0.289 0.003 4.391 0.122 0.110 0.003 1 634.736 15.338 1 795.990 47.538
      SC76-9-23 1 600.779 605.577 0.378 0.020 0.250 0.003 3.733 0.092 0.108 0.003 1 436.333 15.758 1 768.825 44.600
      SC76-9-24 211.872 208.217 0.983 0.027 0.310 0.003 4.792 0.136 0.112 0.003 1 741.915 17.087 1 828.085 52.005
      SC76-9-25 1 134.168 713.456 0.629 0.019 0.297 0.003 4.599 0.093 0.112 0.002 1 678.898 13.886 1 828.700 37.040
      SC76-9-26 870.659 57.315 0.066 0.025 0.040 0.001 0.553 0.030 0.098 0.005 255.772 4.208 1 590.740 86.725
      SC76-9-27 770.265 37.977 0.049 0.018 0.037 0.001 0.302 0.016 0.059 0.003 235.965 3.358 568.550 114.798
      SC76-9-28 483.755 436.609 0.903 0.014 0.307 0.004 5.510 0.130 0.130 0.003 1 726.777 17.542 2 094.140 73.150
      SC76-9-29 1 852.307 1 364.434 0.737 0.018 0.273 0.003 4.188 0.089 0.110 0.002 1 557.117 13.051 1 807.100 37.658
      SC76-9-30 604.883 622.934 1.030 0.027 0.284 0.004 4.315 0.125 0.110 0.003 1 612.337 18.463 1 811.110 53.555
      SC76-9-31 708.739 106.819 0.151 0.011 0.091 0.004 1.158 0.071 0.089 0.003 558.571 24.599 1 403.390 98.308
      SC76-9-32 920.112 495.731 0.539 0.022 0.195 0.003 2.858 0.094 0.107 0.003 1 148.839 17.465 1 742.590 65.585
      SC76-9-33 491.475 427.660 0.870 0.033 0.302 0.005 4.626 0.192 0.111 0.004 1 700.525 23.988 1 812.650 67.750
      SC76-9-34 525.503 676.186 1.287 0.022 0.322 0.005 4.924 0.125 0.110 0.002 1 800.423 26.543 1 806.480 41.053
      SC76-9-35 566.144 550.858 0.973 0.030 0.288 0.005 4.395 0.126 0.111 0.003 1 631.174 23.033 1 816.665 54.475
      SC76-9-36 1 431.119 495.411 0.346 0.017 0.260 0.004 3.951 0.092 0.109 0.002 1 492.293 19.608 1 787.040 42.753
      SC76-9-37 682.463 623.460 0.914 0.019 0.251 0.005 3.757 0.106 0.109 0.003 1 441.177 27.506 1 775.930 43.365
      SC76-9-38 303.307 230.601 0.760 0.015 0.296 0.005 4.527 0.131 0.110 0.003 1 670.064 24.609 1 809.260 49.850
      SC76-9-39 803.601 912.716 1.136 0.026 0.299 0.006 4.583 0.158 0.112 0.004 1 684.912 27.831 1 832.410 70.370
      SC76-9-40 1 807.060 22.178 0.012 0.011 0.037 0.001 0.264 0.011 0.052 0.002 234.997 5.203 305.615 103.688
      注:实验在吉林大学东北亚矿产资源评价国土资源部重点实验室完成,对锆石同时进行了U-Pb年龄和微量元素测试.
      下载: 导出CSV

      表  3  石榴角闪二长片麻岩主量元素(%)和微量元素(10-6)组成

      Table  3.   Major (%) and trace element (10-6) compositions of garnet amphibole monzo gneiss

      样品号 SC76-1 SC76-3 SC76-6 SC76-8 SC76-9
      主量元素(%)
      SiO2 63.26 64.25 57.37 63.25 65.00
      TiO2 1.37 1.16 2.46 1.27 1.05
      Al2O3 13.49 13.64 12.04 13.33 13.67
      FeOT 8.79 7.57 14.62 8.11 7.17
      MnO 0.11 0.09 0.17 0.09 0.09
      MgO 0.80 0.75 1.41 0.76 0.59
      CaO 3.86 3.57 6.35 3.56 3.60
      Na2O 1.68 1.83 1.13 1.80 1.76
      K2O 4.81 5.39 2.98 5.08 5.74
      P2O5 0.45 0.40 0.79 0.42 0.35
      H2O+ 1.48 1.20 1.02 1.70 0.96
      CO2 0.00 0.00 0.00 0.42 0.10
      Total 100.12 99.85 100.35 99.78 100.08
      FeOT/(FeOT+Mg) 0.92 0.91 0.91 0.91 0.92
      A/CNK 0.91 0.90 0.73 0.90 0.88
      A/NK 1.71 1.56 2.40 1.59 1.52
      微量元素(10-6)
      Rb 171.00 144.20 163.10 174.70 166.00
      Ba 1126.26 1101.41 650.84 1064.22 1276.89
      Th 30.08 26.33 34.57 35.19 22.87
      U 4.79 4.32 5.34 4.91 3.64
      Ta 4.33 3.69 7.24 3.58 3.41
      Nb 63.90 53.36 109.60 51.92 49.49
      Ga 27.85 27.58 28.67 27.67 24.33
      La 146.92 98.40 357.87 162.52 123.72
      Ce 324.93 220.50 524.51 362.78 278.62
      Sr 221.30 234.90 102.00 193.30 296.20
      Nd 146.90 112.40 285.20 137.80 107.60
      P 4547.62 4049.60 7868.27 4169.26 3470.20
      Zr 634.91 575.58 924.17 615.26 657.00
      Hf 12.74 12.13 18.65 12.50 13.33
      Y 98.37 64.33 159.88 84.43 83.17
      La 146.92 98.40 357.87 162.52 123.72
      Ce 324.93 220.50 524.51 362.78 278.62
      Pr 30.55 26.61 69.12 26.56 33.31
      Nd 146.06 96.77 272.40 144.09 120.94
      Sm 28.75 19.76 49.42 27.78 23.91
      Eu 3.50 2.58 3.95 3.39 3.32
      Gd 27.94 19.14 47.98 26.48 23.43
      Tb 4.17 2.68 6.79 3.80 3.46
      Dy 23.19 15.57 36.64 20.89 19.50
      Ho 4.46 2.94 7.20 3.92 3.72
      Er 12.93 8.72 20.71 10.98 10.83
      Tm 1.81 1.22 2.91 1.58 1.57
      Yb 11.71 7.66 18.59 10.33 9.84
      Lu 1.75 1.15 2.70 1.42 1.48
      Y 98.37 64.33 159.88 84.43 83.17
      LaN/YbN 9.00 9.21 13.81 11.29 9.01
      δEu 0.37 0.40 0.25 0.38 0.42
      δCe 1.13 1.04 0.77 1.23 1.04
      104 Ga/Al 3.90 3.82 4.50 3.92 3.36
      Zr+Nb+Ce+Y 1122.12 913.77 1718.16 1114.39 1068.28
      ∑REE 768.65 523.69 1420.79 806.52 657.66
      注:A/CNK=Al2O3/(CaO+Na2O+K2O),A/NK=Al2O3/(Na2O+K2O),分子比;∑REE为稀土元素总量.
      下载: 导出CSV
    • [1] Bonin, B., 2007.A-Type Granites and Related Rocks:Evolution of a Concept, Problems and Prospects.Lithos, 97(1-2):1-29. https://doi.org/10.1016/j.lithos.2006.12.007
      [2] Carswell, D.A., Wilson, R.N., Zhai, M.G., et al., 2000.Metamorphic Evolution, Mineral Chemistry and Thermobarometry of Schists and Orthogneisses Hosting Ultra-High Pressure Eclogites in the Dabiesan of Central China.Lithos, 52(1-4):121-155. https://doi.org/10.1016/S0024-4937(99)00088-2
      [3] Charvet, J., Shu, L.S., Shi, Y.S., et al., 1996.The Building of South China:Collision of Yangzi and Cathaysia Blocks, Problems and Tentative Answers.Journal of Southeast Asian Earth Sciences, 13(3-5):223-235. https://doi.org/10.1016/0743-9547(96)00029-3
      [4] Chen, D.Y., Zhang, B.T., Sun, D.Z., et al., 1997.Geochemistry and Relation to Uranium Mineralization of Gaoxi and Fucheng Granites in Wuyi Mountains, China.Acta Petrologica Sinica, 13(1):71-84 (in Chinese with English abstract). http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=19970108
      [5] Chen, G.D., 1956.Examples of "Activizing Region" in the Chinese Platform with Special Reference to the "Cathaysia" Problem.Acta Geologica Sinica, 36(3):239-271 (in Chinese with English abstract). http://www.cqvip.com/QK/86253X/199102/1005237770.html
      [6] Chen, W.F., Chen, P.R., Huang, H.Y., et al., 2007.Chronological and Geochemical Studies of Granite and Enclave in Baimashan Pluton, Hunan, South China.Science in China (Series D), 37(7):873-893 (in Chinese). doi: 10.1007/s11430-007-0073-1.pdf
      [7] Chen, Y.P., Wei, C.J., Zhang, J.R., et al., 2015.Metamorphism and Zircon U-Pb Dating of Garnet Amphibolite in the Baoyintu Group, Inner Mongolia.Science Bulletin, 60(19):1698-1707. https://doi.org/10.1007/s11434-015-0890-0
      [8] Connolly, J.A.D., 2005.Computation of Phase Equilibria by Linear Programming:A Tool for Geodynamic Modeling and Its Application to Subduction Zone Decarbonation.Earth and Planetary Science Letters, 236(1-2):524-541. https://doi.org/10.1016/j.epsl.2005.04.033
      [9] Dall'Agnol, R., de Oliveira, D.C.D., 2007.Oxidized, Magnetite-Series, Rapakivi-Type Granites of Carajás, Brazil:Implications for Classification and Petrogenesis of A-Type Granites.Lithos, 93(3-4):215-233. https://doi.org/10.1016/j.lithos.2006.03.065
      [10] Ding, X., Chen, P.R., Chen, W.F., et al., 2005.Single Zircon LA-ICPMS U-Pb Dating of Weishan Granite (Hunan, South China) and Its Petrogenetic Significance.Science in China (Series D), 35(7):606-616 (in Chinese). doi: 10.1007/s11430-006-0816-4.pdf
      [11] Enami, M., 1998.Pressure-Temperature Path of Sanbagawa Prograde Metamorphism Deduced from Grossular Zoning of Garnet.Journal of Metamorphic Geology, 16(1):97-106. https://doi.org/10.1111/j.1525-1314.1998.00058.x
      [12] Ferrari, O.M., Hochard, C., Stampfli, G.M., 2008.An Alternative Plate Tectonic Model for the Palaeozoic-Early Mesozoic Palaeotethyan Evolution of Southeast Asia (Northern Thailand-Burma).Tectonophysics, 451(1-4):346-365. https://doi.org/10.1016/j.tecto.2007.11.065
      [13] Frost, B.R., Barnes, C.G., Collins, W.J., et al., 2001.A Geochemical Classification for Granitic Rocks.Journal of Petrology, 42(11):2033-2048. https://doi.org/10.1093/petrology/42.11.2033
      [14] Frost, C.D., Frost, B.R., 1997.Reduced Rapakivi-Type Granites:The Tholeiite Connection.Geology, 25(7):647.https://doi.org/10.1130/0091-7613(1997)025<0647:rrtgtt>2.3.co;2 doi: 10.1130/0091-7613(1997)025<0647:rrtgtt>2.3.co;2
      [15] Frost, C.D., Frost, B.R., 2011.On Ferroan (A-Type) Granitoids:Their Compositional Variability and Modes of Origin.Journal of Petrology, 52(1):39-53. https://doi.org/10.1093/petrology/egq070
      [16] Gan, X.C., Li, H, M., Sun, D., Z, et al., 1995.A Geochronological Study on Early Proterozoic Granitic Rocks, Southeastern Zhejiang.Acta Petrologica et Mineralogica, 14(1):1-8 (in Chinese with English abstract).
      [17] Gan, X.C., Li, H.M., Sun, D.Z., et al., 1993.Geochronological Study on the Precambrian Metamorphic Basement in Northern Fujian.Geology of Fujian, 12(1):17-32 (in Chinese with English abstract). doi: 10.1007/s11434-009-0095-5
      [18] Garcia-Casco, A., Torres-Roldan, R.L., Millan, G., et al., 2002.Oscillatory Zoning in Eclogitic Garnet and Amphibole, Northern Serpentinite Melange, Cuba:A Record of Tectonic Instability during Subduction? Journal of Metamorphic Geology, 20(6):581-598. https://doi.org/10.1046/j.1525-1314.2002.00390.x
      [19] Gilder, S.A., Gill, J., Coe, R.S., et al., 1996.Isotopic and Paleomagnetic Constraints on the Mesozoic Tectonic Evolution of South China.Journal of Geophysical Research:Solid Earth, 101(B7):16137-16154. https://doi.org/10.1029/96jb00662
      [20] Grabau, A. W., 1924. Stratigraphy of China. Part I. Paleozoic and Older. The Geological Survey of Agriculture and Commerce, Beijing.
      [21] Guo, J.H., Zhai, M., G., Li, Y.G., et al., 1998.Cantrasting Metamorphic P-T Paths of Archaean High-Pressure Granulites from the North China Craton:Metamorphism and Tectonic Significance.Acta Petrologica Sinica, 14(4):430-448 (in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S1342937X11000918
      [22] Guo, L.Z., Shi, Y.S., Ma, R.S., 1983.On the Formation and Evolution of the Mesozoic-Cenozoic Active Continental Margin and Island Arc Tectonics of the Western Pacific Ocean.Acta Geologica Sinica, 57(1):11-21 (in Chinese with English abstract). https://www.researchgate.net/publication/282382600_Chinese_with_English_abstractOn_the_formation_and_evolution_of_the_Mesozoic_-_Cainozoic_active_continental_margin_and_island-arc_tectonics_of_the_western_Pacific_Ocean
      [23] Harris, N.B.W., Pearce, J.A., Tindle, A.G., 1986.Geochemical Characteristics of Collision Zone Magmatism.Geological Society, London, Special Publications, 19(1):67-81. https://doi.org/10.1144/GSL.SP.1986.019.01.04
      [24] Henry, D.J., Guidotti, C.V., Thomson, J.A., 2005.The Ti-Saturation Surface for Low-to-Medium Pressure Metapelitic Biotites:Implications for Geothermometry and Ti-Substitution Mechanisms.American Mineralogist, 90(2-3):316-328. https://doi.org/10.2138/am.2005.1498
      [25] Holdaway, M.J., 2000.Application of New Experimental and Garnet Margules Data to the Garnet-Biotite Geothermometer.American Mineralogist, 85(7-8):881-892. https://doi.org/10.2138/am-2000-0701
      [26] Holland, T., Blundy, J., 1994.Non-Ideal Interactions in Calcic Amphiboles and Their Bearing on Amphibole-Plagioclase Thermometry.Contributions to Mineralogy and Petrology, 116(4):433-447. https://doi.org/10.1007/bf00310910
      [27] Holland, T., Powell, R., 2003.Activity-Composition Relations for Phases in Petrological Calculations:An Asymmetric Multicomponent Formulation.Contributions to Mineralogy and Petrology, 145(4):492-501. https://doi.org/10.1007/s00410-003-0464-z
      [28] Holland, T.J.B., Powell, R., 1998.An Internally Consistent Thermodynamic Data Set for Phases of Petrological Interest.Journal of Metamorphic Geology, 16(3):309-343. https://doi.org/10.1111/j.1525-1314.1998.00140.x
      [29] Hoskin, P.W.O., 2003.The Composition of Zircon and Igneous and Metamorphic Petrogenesis.Reviews in Mineralogy and Geochemistry, 53(1):27-62. https://doi.org/10.2113/0530027
      [30] Hoskin, P.W.O., Ireland, T.R., 2000.Rare Earth Element Chemistry of Zircon and Its Use as a Provenance Indicator.Geology, 28(7):627-630.https://doi.org/10.1130/0091-7613(2000)028<0627:reecoz>2.3.co;2 doi: 10.1130/0091-7613(2000)028<0627:reecoz>2.3.co;2
      [31] Hsü, K.J., Li, J.L., Chen, H.H., et al., 1990.Tectonics of South China:Key to Understanding West Pacific Geology.Tectonophysics, 183(1-4):9-39. https://doi.org/10.1016/0040-1951(90)90186-c
      [32] Hsü, K.J., Sun, S., Li, J.L., et al., 1988.Mesozoic Overthrust Tectonics in South China.Geology, 16(5):418.https://doi.org/10.1130/0091-7613(1988)016<0418:motisc>2.3.co;2 doi: 10.1130/0091-7613(1988)016<0418:motisc>2.3.co;2
      [33] Hu, X.J., Xu, J.K., Tong, Z.X., et al., 1991.The Precambrian Geology of Southwestern Zhejiang Province.Geological Publishing House, Beijing (in Chinese).
      [34] Huang, J.Q., Ren, J.S., Jiang, C.F., et al., 1977.The Outline of the Tectonic Characteristics of China.Acta Geologica Sinica, 51(2):117-135 (in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/0040195178901646
      [35] Huang, J.Q., Ren, J.S., Jiang, C.F., et al., 1980.The Tectonics and Evolution of Chinese Continent.Science Press, Beijing, 99-102 (in Chinese).
      [36] Jiang, Z.S., Wang, G.D., Xiao, L.L., et al., 2011.Paleoproterozoic Metamorphic P-T-t Path and Tectonic Significance of the Luoning Metamorphic Complex at the Southern Terminal of the Trans-North China Orogen, Henan Province.Acta Petrologica Sinica, 27(12):3701-3717 (in Chinese with English abstract).
      [37] Jin, S.Q., 1991.Composition Characteristics of Calcic Amphibole from Different Regional Metamorphic Phases.Chinese Science Bulletin, 36(11):851-854 (in Chinese). https://www.britannica.com/science/amphibole
      [38] Kerr, A., Fryer, B.J., 1993.Nd Isotope Evidence for Crust-Mantle Interaction in the Generation of A-Type Granitoid Suites in Labrador, Canada.Chemical Geology, 104(1-4):39-60. https://doi.org/10.1016/0009-2541(93)90141-5
      [39] King, P.L., White, A.J.R., Chappell, B.W., et al., 1997.Characterization and Origin of Aluminous A-Type Granites from the Lachlan Fold Belt, Southeastern Australia.Journal of Petrology, 38(3):371-391. https://doi.org/10.1093/petroj/38.3.371
      [40] Kohn, M.J., Spear, F.S., 1990.Two New Geobarometers for Garnet Amphibolites Gneisses, with Applications to Southeastern Vermont.American Mineralogist, 75(1-2):89-96.https://doi.org/scopus/2-s2.0-0025205495 https://www.researchgate.net/publication/279598435_Two_new_geobarometers_for_garnet_amphibolites_with_applications_to_Southeastern_Vermont
      [41] Leake, B.E., Woolley, A.R., Arps, C.E.S., et al., 1997.Nomenclature of Amphiboles:Report of the Subcommittee on Amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names.The Canadian Mineralogist, 35:219-246. https://www.researchgate.net/publication/265583450_Nomenclature_of_Amphiboles_Report_of_the_Subcommittee_on_Amphiboles_of_the_International_Mineralogical_Association_Commission_on_New_Minerals_and_Mineral_Names
      [42] Li, X.H., Li, J.Y., Liu, Y., et al., 1999.Geochemistry Characteristics of the Paleoproterozoic Meta-Volcanics in the Cathaysia Block and Its Tectonic Significance.Acta Petrologica Sinica, 15(3):364-371 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB199903004.htm
      [43] Li, X.H., Li, Z.X., Li, W.X., et al., 2006.Initiation of the Indosinian Orogeny in South China:Evidence for a Permian Magmatic Arc on Hainan Island.The Journal of Geology, 114(3):341-353. https://doi.org/10.1086/501222
      [44] Li, X.H., Li, Z.X., Li, W.X., et al., 2007.U-Pb Zircon, Geochemical and Sr-Nd-Hf Isotopic Constraints on Age and Origin of Jurassic I-and A-Type Granites from Central Guangdong, SE China:A Major Igneous Event in Response to Foundering of a Subducted Flat-Slab? Lithos, 96(1-2):186-204. https://doi.org/10.1016/j.lithos.2006.09.018
      [45] Li, X.H., Sun, M., Wei, G.J., et al., 2000.Geochemical and Sm-Nd Isotopic Study of Amphibolites in the Cathaysia Block, Southeastern China:Evidence for an Extremely Depleted Mantle in the Paleoproterozoic.Precambrian Research, 102(3-4):251-262. https://doi.org/10.1016/s0301-9268(00)00067-x
      [46] Li, X.H., Wang, Y.X., Zhao, Z.H., et al., 1998.SHRIMP U-Pb Zircon Geochronology for Amphibolite from the Pracambrian Basement in SW Zhejiang and NW Fujian Provinces.Geochimica, 27(4):327-334 (in Chinese with English abstract). doi: 10.1007/s11430-010-4058-0
      [47] Li, Z.X., Li, X.H., 2007.Formation of the 1300-km-Wide Intracontinental Orogen and Postorogenic Magmatic Province in Mesozoic South China:A Flat-Slab Subduction Model.Geology, 35(2):179. https://doi.org/10.1130/g23193a.1
      [48] Liu, R., Zhou, H.W., Zhang, L., et al., 2009.Paleoproterozoic Reworking of Ancient Crust in the Cathaysia Block, South China:Evidence from Zircon Trace Elements, U-Pb and Lu-Hf Isotopes.Chinese Science Bulletin, 54(9):1543-1554. https://doi.org/10.1007/s11434-009-0096-4
      [49] Ma, J., Wang, R.M., 1997.P-T Evolution of Basic Granulite in Xuanhua and Miyun Based on Metamorphic Reaction Space.Science in China (Series D), 27(1):52-58 (in Chinese). https://www.sciencedirect.com/science/article/pii/S0016703703004162
      [50] McDonough, W.F., Sun, S.S., 1995.The Composition of the Earth.Chemical Geology, 120(3-4):223-253. https://doi.org/10.1016/0009-2541(94)00140-4
      [51] Middlemost, E.A.K., 1994.Naming Materials in the Magma/Igneous Rock System.Earth-Science Reviews, 37(3-4):215-224. https://doi.org/10.1016/0012-8252(94)90029-9
      [52] Pearce, J.A., 1996.Sources and Settings of Granitic Rocks.Episodes, 19(4):120-125. http://www.scirp.org/reference/ReferencesPapers.aspx?ReferenceID=1967076
      [53] Pearce, J.A., Harris, N.B.W., Tindle, A.G., 1984.Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks.Journal of Petrology, 25(4):956-983. https://doi.org/10.1093/petrology/25.4.956
      [54] Qiu, Y.M., Gao, S., McNaughton, N.J., et al., 2000.First Evidence of >3.2Ga Continental Crust in the Yangtze Craton of South China and Its Implications for Archean Crustal Evolution and Phanerozoic Tectonics.Geology, 28(1):11-14.https://doi.org/10.1130/0091-7613(2000)028<0011:feogcc>2.3.co;2 doi: 10.1130/0091-7613(2000)028<0011:feogcc>2.3.co;2
      [55] Raase, P., 1974.Al and Ti Contents of Hornblende, Indicator of Pressure and Temperature of Regional Metamorphism.Contributions to Mineralogy and Petrology, 45(3):231-236. doi: 10.1007/BF00383440
      [56] Ren, J.S., 1964.The Preliminary Study in a Few of Geotectonic Problem in Pre-Devonian, Southeast of China.Acta Geologica Sinica, 44(4):418-431 (in Chinese with Russian abstract). https://www.sciencedirect.com/science/article/pii/S0025322708000534
      [57] Ren, J.S., Chen, T.Y., Niu, B.G., 1990.Continental Lithospheric Evolution and Mineralization in East China and Its Adjacent Areas.Science Press, Beijing (in Chinese).
      [58] Rodgers, J., 1989.Comment on "Mesozoic Overthrust Tectonics in South China".Geology, 17(7):671-672.https://doi.org/10.1130/0091-7613(1989)017<0669 doi: 10.1130/0091-7613(1989)017<0669
      [59] Rowley, D., Xue, F., Tucker, R., et al., 1997.Ages of Ultrahigh Pressure Metamorphism and Protolith Orthogneisses from the Eastern Dabie Shan:U/Pb Zircon Geochronology.Earth and Planetary Science Letters, 151(3-4):191-203. https://doi.org/10.1016/S0012-821X(97)81848-1
      [60] Rubatto, D., 2002.Zircon Trace Element Geochemistry:Partitioning with Garnet and the Link between U-Pb Ages and Metamorphism.Chemical Geology, 184(1-2):123-138. https://doi.org/10.1016/s0009-2541(01)00355-2
      [61] Shui, T., 1988.Tectonic Framework of the Continental Basement of Southeast China.Scientia Sinica (Series B), 31(7):885-895 (in Chinese).
      [62] Skjerlie, K.P., Johnston, A.D., 1992.Vapor-Absent Melting at 10kbar of a Biotite-and Amphibole-Bearing Tonalitic Gneiss:Implications for the Generation of A-Type Granites.Geology, 20(3):263-266.https://doi.org/10.1130/0091-7613(1992)020<0263:vaMako>2.3.co;2 doi: 10.1130/0091-7613(1992)020<0263:vaMako>2.3.co;2
      [63] Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      [64] Sun, Y., Ma, C.Q., Liu, Y.Y., et al., 2011.Geochronological and Geochemical Constraints on the Petrogenesis of Late Triassic Aluminous A-Type Granites in Southeast China.Journal of Asian Earth Sciences, 42(6):1117-1131. https://doi.org/10.1016/j.jseaes.2011.06.007
      [65] Sylvester, P.J., 1998.Post-Collisional Strongly Peraluminous Granites.Lithos, 45(1-4):29-44. https://doi.org/10.1016/s0024-4937(98)00024-3
      [66] Taylor, S.R., McLennan, S.M., 1985.The Continental Crust:Its Composition and Evolution.Blackwell Scientific Publication, London.
      [67] Turner, S., Arnaud, N., Liu, J., et al., 1996.Post-Collision, Shoshonitic Volcanism on the Tibetan Plateau:Implications for Convective Thinning of the Lithosphere and the Source of Ocean Island Basalts.Journal of Petrology, 37(1):45-71. https://doi.org/10.1093/petrology/37.1.45
      [68] Turner, S.P., Foden, J.D., Morrison, R.S., 1992.Derivation of Some A-Type Magmas by Fractionation of Basaltic Magma:An Example from the Padthaway Ridge, South Australia.Lithos, 28(2):151-179. https://doi.org/10.1016/0024-4937(92)90029-x
      [69] Wang, L.J., Yu, J.H., Xu, X.S., et al., 2007.Formation Age and Origin of the Gutian-Xiaotao Granitic Complex in the Southwestern Fujian Province, China.Acta Petrologica Sinica, 23(6):1470-1484 (in Chinese with English abstract). https://www.researchgate.net/publication/285730552_Formation_age_and_origin_of_the_Gutian-Xiaotao_granitic_complex_in_the_Southwestern_Fujian_province_China
      [70] Wang, Q., Li, J.W., Jian, P., et al., 2005.Alkaline Syenites in Eastern Cathaysia (South China):Link to Permian-Triassic Transtension.Earth and Planetary Science Letters, 230(3-4):339-354. https://doi.org/10.1016/j.epsl.2004.11.023
      [71] Wang, X., Chen, J., Luo, D., 2008.Study on Petrogenesis of Zircons from the Danzhu Granodiorite and Its Geological Implications.Geological Review, 54(3):387-398 (in Chinese with English abstract). https://www.researchgate.net/publication/284316803_Study_on_petrogenesis_of_zircons_from_the_Danzhu_granodiorite_and_its_geological_implications
      [72] Wang, Y.J., Fan, W.M., Sun, M., et al., 2007.Geochronological, Geochemical and Geothermal Constraints on Petrogenesis of the Indosinian Peraluminous Granites in the South China Block:A Case Study in the Hunan Province.Lithos, 96(3-4):475-502. https://doi.org/10.1016/j.lithos.2006.11.010
      [73] Wang, Y.J., Zhang, Y., Fan, W.M., et al., 2002.Numerical Modeling of the Formation of Indo-Sinian Peraluminous Granitoids in Hunan Province:Basaltic Underplating versus Tectonic Thickening.Science China Earth Science, 45(11):1042-1056. https://doi.org/10.1007/bf02911241
      [74] Wang, Y.X., Zhao, Z.H., Bao, Z.W., et al., 1998.Geochemistry of Granitoid Rocks and Crustal Evolution, Zhejiang Province China-Ⅱ.Proterozoic Granitoid Rocks.Geochimica, 26(6):57-68 (in Chinese with English abstract). doi: 10.1007/BF02834595
      [75] Wang, Z.M., Xiao, W.J., Han, C.M., et al., 2013.Metamorphism, Zircon U-Pb Dating and Tectonic Implications of Garnet Amphibolites from Hongliuxia, Dunhuang, Gansu Province.Acta Petrologica Sinica, 29(5):1685-1697 (in Chinese with English abstract).
      [76] Wei, C.J., 2016.Granulite Facies Metamorphism and Petrogenesis of Granite (Ⅱ):Quantitative Modeling of the HT-UHT Phase Equilibria for Metapelites and the Petrogenesis of S-Type Granite.Acta Petrologica Sinica, 32(6):1611-1624 (in Chinese with English abstract). doi: 10.1007/s11430-016-9029-7
      [77] Whalen, J.B., Currie, K.L., Chappell, B.W., 1987.A-Type Granites:Geochemical Characteristics, Discrimination and Petrogenesis.Contributions to Mineralogy and Petrology, 95(4):407-419. https://doi.org/10.1007/bf00402202
      [78] Wu, C.M., Zhang, J., Ren, L.D., 2004.Empirical Garnet-Biotite-Plagioclase-Quartz (GBPQ) Geobarometry in Medium-to High-Grade Metapelites.Journal of Petrology, 45(9):1907-1921. https://doi.org/10.1093/petrology/egh038
      [79] Wu, S.P., Wang, M.Y., Qi, K.J., 2007.Present Situation of Researches on A-Type Granites:A Review.Acta Petrologica et Mineralogica, 26(1):57-66 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical_yskwxzz200701009.aspx
      [80] Wu, Y.B., Zheng, Y.F., 2004.Genetic Mineralogy of Zircon and Its Constraints on the Interpretation of U-Pb Age.Chinese Science Bulletin, 49(16):1589-1604 (in Chinese). doi: 10.1007/BF03184122
      [81] Xia, Y., Xu, X.S., Zhu, K.Y., 2012.Paleoproterozoic S-and A-Type Granites in Southwestern Zhejiang:Magmatism, Metamorphism and Implications for the Crustal Evolution of the Cathaysia Basement.Precambrian Research, 216-219:177-207. https://doi.org/10.1016/j.precamres.2012.07.001
      [82] Xiang, H., Zhang, L., Zhou, H.W., et al., 2008.U-Pb Zircon Geochronology and Hf Isotope Study of Metamorphosed Basic-Ultrabasic Rocks from Metamorphic Basement in Southwestern Zhejiang:The Response of the Cathaysia Block to Indosinian Orogenic Event.Science in China (Series D), 38(4):401-413 (in Chinese). doi: 10.1007/s11430-008-0053-0
      [83] Xiao, L.L., Jiang, Z.S., Wang, G.D., et al., 2011.Metamorphic Reaction Textures and Metamorphic P-T-t Loops of the Precambrian Zanhuang Metamorphic Complex, Hebei, North China.Acta Petrologica Sinica, 27(4):980-1002 (in Chinese with English abstract). https://es.scribd.com/mobile/document/293408586/List-of-Amc
      [84] Xie, J.R., 1961.China's Tectonic Problems.Acta Geologica Sinica, 41(2):218-239 (in Chinese).
      [85] Xu, X.S., O'Reilly, S.Y., Griffin, W.L., et al., 2007.The Crust of Cathaysia:Age, Assembly and Reworking of Two Terranes.Precambrian Research, 158(1-2):51-78. https://doi.org/10.1016/j.precamres.2007.04.010
      [86] Yu, J.H., O'Reilly, S.Y., Zhou, M.F., et al., 2012.U-Pb Geochronology and Hf-Nd Isotopic Geochemistry of the Badu Complex, Southeastern China:Implications for the Precambrian Crustal Evolution and Paleogeography of the Cathaysia Block.Precambrian Research, 222-223:424-449. https://doi.org/10.1016/j.precamres.2011.07.014
      [87] Yu, J.H., Wang, L.J., O'Reilly, S.Y., et al., 2009.A Paleoproterozoic Orogeny Recorded in a Long-Lived Cratonic Remnant (Wuyishan Terrane), Eastern Cathaysia Block, China.Precambrian Research, 174(3-4):347-363. https://doi.org/10.1016/j.precamres.2009.08.009
      [88] Zhang, S.B., Zheng, Y.F., Wu, Y.B., et al., 2006.Zircon Isotope Evidence for ≥ 3.5Ga Continental Crust in the Yangtze Craton of China.Precambrian Research, 146(1-2):16-34. https://doi.org/10.1016/j.precamres.2006.01.002
      [89] Zhang, W.Y., 1959.Outline of China's Geodetic Structure.Science Press, Beijing (in Chinese).
      [90] Zhang, Y.Q., Xu, X.B., Jia, D., et al., 2009.Deformation Record of the Change from Indosinian Collision-Related Tectonic System to Yanshanian Subduction-Related Tectonic System in South China during the Early Mesozoic.Earth Science Frontiers, 16(1):234-247 (in Chinese with English abstract). http://www.oalib.com/references/16010543
      [91] Zhao, L., Zhai, M.G., Santosh, M., et al., 2017.Early Mesozoic Retrograded Eclogite and Mafic Granulite from the Badu Complex of the Cathaysia Block, South China:Petrology and Tectonic Implications.Gondwana Research, 42:84-103. https://doi.org/10.1016/j.gr.2016.10.002
      [92] Zhao, L., Zhou, X.W., 2012.The Metamorphic Evolution and PT Path of Pelitic Granulite from the Badu Group in Southwestern Zhejiang Province.Acta Petrologica et Mineralogica, 31(1):61-72 (in Chinese with English abstract). https://www.researchgate.net/publication/273124424_The_metamorphic_evolution_and_pT_path_of_pelitic_granulite_from_the_Badu_Group_in_Southwestern_Zhejiang_Province
      [93] Zhao, L., Zhou, X.W., Zhai, M.G., et al., 2014.Paleoproterozoic Tectonic Transition from Collision to Extension in the Eastern Cathaysia Block, South China:Evidence from Geochemistry, Zircon U-Pb Geochronology and Nd-Hf Isotopes of a Granite-Charnockite Suite in Southwestern Zhejiang.Lithos, 184-187:259-280. https://doi.org/10.1016/j.lithos.2013.11.005
      [94] Zheng, J.P., Griffin, W.L., O'Reilly, S.Y., et al., 2006.Widespread Archean Basement beneath the Yangtze Craton.Geology, 34(6):417. https://doi.org/10.1130/g22282.1
      [95] Zhou, X.M., Sun, T., Shen, W.Z., 2006.Petrogenesis of Mesozoic Granitioids and Volcanic Rocks in South China:A Response to Tectonic Evolution.Episodes, 29:26-33 (in Chinese with English abstract). https://www.researchgate.net/publication/38440799_Petrogenesis_of_Mesozoic_granitoids_and_volcanic_rocks_in_South_China_A_Response_to_Tectonic_Evolution
      [96] 陈迪云, 章邦桐, 孙大中, 等, 1997.武夷山高溪和富城花岗岩体地球化学及其与铀成矿的关系.岩石学报, 13(1):71-84. http://www.ysxb.ac.cn/ysxb/ch/reader/issue_list.aspx?year_id=1997&quarter_id=1
      [97] 陈国达, 1956.中国地台"活化区"的实例并着重讨论"华夏古陆"问题.地质学报, 36(3):239-271. http://mall.cnki.net/magazine/magadetail/DZXE195603.htm
      [98] 陈卫锋, 陈培荣, 黄宏业, 等, 2007.湖南白马山岩体花岗岩及其包体的年代学和地球化学研究.中国科学(D辑), 37(7):873-893. http://www.doc88.com/p-3764316339348.html
      [99] 丁兴, 陈培荣, 陈卫锋, 等, 2005.湖南沩山花岗岩中锆石LA-ICPMSU-Pb定年:成岩启示和意义.中国科学(D辑), 35(7):606-616. http://www.oalib.com/paper/4153481
      [100] 甘晓春, 李惠民, 孙大中, 等, 1993.闽北前寒武纪基底的地质年代学研究.福建地质, 12(1):17-13.
      [101] 甘晓春, 李惠民, 孙大中, 等, 1995.浙西南早元古代花岗质岩石的年代.岩石矿物学杂志, 14(1):1-8. http://mall.cnki.net/magazine/Article/KXTB199211016.htm
      [102] 郭敬辉, 翟明国, 李永刚, 等, 1998.华北太古宙高压基性麻粒岩的两类PT轨迹及其构造意义:矿物化学和变质作用研究.岩石学报, 14(4):430-448. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=19980454
      [103] 郭令智, 施央申, 马瑞士, 1983.西太平洋中、新生代活动大陆边缘和岛弧构造的形成及演化.地质学报, 57(1):11-21. doi: 10.1360/N072017-00006?slug=full%20text
      [104] 胡雄健, 许金坤, 童朝旭, 等, 1991.浙西南前寒武纪地质.北京:地质出版社.
      [105] 黄汲清, 任纪舜, 姜春发, 等, 1977.中国大地构造基本轮廓.地质学报, 51(2):117-135. https://www.wenkuxiazai.com/doc/679571ed5ef7ba0d4a733b0d.html
      [106] 黄汲清, 任纪舜, 姜春发, 等, 1980.中国大地构造及其演化.北京:科学出版社, 99-102.
      [107] 蒋宗胜, 王国栋, 肖玲玲, 等, 2011.河南洛宁太华变质杂岩区早元古代变质作用P-T-t轨迹及其大地构造意义.岩石学报, 27(12):3701-3717.
      [108] 靳是琴, 1991.不同区域变质相中钙质角闪石的成分特征.科学通报, 36(11):851-854. http://www.cqvip.com/qk/94252x/199111/552666.html
      [109] 李献华, 李寄嵎, 刘颖, 等, 1999.华夏古陆古元古代变质火山岩的地球化学特征及其构造意义.岩石学报.15(3):364-371. http://www.oalib.com/paper/1471374
      [110] 李献华, 王一先, 赵振华, 等, 1998.闽浙古元古代斜长角闪岩的离子探针锆石U-Pb年代学.地球化学.27(4):327-334. http://www.cqvip.com/Main/Detail.aspx?id=3089959
      [111] 马军, 王仁民, 1997.从变质反应空间看宣化、密云两地基性麻粒岩不同的P-T演化.中国科学(D辑), 27(1):52-58. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jdxk199701008&dbname=CJFD&dbcode=CJFQ
      [112] 任纪舜, 1964.中国东南部泥盆纪前几个大地构造问题的初步探讨.地质学报, 44(4):418-431. http://d.wanfangdata.com.cn/Periodical/dizhixb201604001
      [113] 任纪舜, 陈廷愚, 牛宝贵, 1990.中国东部及邻区大陆岩石圈的构造演化与成矿.北京:科学出版社.
      [114] 水涛, 1988.中国东南大陆基底构造格局.中国科学(B辑), 31(7):885-896. http://chem.scichina.com:8081/sciB/CN/Y1987/V17/I4/414
      [115] 王丽娟, 于津海, 徐夕生, 等, 2007.闽西南古田-小陶花岗质杂岩体的形成时代和成因.岩石学报, 23(6):1470-1484. doi: 10.3969/j.issn.1000-0569.2007.06.022
      [116] 汪相, 陈洁, 罗丹, 2008.浙西南淡竹花岗闪长岩中锆石的成因研究及其地质意义.地质评论, 54(3):387-398. https://www.wenkuxiazai.com/doc/b45604261ed9ad51f01df2a4.html
      [117] 王一先, 赵振华, 包志伟, 等, 1998.浙江花岗岩类地球化学与地壳演化-Ⅱ.元古宙花岗岩类, 地球化学, 26(6):57-68. https://www.wenkuxiazai.com/doc/cf3301fa770bf78a6529541d.html
      [118] 王忠梅, 肖文交, 韩春明, 等, 2013.甘肃敦煌红柳峡地区石榴石斜长角闪岩的变质特征、锆石U-Pb年龄及地质意义.岩石学报, 29(5):1685-1697. https://www.researchgate.net/profile/Luojuan_Wang2/publication/287549611_Metamorphism_zircon_U-Pb_dating_and_tectonic_implications_of_garnet_amphibolites_from_Hongliuxia_Dunhuang_Gansu_Province/links/56aaf3cf08aeadd1bdcafc5a.pdf?origin=publication_detail
      [119] 魏春景, 2016.麻粒岩相变质作用与花岗岩成因-Ⅱ:变质泥质岩高温-超高温变质相平衡与S型花岗岩成因的定量模拟.岩石学报, 32(6):1611-1624. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201606004.htm
      [120] 吴锁平, 王梅英, 戚开静, 2007.A型花岗岩研究现状及其述评.岩石矿物学杂志, 26(1):57-66. https://www.wenkuxiazai.com/doc/b729462b915f804d2b16c1eb.html
      [121] 吴元保, 郑永飞, 2004, 锆石成因矿物学研究及其对U-Pb年龄解释的制约.科学通报, 49(16):1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002
      [122] 向华, 张利, 周汉文, 等, 2008.浙西南变质基底基性-超基性变质岩锆石U-Pb年龄、Hf同位素研究:华厦地块变质基底对华南印支期造山的响应.中国科学(D辑), 38(4):401-413. https://www.wenkuxiazai.com/doc/15fa6c60561252d380eb6e1b.html
      [123] 肖玲玲, 蒋宗胜, 王国栋, 等, 2011.赞皇前寒武纪变质杂岩区变质反应结构与变质作用P-T-t轨迹.岩石学报, 27(4):980-1002. http://d.wanfangdata.com.cn/Periodical/ysxb98201104007
      [124] 谢家荣, 1961.中国大地构造问题.地质学报, 41(2):218-239. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y814632
      [125] 张文佑, 1959.中国大地构造纲要.北京:科学出版社.
      [126] 张岳桥, 徐先兵, 贾东, 等, 2009.华南早中生代从印支期碰撞构造体系向燕山期俯冲构造体系转换的形变记录.地学前缘, 16(1):234-247. https://www.wenkuxiazai.com/doc/038c95707fd5360cba1adb2b-3.html
      [127] 赵磊, 周喜文, 2012.浙西南八都群泥质麻粒岩的变质演化与PT轨迹.岩石矿物学杂志, 31(1):61-72.
      [128] 周新民, 孙涛, 沈渭洲, 2006.华南中生代花岗岩-火山岩成因与构造体制转换.地质幕, 29:26-33. http://www.oalib.com/paper/4152551
    • 加载中
    图(12) / 表(3)
    计量
    • 文章访问数:  4918
    • HTML全文浏览量:  1625
    • PDF下载量:  27
    • 被引次数: 0
    出版历程
    • 收稿日期:  2017-07-31
    • 刊出日期:  2018-01-15

    目录

      /

      返回文章
      返回