• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    传统温压计在低温榴辉岩应用中的局限:以西南天山超高压变质带为例

    张丽娟 张立飞 初旭

    张丽娟, 张立飞, 初旭, 2018. 传统温压计在低温榴辉岩应用中的局限:以西南天山超高压变质带为例. 地球科学, 43(1): 164-175. doi: 10.3799/dqkx.2018.010
    引用本文: 张丽娟, 张立飞, 初旭, 2018. 传统温压计在低温榴辉岩应用中的局限:以西南天山超高压变质带为例. 地球科学, 43(1): 164-175. doi: 10.3799/dqkx.2018.010
    Zhang Lijuan, Zhang Lifei, Chu Xu, 2018. Limitations of Traditional Thermobarometer in Applications to Low-Temperature Eclogites: A Case Study of UHP Metamorphic Belt in Southwest Tianshan. Earth Science, 43(1): 164-175. doi: 10.3799/dqkx.2018.010
    Citation: Zhang Lijuan, Zhang Lifei, Chu Xu, 2018. Limitations of Traditional Thermobarometer in Applications to Low-Temperature Eclogites: A Case Study of UHP Metamorphic Belt in Southwest Tianshan. Earth Science, 43(1): 164-175. doi: 10.3799/dqkx.2018.010

    传统温压计在低温榴辉岩应用中的局限:以西南天山超高压变质带为例

    doi: 10.3799/dqkx.2018.010
    基金项目: 

    国家自然科学基金项目 41330210

    国家自然科学基金项目 41520104004

    中国博士后基金项目 8201400768

    详细信息
      作者简介:

      张丽娟(1986-), 女, 助理研究员, 主要从事高压-超高压变质岩岩石学及地球化学方面的研究

      通讯作者:

      张立飞

    • 中图分类号: P581

    Limitations of Traditional Thermobarometer in Applications to Low-Temperature Eclogites: A Case Study of UHP Metamorphic Belt in Southwest Tianshan

    • 摘要: 榴辉岩相变质岩石的温压研究对理解高压-超高压变质带的形成和演化具有重要意义,但西南天山低温榴辉岩运用石榴石-绿辉石(-多硅白云母)温压计计算的压力普遍低于相平衡模拟的结果.为此,在Zhang et al.(2017)对含霓辉石榴辉岩研究结果的基础上,对该区域内榴辉岩及其脉体中的绿辉石进行了岩相学和矿物化学的研究,结果表明绿辉石普遍发育环带结构:从核部到边部,Fe3+含量降低,Al含量增加,Fe3+/Al比值的降低对应于霓石含量的降低和硬玉含量的升高.相平衡模拟中硬玉分子等值线的计算结果表明具有最高硬玉含量的边部绿辉石在降压阶段生长.因此,具有最高含量的硬玉组分的绿辉石并不一定代表峰期压力,在应用石榴石-单斜辉石(-多硅白云母)传统温压计时需谨慎,尤其是应用于低温的、具有复杂环带模式的矿物组合时要尤为慎重.

       

    • 图  1  西南天山超高压变质带榴辉岩变质P-T轨迹(实曲线)和P-T条件(方形阴影)总结

      图据Zhang et al.(2017)修改

      Fig.  1.  Summary of P-T paths (solid curves) and P-T conditions (shaded squares) derived from eclogites from the Southwest Tianshan UHP belt

      图  2  榴辉岩和高压脉体中的绿辉石环带背散射照片

      a.榴辉岩中绿辉石核部呈半自形到他形浅灰色,边部呈他形深灰色(HB121-8);b.高压脉体中绿辉石颗粒粗大,核部呈自形浅灰色,边部则呈自形-半自形深灰色(HB121-8v);c.部分绿辉石颗粒保留了成分环带,其他颗粒则已难以区分(HB121-10);d.石英脉中粗粒绿辉石,边部发育角闪石,环带已不明显(HB121-10v);e.榴辉岩中绿辉石的核部呈半自形灰色,边部呈他形黑色(HB121-13);f.石英脉中粗粒绿辉石,核部较高的硬玉含量是由于绿辉石中发育裂隙并包裹石英所致(HB121-13v);g.退变质作用非常强烈,已很难区分出核-边结构,但仍可分出深色和浅色区域,浅色的绿辉石硬玉含量低,深色的绿辉石硬玉含量高,且越靠近脉体处的绿辉石颜色越深(HB121-21);h.石英脉中粗粒绿辉石垂直脉体边缘生长,边部发育角闪石,环带已不明显(HB121-21v);i.少数绿辉石颗粒仍保留成分环带,大多颗粒则已难以区分(HB123-5);j.绿辉石较为粗大,且发生碎裂,边部退变为角闪石,仍可辨别出核-边结构(HB123-5v).白色数字代表绿辉石硬玉(Jd)组分,且从核部到边部硬玉含量总体升高.矿物简写据Whitney and Evans(2010):Grt.石榴石;Omp.绿辉石;Rt.金红石;Ttn.榍石;Ph.多硅白云母;Pg.钠云母;Amp.角闪石;Czo.斜黝帘石;Dol.白云石;Cal.方解石;Qz.石英;Zrn.锆石

      Fig.  2.  BSE photographs of omphacite zonations in eclogites and HP veins

      图  3  绿辉石成分分类图解

      自核部向边部绿辉石霓石组分逐渐降低,硬玉组分逐渐升高,底图据Morimoto (1988)

      Fig.  3.  Compositional ternary classification diagram of omphacite

      图  4  含柯石英假象榴辉岩样品HB121-10 P-T视剖面图叠加绿辉石j(o)等值线

      图修改自Zhang et al.(2016);a.以全岩成分计算的P-T视剖面图;b.以有效全岩成分计算的P-T视剖面图;图中j(o)=硬玉+霓石,以橙色粗实线表示,数值为j47-j58.图中黑色方框里所标数值为样品HB121-10中基质绿辉石实测值;紫色方框所标数值为脉体绿辉石的实测值.矿物简写:Gln.蓝闪石;Lws.硬柱石;Tlc.滑石;Coe.柯石英;Ep.绿帘石;Ky.蓝晶石;Chl.绿泥石;Pl.斜长石;Bt.黑云母;其他矿物简写同上

      Fig.  4.  P-T pseudosection calculated for coesite pseudomorph bearing eclogite HB121-10 contoured with j(o) isopleths

      表  1  榴辉岩和高压脉体中绿辉石代表性主量元素成分

      Table  1.   Representative major element compositions of omphcites in eclogites and HP veins

      Mineral HB121-8 HB121-8v HB121-10 HB121-10v
      o-c浅 o-r深 o-in-pg o-in-ep o-in-g-r o-c浅 o-r深 o-浅 o-深 o-in-g-m o-c o-r
      SiO2 55.31 55.20 55.59 54.41 56.27 56.72 58.41 56.07 55.66 55.55 56.40 56.18
      TiO2 0.07 0.03 0.05 0 0.03 0.05 0.07 0.04 0.05 0 0 0.05
      Al2O3 9.80 11.44 11.82 11.49 11.08 11.16 12.55 11.36 12.31 9.48 10.53 10.91
      Cr2O3 0.05 0.12 0 0.09 0.01 0.01 0.09 0 0.03 0.11 0 0.02
      FeO 7.21 4.12 3.29 5.05 7.13 6.88 3.57 3.90 2.97 8.75 6.63 5.81
      MnO 0 0.01 0 0.04 0.02 0.04 0 0.03 0 0.02 0.03 0.01
      MgO 6.82 7.66 8.00 8.71 6.25 6.38 7.29 7.56 7.82 6.69 7.04 6.64
      CaO 12.08 12.95 12.98 11.87 10.78 11.15 11.58 12.88 12.65 12.55 11.94 11.49
      Na2O 7.46 7.18 7.03 6.39 8.28 8.01 7.69 7.82 7.52 7.79 7.85 7.85
      K2O 0.01 0 0 0.04 0.02 0.01 0 0.01 0.03 0.03 0 0.01
      Totals 98.80 98.71 98.76 98.10 99.86 100.41 101.25 99.68 99.04 100.97 100.43 98.96
      Si 2.001 1.981 1.989 1.971 2.004 2.013 2.027 1.984 1.978 1.971 1.998 2.017
      Ti 0.002 0.001 0.001 0 0.001 0.001 0.002 0.001 0.001 0 0 0.001
      Al 0.418 0.484 0.499 0.491 0.465 0.467 0.513 0.474 0.516 0.397 0.440 0.462
      Cr 0.001 0.003 0 0.003 0.000 0 0.003 0 0.001 0.003 0 0.001
      *Fe3+ 0.100 0.049 0.008 0.016 0.097 0.056 0 0.093 0.044 0.195 0.103 0.047
      **Fe3+ 0.105 0.012 0 0 0.108 0.085 0.001 0.063 0.002 0.137 0.099 0.084
      Fe2+ 0.119 0.074 0.090 0.137 0.115 0.148 0.104 0.023 0.044 0.065 0.094 0.127
      Mn 0 0 0 0.001 0.001 0.001 0 0.001 0 0.001 0.001 0
      Mg 0.368 0.410 0.427 0.470 0.332 0.337 0.377 0.399 0.414 0.354 0.372 0.355
      Ca 0.468 0.498 0.498 0.460 0.411 0.424 0.431 0.488 0.482 0.477 0.453 0.442
      Na 0.524 0.499 0.488 0.449 0.572 0.551 0.517 0.537 0.518 0.536 0.539 0.547
      K 0 0 0 0.002 0.001 0.001 0 0 0.001 0.001 0 0
      Sum 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000
      Jd 41.900 46.500 48.800 46.200 46.900 48.000 54.000 45.800 49.400 36.800 43.800 47.900
      Ae 10.000 4.900 0.800 1.600 9.700 5.600 0.000 9.300 4.400 19.500 10.300 4.700
      WEE 48.100 48.600 50.400 52.200 43.400 46.400 46.000 44.900 46.200 43.700 45.900 47.400
      Mineral HB121-13 HB121-13v HB121-21 HB121-21v HB123-5 HB123-5v
      o-c浅 o-r深 o-c浅 o-r深 o-c浅 o-r深 o-c浅 o-r深 o-c浅 o-r深 o-c浅 o-r深
      SiO2 56.22 56.78 55.30 57.18 55.75 57.54 56.35 56.18 56.18 56.49 56.72 57.65
      TiO2 0.12 0.03 0.09 0.06 0.03 0 0.03 0.02 0 0.05 0.05 0.01
      Al2O3 10.33 12.61 10.01 12.77 9.43 13.71 10.22 11.54 11.53 11.25 10.04 12.02
      Cr2O3 0.02 0 0 0.02 0 0.01 0 0 0.09 0.06 0 0.01
      Fe2O3 4.82 0 6.01 0 4.63 0.40 5.47 2.75 2.95 2.23 2.16 2.66
      FeO 9.77 1.99 9.94 2.72 9.25 4.62 9.86 7.56 2.80 3.11 6.62 5.70
      MnO 0.04 0 0.06 0.01 0 0 0.07 0.04 0.01 0.01 0.06 0.06
      MgO 5.30 7.19 5.01 6.51 6.16 5.97 5.15 5.37 9.00 8.33 7.29 6.56
      CaO 10.35 11.93 10.04 11.74 12.10 10.55 10.60 10.22 13.96 13.55 12.54 11.30
      Na2O 8.43 7.58 8.58 7.74 7.57 8.70 8.54 8.49 7.24 7.38 7.34 8.49
      K2O 0.02 0 0 0 0.01 0 0 0 0.01 0.02 0 0
      Totals 100.60 98.12 99.03 98.76 100.29 101.11 100.83 99.43 101.11 100.25 100.67 101.81
      Si 2.007 2.023 2.004 2.029 2.001 2.008 2.007 2.014 1.963 1.987 2.013 2.005
      Ti 0.003 0.001 0.002 0.002 0.001 0 0.001 0.001 0 0.001 0.001 0
      Al 0.435 0.530 0.428 0.534 0.399 0.564 0.429 0.488 0.475 0.467 0.420 0.493
      Cr 0.001 0 0 0.001 0 0 0 0 0.002 0.002 0 0
      *Fe3+ 0.129 0 0.163 0 0.125 0.009 0.145 0.073 0.077 0.059 0.057 0.068
      **Fe3+ 0.148 0 0.175 0 0.128 0.025 0.161 0.102 0.014 0.035 0.085 0.080
      Fe2+ 0.162 0.059 0.138 0.081 0.152 0.126 0.148 0.154 0.004 0.032 0.140 0.097
      Mn 0.001 0 0.002 0 0 0 0.002 0.001 0 0 0.002 0.002
      Mg 0.282 0.382 0.271 0.344 0.329 0.310 0.273 0.287 0.469 0.437 0.386 0.340
      Ca 0.396 0.455 0.390 0.446 0.465 0.394 0.404 0.393 0.523 0.511 0.477 0.421
      Na 0.583 0.524 0.603 0.532 0.527 0.589 0.590 0.590 0.491 0.503 0.505 0.573
      K 0.001 0 0 0 0 0 0 0 0 0.001 0 0
      Sum 4 4 4 4 4 4 4 4 4 4 4 4
      Jd 44.2 52.4 43.2 53.2 40 57.2 43.6 50.2 43.8 45.4 43.3 49.8
      Ae 12.9 0 16.3 0 12.5 0.9 14.5 7.3 7.7 5.9 5.7 6.8
      WEE 42.9 47.6 40.5 46.8 47.5 41.9 41.9 42.5 48.5 48.7 51.0 43.4
      注:o-c.绿辉石核部;o-r.绿辉石边部;o-in-pg.钠云母中的绿辉石包体;o-in-ep.绿帘石中的绿辉石包体;o-in-g-r.石榴石边部的绿辉石包体;o-in-g-m.石榴石幔部的绿辉石包体;深和浅代表背散射图像中的颜色;其中绿辉石化学式中Fe3+含量计算方法:*Fe3+由AX程序根据电价平衡计算(T.J.B.Holland, http://www.esc.cam.ac.uk/astaff/holland/as.html);**Fe3+通过Na+K-Cr-Al估算.
      下载: 导出CSV
    • [1] Beinlich, A., Klemd, R., John, T., et al., 2010.Trace-Element Mobilization during Ca-Metasomatism along a Major Fluid Conduit:Eclogitization of Blueschist as a Consequence of Fluid-Rock Interaction.Geochimica et Cosmochimica Acta, 74(6):1892-1922. https://doi.org/10.1016/j.gca.2009.12.011
      [2] Carswell, D.A., Zhang, R.Y., 1999.Petrographic Characteristics and Metamorphic Evolution of Ultrahigh-Pressure Eclogites in Plate-Collision Belts.International Geology Review, 41(9):781-798. https://doi.org/10.1080/00206819909465169
      [3] Du, J.X., Zhang, L.F., Bader, T., et al., 2014a.Metamorphic Evolution of Relict Lawsonite-Bearing Eclogites from the (U) HP Metamorphic Belt in the Chinese Southwestern Tianshan.Journal of Metamorphic Geology, 32(6):575-598. https://doi.org/10.1111/jmg.12080
      [4] Du, J.X., Zhang, L.F., Shen, X.J., et al., 2014b.A New P-T-t Path of Eclogites from Chinese Southwestern Tianshan:Constraints from P-T Pseudosections and Sm-Nd Isochron Dating.Lithos, 200-201:258-272. https://doi.org/10.1016/j.lithos.2014.04.009
      [5] Ellis, D.J., Green, D.H., 1979.An Experimental Study of the Effect of Ca upon Garnet-Clinopyroxene Fe-Mg Exchange Equilibria.Contributions to Mineralogy and Petrology, 71(1):13-22. https://doi.org/10.1007/bf00371878
      [6] Faryad, S.W., Chakraborty, S., 2005.Duration of Eo-Alpine Metamorphic Events Obtained from Multicomponent Diffusion Modeling of Garnet:A Case Study from the Eastern Alps.Contributions to Mineralogy and Petrology, 150(3):306-318. https://doi.org/10.1007/s00410-005-0020-0
      [7] Gao, J., John, T., Klemd, R., et al., 2007.Mobilization of Ti-Nb-Ta during Subduction:Evidence from Rutile-Bearing Dehydration Segregations and Veins Hosted in Eclogite, Tianshan, NW China.Geochimica et Cosmochimica Acta, 71(20):4974-4996. https://doi.org/10.1016/j.gca.2007.07.027
      [8] Gao, J., Klemd, R., 2001.Primary Fluids Entrapped at Blueschist to Eclogite Transition:Evidence from the Tianshan Meta-Subduction Complex in Northwestern China.Contributions to Mineralogy and Petrology, 142(1):1-14. https://doi.org/10.1007/s004100100275
      [9] Gao, J., Klemd, R., Zhang, L., et al., 1999.P-T Path of High-Pressure/Low-Temperature Rocks and Tectonic Implications in the Western Tianshan Mountains, NW China.Journal of Metamorphic Geology, 17(6):621-636. https://doi.org/10.1046/j.1525-1314.1999.00219.x
      [10] Ghent, E. D., Stout, M. Z., Parrish, R. R., 1988. Determination of Metamorphic Pressure-Temperature-Time (PTt) Paths. In: Nisbet, E. G., Fowler, C. M. R., eds., Heat, Metamorphism and Tectonics. Mineralogical Association of Canada, Québec.
      [11] Holland, T.J.B., 1980.The Reaction Albite=Jadeite+Quartz Determined Experimentally in the Range 600-1 200℃.American Mineralogist, 65(1-2):125-134. http://www.minsocam.org/ammin/AM65/AM65_129.pdf
      [12] John, T., Klemd, R., Gao, J., et al., 2008.Trace-Element Mobilization in Slabs due to Non Steady-State Fluid-Rock Interaction:Constraints from an Eclogite-Facies Transport Vein in Blueschist (Tianshan, China).Lithos, 103(1-2):1-24. https://doi.org/10.1016/j.lithos.2007.09.005
      [13] Klemd, R., Schröter, F.C., Will, T.M., et al., 2002.P-T Evolution of Glaucophane-Omphacite Bearing HP-LT Rocks in the Western Tianshan Orogen, NW China:New Evidence for 'Alpine-Type' Tectonics.Journal of Metamorphic Geology, 20(2):239-254. https://doi.org/10.1046/j.1525-1314.2002.00347.x
      [14] Krogh, E.J., 1988.The Garnet-Clinopyroxene Fe-Mg Geothermometer-A Reinterpretation of Existing Experimental Data.Contributions to Mineralogy and Petrology, 99(1):44-48. https://doi.org/10.1007/bf00399364
      [15] Li, J.L., Gao, J., John, T., et al., 2013.Fluid-Mediated Metal Transport in Subduction Zones and Its Link to Arc-Related Giant Ore Deposits:Constraints from a Sulfide-Bearing HP Vein in Lawsonite Eclogite (Tianshan, China).Geochimica et Cosmochimica Acta, 120:326-362. https://doi.org/10.1016/j.gca.2013.06.023
      [16] Li, J.L., Klemd, R., Gao, J., et al., 2015.A Common High-Pressure Metamorphic Evolution of Interlayered Eclogites and Metasediments from the'Ultrahigh-Pressure Unit'of the Tianshan Metamorphic Belt in China.Lithos, 226:169-182. https://doi.org/10.1016/j.lithos.2014.12.006
      [17] Li, J.L., Klemd, R., Gao, J.et al., 2012.Coexisting Carbonate-Bearing Eclogite and Blueschist in SW Tianshan, China:Petrology and Phase Equilibria.Journal of Asian Earth Sciences, 60:174-187. https://doi.org/10.1016/j.jseaes.2012.08.015
      [18] Li, L., Brodholt, J.P., Stackhouse, S., et al., 2005.Electronic Spin State of Ferric Iron in Al-Bearing Perovskite in the Lower Mantle.Geophysical Research Letters, 32(17):17307. https://doi.org/10.1029/2005gl023045
      [19] Lü, Z., Zhang, L.F., 2012.Coesite in the Eclogite and Schist of the Atantayi Valley, Southwestern Tianshan, China.Science Bulletin, 57(13):1467-1472. https://doi.org/10.1007/s11434-012-4979-4
      [20] Lü, Z., Zhang, L.F., Du, J.X., et al., 2008.Coesite Inclusions in Garnet from Eclogitic Rocks in Western Tianshan, Northwest China:Convincing Proof of UHP Metamorphism.American Mineralogist, 93(11-12):1845-1850. https://doi.org/10.2138/am.2008.2800
      [21] Lü, Z., Zhang, L.F., Du, J.X., et al., 2009.Petrology of Coesite-Bearing Eclogite from Habutengsu Valley, Western Tianshan, NW China and Its Tectonometamorphic Implication.Journal of Metamorphic Geology, 27(9):773-787. https://doi.org/10.1111/j.1525-1314.2009.00845.x
      [22] Lü, Z., Zhang, L.F., Du, J.X., et al., 2012.Petrology of HP Metamorphic Veins in Coesite-Bearing Eclogite from Western Tianshan, China:Fluid Processes and Elemental Mobility during Exhumation in a Cold Subduction Zone.Lithos, 136-139:168-186. https://doi.org/10.1016/j.lithos.2011.10.011
      [23] Morimoto, N., 1988.Nomenclature of Pyroxenes.Mineralogical Magazine, 52(367):535-550. https://doi.org/10.1180/minmag.1988.052.367.15
      [24] Powell, R., 1985.Regression Diagnostics and Robust Regression in Geothermometer/Geobarometer Calibration:The Garnet-Clinopyroxene Geothermometer Revisited.Journal of Metamorphic Geology, 3(3):231-243. https://doi.org/10.1111/j.1525-1314.1985.tb00319.x
      [25] Powell, R., Holland, T.J.B., 2008.On Thermobarometry.Journal of Metamorphic Geology, 26(2):155-179. https://doi.org/10.1111/j.1525-1314.2007.00756.x
      [26] Proyer, A., Dachs, E., Mccammon, C., 2004.Pitfalls in Geothermobarometry of Eclogites:Fe3+ and Changes in Mineral Chemistry of Omphacite at Ultrahigh Pressures.Contribution to Mineralogy and Petrology, 147(3):305-318. https://doi.org/10.1007/s00410-004-0554-6
      [27] Ravna, E.J.K., 2000.The Garnet-Clinopyroxene Fe2+-Mg Geothermometer:An Updated Calibration.Journal of Metamorphic Geology, 18(2):211-219. https://doi.org/10.1046/j.1525-1314.2000.00247.x
      [28] Ravna, E.J.K., Terry, M.P., 2004.Geothermobarometry of UHP and HP Eclogites and Schists-An Evaluation of Equilibria among Garnet-Clinopyroxene-Kyanite-Phengite-Coesite/Quartz.Journal of Metamorphic Geology, 22(6):579-592. https://doi.org/10.1111/j.1525-1314.2004.00534.x
      [29] Schmid, R., Wilke, M., Oberhänsli, R., et al., 2003.Micro-XANES Determination of Ferric Iron and Its Application in Thermobarometry.Lithos, 70(3-4):381-392. https://doi.org/10.1016/s0024-4937(03)00107-5
      [30] Sobolev, V.N., McCammon, C.A., Taylor, L.A., et al., 1999.Precise Möessbauer Milliprobe Determination of Ferric Iron in Rock-Forming Minerals and Limitations of Electron Microprobe Analysis.American Mineralogist, 84(1-2):78-85. https://doi.org/10.2138/am-1999-1-208
      [31] Tan, Z., Agard, P., Gao, J., et al., 2017.P-T-Time-Isotopic Evolution of Coesite-Bearing Eclogites:Implications for Exhumation Processes in SW Tianshan.Lithos, 278-281:1-25. https://doi.org/10.1016/j.lithos.2017.01.010
      [32] Tian, Z.L., Wei, C.J., 2013.Metamorphism of Ultrahigh-Pressure Eclogites from the Kebuerte Valley, South Tianshan, NW China:Phase Equilibria and P-T Path.Journal of Metamorphic Geology, 31(3):281-300. https://doi.org/10.1111/jmg.12021
      [33] Tian, Z.L., Wei, C.J., Zhang, Z.M., 2016.Petrology and Metamorphic P-T Path of Coesite-Bearing Pelitic Schist from Southwestern Tianshan Mountains, Xinjiang.Acta Petrologica et Mineralogica, 35(2):265-275 (in Chinese with English Abstract). https://www.sciencedirect.com/science/article/pii/S0301926813000892
      [34] van der Straaten, F.V.D., Schenk, V., John, T., et al., 2008.Blueschist-Facies Rehydration of Eclogites (Tian Shan, NW-China):Implications for Fluid-Rock Interaction in the Subduction Channel.Chemical Geology, 255(1-2):195-219. https://doi.org/10.1016/j.chemgeo.2008.06.037
      [35] Wei, C.J., Clarke, G.L., 2011.Calculated Phase Equilibria for MORB Compositions:A Reappraisal of the Metamorphic Evolution of Lawsonite Eclogite.Journal of Metamorphic Geology, 29(9):939-952. https://doi.org/10.1111/j.1525-1314.2011.00948.x
      [36] Wei, C.J., Su, X.L., Lou, Y.X., et al., 2009.A New Interpretation of the Conventional Thermobarometry in Eclogite:Evidence from the Calculated PT Pseudosections.Acta Petrologica Sinica, 25(9):2078-2088 (in Chinese with English Abstract). https://www.sciencedirect.com/science/article/pii/S002449371730289X
      [37] Wei, C.J., Yang, Y., Su, X.L., et al., 2009.Metamorphic Evolution of Low-T Eclogite from the North Qilian Orogen, NW China:Evidence from Petrology and Calculated Phase Equilibria in the System NCKFMASHO.Journal of Metamorphic Geology, 27(1):55-70. https://doi.org/10.1111/j.1525-1314.2008.00803.x
      [38] Whitney, D.L., Evans, B.W., 2010.Abbreviations for Names of Rock-Forming Minerals.American Mineralogist, 95(1):185-187. https://doi.org/10.2138/am.2010.3371
      [39] Yang, X., Zhang, L.F., Tian, Z.L., et al., 2013.Petrology and U-Pb Zircon Dating of Coesite-Bearing Metapelite from the Kebuerte Valley, Western Tianshan, China.Journal of Asian Earth Sciences, 70-71:295-307. https://doi.org/10.1016/j.jseaes.2013.03.020
      [40] Zhang, L.F., Ai, Y.L., Li, Q., et al., 2005.The Formation and Tectonic Evolution of UHP Metamorphic Belt in Southwestern Tianshan, Xinjiang.Acta Petrologica Sinica, 21(4):1029-1038 (in Chinese with English Abstract). https://www.researchgate.net/publication/272151407_The_formation_and_tectonic_evolution_of_UHP_metamorphic_belt_in_southwestern_Tianshan_Xinjiang
      [41] Zhang, L.F., Du, J.X., Lü, Z., et al., 2013.A Huge Oceanic-Type UHP Metamorphic Belt in Southwestern Tianshan, China:Peak Metamorphic Age and P-T Path.Chinese Science Bulletin, 58(35):4378-4383. https://doi.org/10.1007/s11434-013-6074-x
      [42] Zhang, L.F., Ellis, D.J, Williams, S., et al., 2003.Ultrahigh-Pressure Metamorphism in Eclogites from the Western Tianshan, China-Reply.American Mineralogist, 88(7):1157-1160. https://www.researchgate.net/publication/216832004_Ultrahigh-pressure_metamorphism_in_eclogites_from_the_western_Tianshan_China---Reply
      [43] Zhang, L.F., Ellis, D.J., Jiang, W., 2002a.Ultrahigh Pressure Metamorphism in Western Tianshan, China, Part I:Evidence from the Inclusion of Coesite Pseudomorphs in Garnet and Quartz Exsolution Lamellae in Omphacite in Eclogites.American Mineralogist, 87(7):853-860. https://doi.org/10.2138/am-2002-0707
      [44] Zhang, L.F., Ellis, D.J., Williams, S., et al., 2002b.Ultrahigh Pressure Metamorphism in Western Tianshan, China, Part Ⅱ:Evidence from Magnesite in Eclogite.American Mineralogist, 87(7):861-866. https://doi.org/10.2138/am-2002-0708
      [45] Zhang, L.F., Gao, J., Ekebair, S., et al., 2001.Low Temperature Eclogite Facies Metamorphism in Western Tianshan, Xinjiang.Science China Earth Sciences, 44(1):85-96. https://doi.org/10.1007/BF02906888
      [46] Zhang, L.F., Lü, Z., Li, X.P., et al., 2007.A Comparative Study on the UHP Metamorphic Ophiolitic Rocks in Zermatt-Saas Zone, Western Alps and Western Tianshan, China.Geological Journal of China Universities, 13(3):498-506 (in Chinese with English Abstract). https://www.sciencedirect.com/science/article/pii/S1367912012003185
      [47] Zhang, L.J., Chu, X., Zhang, L.F., et al., 2017.Phase Equilibria Modelling Using Major and Trace Element Compositions of Zoned Garnet and Clinopyroxene from Southwestern Tianshan Eclogites, China.Journal of Asian Earth Sciences, 145:408-423. https://doi.org/10.1016/j.jseaes.2017.05.002
      [48] Zhang, L.J., Zhang, L.F., 2016.The Application of Zr-in-Rutile and Zr-in-Titanite Geothermometers to Eclogites from Southwestern Tianshan Mountains, Xinjiang.Acta Petrologica et Mineralogica, 35(5):840-854 (in Chinese with English Abstract). https://www.researchgate.net/publication/273063467_Ion_microprobe_U-Pb_age_and_Zr-in-rutile_thermometry_of_rutiles_from_the_DaixianHengshan_Mountains_Shanxi_Province_China
      [49] Zhang, L.J., Zhang, L.F., Lü, Z., et al., 2016.Nb-Ta Mobility and Fractionation during Exhumation of UHP Eclogite from Southwestern Tianshan, China.Journal of Asian Earth Sciences, 122:136-157. https://doi.org/10.1016/j.jseaes.2016.03.013
      [50] Zheng, Y.F., Gao, X.Y., Chen, R.X., et al., 2011.Zr-in-Rutile Thermometry of Eclogite in the Dabie Orogen:Constraints on Rutile Growth during Continental Subduction-Zone Metamorphism.Journal of Asian Earth Sciences, 40(2):427-451.https://doi.org/10.1016/j.jseaes.2010.09.008Get rights and content doi: 10.1016/j.jseaes.2010.09.008Getrightsandcontent
      [51] 田作林, 魏春景, 张泽明, 2016.新疆西南天山含柯石英泥质片岩的岩石学特征及变质作用P-T轨迹.岩石矿物学杂志, 35(2):265-275. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yskwxzz201602007
      [52] 魏春景, 苏香丽, 娄玉行, 等, 2009.榴辉岩中传统地质温压计新解:来自PT视剖面图的证据.岩石学报, 25(9):2078-2088. http://www.cqvip.com/Main/Detail.aspx?id=2000002881
      [53] 张立飞, 艾永亮, 李强, 等, 2005.新疆西南天山超高压变质带的形成与演化.岩石学报, 21(4):1029-1038. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20050499
      [54] 张立飞, 吕增, 李旭平, 等, 2007.西阿尔卑斯Zermatt-Saas洋壳深俯冲超高压变质带与我国新疆西南天山超高压变质带的比较.高校地质学报, 13(3):498-506. http://www.doc88.com/p-97941427736.html
      [55] 张丽娟, 张立飞, 2016.金红石和榍石Zr温度计在新疆西南天山榴辉岩中的应用.岩石矿物学杂志, 35(5):840-854. http://www.doc88.com/p-796377737045.html
    • 加载中
    图(4) / 表(1)
    计量
    • 文章访问数:  3982
    • HTML全文浏览量:  1780
    • PDF下载量:  30
    • 被引次数: 0
    出版历程
    • 收稿日期:  2017-10-12
    • 刊出日期:  2018-01-15

    目录

      /

      返回文章
      返回