• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    西南天山超高压变质带的两类石榴角闪岩

    吕增 王凯

    吕增, 王凯, 2018. 西南天山超高压变质带的两类石榴角闪岩. 地球科学, 43(1): 150-163. doi: 10.3799/dqkx.2018.009
    引用本文: 吕增, 王凯, 2018. 西南天山超高压变质带的两类石榴角闪岩. 地球科学, 43(1): 150-163. doi: 10.3799/dqkx.2018.009
    Lü Zeng, Wang Kai, 2018. Metamorphic Evolution of Two Types of Garnet Amphibolites from UHP Terrane of Southwestern Tianshan, NW China. Earth Science, 43(1): 150-163. doi: 10.3799/dqkx.2018.009
    Citation: Lü Zeng, Wang Kai, 2018. Metamorphic Evolution of Two Types of Garnet Amphibolites from UHP Terrane of Southwestern Tianshan, NW China. Earth Science, 43(1): 150-163. doi: 10.3799/dqkx.2018.009

    西南天山超高压变质带的两类石榴角闪岩

    doi: 10.3799/dqkx.2018.009
    基金项目: 

    国家自然科学基金项目 41330210

    国家重点基础研究发展计划(973计划) 2015CB856105

    国家自然科学基金项目 41372004

    详细信息
      作者简介:

      吕增(1981-), 男, 副教授, 主要从事变质作用研究

    • 中图分类号: P588

    Metamorphic Evolution of Two Types of Garnet Amphibolites from UHP Terrane of Southwestern Tianshan, NW China

    • 摘要: 角闪岩是西南天山超高压变质带变基性岩的常见岩石类型之一.野外关系和矿物反应结构表明,大多数角闪岩是由榴辉岩或蓝片岩受到不同程度的钠长绿帘角闪岩相退变质叠加形成的.但对于一些平衡结构发育良好且孤立产出的角闪岩类型(如石榴角闪岩)仍缺乏系统的岩石学研究.本次从岩相学、矿物成分以及热力学模拟几个方面对哈布腾苏河下游地区超高压带内不含钠长石的石榴角闪岩开展了详细的工作.这些石榴角闪岩的主要矿物为绿色角闪石(钙质-钠钙质闪石)、帘石(黝帘石-绿帘石)和石榴石,三者总体积占80%~90%,明显有别于大多数由榴辉岩退变而成的含有钠长石变斑晶的石榴角闪岩.虽然这些角闪岩化学成分十分相近,都具有富钙贫钠和高的Mg/(Mg+Fe)比值,但在结构、构造和矿物组成等方面存在显著差异,据此将它们划分为两类.第一类角闪岩基质中不含石英,保存在变斑晶中的少量残余矿物组合为石榴石+绿辉石+硬柱石+蓝闪石+金红石,指示峰期硬柱石榴辉岩相变质条件,富钛矿物全部为金红石.第二类角闪岩强烈面理化,面理由绿色角闪石、绿帘石和绿泥石以及条带状石英集合体构成.石榴石粒度呈双峰式分布,粗粒比细粒低钙低锰.基质和包体中均未发现高压变质特征矿物绿辉石和蓝闪石.富钛矿物以榍石为主,金红石和钛铁矿仅存在于个别石榴石中.两类角闪岩的石榴石成分具有较大区分度,前者的钙含量较高而镁含量较低.P-T视剖面计算显示它们的峰期条件为480~520 ℃,30~33 kbar,均达到超高压范围,与哈布腾苏河下游及以西地区的榴辉岩相似,表明西南天山超高压变基性岩构成沿中天山南缘断裂延伸数十千米的独立地质单元,不存在所谓的俯冲隧道混杂现象.

       

    • 图  1  西南天山造山带西段高压-超高压变质带地质简图及采样位置

      吕增和张立飞(2014)

      Fig.  1.  Geological sketch of the western part of the HP-UHP metamorphic belt of southwestern Tianshan and sample localities

      图  2  西南天山超高压变质带石榴角闪岩的产状

      a.第一类石榴角闪岩(手标本),第一类角闪岩局部发育钠云母-石英脉,其中可见来自围岩的细粒石榴石集合体;b.第二类石榴角闪岩(野外露头)

      Fig.  2.  The occurrences of garnet amphibolites from the UHP belt of southwestern Tianshan

      图  3  西南天山超高压变质带石榴角闪岩的显微结构

      a.样品H713-30中的细粒石榴石散布于黝帘石变斑晶和绿色角闪石中(单偏光);b.样品H713-30中无序排列的板条状绿色角闪石,含有均匀分布的细小金红石(正交偏光);c.样品H161-29中由条带状石英和长柱状角闪石构成的定向构造,发育粒度差异明显的两类石榴石;d.样品H161-29中发育不规则环带的绿帘石集合体;e.样品H713-30中石榴石包裹的绿辉石和硬柱石假象(电子背散射图象);f.样品H713-30中黝帘石变包裹的石榴石(发育明显成分环带)和绿辉石(电子背散射图象);g.样品H161-29中的粗粒石榴石及其包体(电子背散射图象).图e~g的比例尺长为100 μm.本文所用的矿物英文缩写除特别说明外,均来自Whitney and Evans(2010).Grt*.石榴石中异常富钙的不规则区域(Grs>40),一般与石英或钠云母构成多相包体

      Fig.  3.  Photomicrographs of garnet amphibolites from the UHP belt of southwestern Tianshan

      图  4  西南天山超高压变质带石榴角闪岩主要矿物的成分变化图解

      a.石榴石;图a中的斜线区域和阴影区域分别代表西南天山超高压和高压变基性岩的石榴石成分范围,据et al.(2017).H713-30样品的一个高钙低镁成分对应于石榴石变斑晶内的暗色富钙区域(参看图 3e中的Grt*),很可能是包体硬柱石减压分解的产物之一;b.单斜辉石,据Morimoto(1988);图b中的斜线区域代表文献中的西南天山超高压变基性岩中的绿辉石成分变化范围;c.角闪石,据Leake et al.(1997).Grs=Ca/(Ca+Fe2++Mg+Mn)×100;Prp=Mg/(Ca+Fe2++Mg+Mn)×100

      Fig.  4.  Compositional variations of main minerals in garnet amphibolites from the UHP belt of southwestern Tianshan

      图  5  西南天山超高压变质带石榴角闪岩在NCKFMASH体系下的P-T视剖面图

      a.样品H713-30;b.样品H161-29.圆圈表示石榴石成分——钙铝榴石(Grs)和镁铝榴石(Prp)等值线的交点,带箭头的粗实线表示石榴石成分环带确定的轨迹,粗虚线表示推测的退变质轨迹,星形图案表示观察到的退变质矿物组合;部分矿物组合因为稳定范围较小,未标注.图中所用的矿物英文缩写均来自Whitney and Evans(2010)

      Fig.  5.  P-T pseudosections of garnet amphibolites from the UHP belt of southwestern Tianshan in the system NCKFMASH

      表  1  西南天山超高压变质带中石榴角闪岩的主要矿物电子探针成分(%)

      Table  1.   Electron microprobe analyses of main minerals in garnet amphibolites from the UHP belt of southwestern Tianshan (%)

      Sample H713-30
      Mineral Grt Grt Grt Amp Amp Amp Amp Ep Ep Cpx Cpx Pg
      Position C M M R matrix matrix in Ep relict C R in Ep in Grt matrix
      SiO2 38.05 37.79 38.62 38.75 55.17 55.42 53.75 57.72 39.50 39.81 57.26 56.64 46.84
      TiO2 0.10 0.05 0.14 0.00 0.04 0.11 0.15 0.05 0.03 0.03 0.01 0.02 0.05
      Al2O3 22.02 22.50 22.13 22.14 6.06 5.19 8.60 12.36 32.64 32.95 10.41 10.54 40.68
      Cr2O3 0.06 0.00 0.06 0.08 0.12 0.09 0.07 0.04 0.21 0.17 0.08 0.05 0.12
      FeOT 30.91 31.06 30.45 28.23 6.67 7.41 8.03 7.43 1.39 1.27 3.62 4.13 0.15
      MnO 0.62 0.65 0.67 0.37 0.03 0.09 0.03 0.01 0.00 0.01 0.01 0.03 0.01
      MgO 3.00 3.13 3.37 4.05 17.42 17.77 15.38 12.05 0.05 0.01 8.84 8.55 0.09
      CaO 6.32 6.24 6.23 7.29 9.34 10.03 9.07 2.39 23.89 23.65 13.87 13.67 0.26
      Na2O 0.00 0.02 0.03 0.00 2.66 1.95 2.94 6.25 0.02 0.06 6.58 6.68 6.61
      K2O 0.00 0.01 0.00 0.00 0.08 0.09 0.09 0.00 0.00 0.00 0.00 0.00 0.28
      Totals 101.08 101.44 101.69 100.91 97.59 98.15 98.11 98.30 97.73 97.94 100.68 100.30 95.09
      Oxygens 12 12 12 12 23 23 23 23 12.5 12.5 6 6 11
      Si 2.99 2.96 3.00 3.01 7.65 7.66 7.47 7.79 3.01 3.02 2.02 2.01 2.98
      Ti 0.01 0.00 0.01 0.00 0.00 0.01 0.02 0.01 0.00 0.00 0.00 0.00 0.00
      Al 2.04 2.08 2.03 2.03 0.99 0.85 1.41 1.97 2.93 2.95 0.43 0.44 3.05
      Cr 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.00 0.00 0.01
      Fe3+ 0.00 0.01 0.00 0.00 0.12 0.19 0.07 0.04 0.06 0.04 0.00 0.00 0.01
      Fe2+ 2.03 2.02 1.98 1.83 0.66 0.67 0.86 0.80 0.03 0.04 0.11 0.12 0.00
      Mn 0.04 0.04 0.04 0.02 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
      Mg 0.35 0.36 0.39 0.47 3.60 3.66 3.18 2.42 0.01 0.00 0.46 0.45 0.01
      Ca 0.53 0.52 0.52 0.61 1.39 1.49 1.35 0.35 1.95 1.92 0.52 0.52 0.02
      Na 0.00 0.00 0.00 0.00 0.72 0.52 0.79 1.64 0.00 0.01 0.45 0.46 0.82
      K 0.00 0.00 0.00 0.00 0.01 0.02 0.02 0.00 0.00 0.00 0.00 0.00 0.02
      Sum 7.99 8.00 7.98 7.97 15.15 15.08 15.18 15.01 7.99 7.99 3.99 4 6.91
      Sample H161-29
      Mineral Grt Grt Grt Grt Grt Amp Amp Chl Chl Ep Ep Ep Ilm
      Position S, C S, M L, C L, M L, R in Grt matrix Ps. Grt matrix in Grt matrix matrix in Grt
      SiO2 37.63 37.78 37.58 37.84 37.90 52.48 51.01 27.44 26.94 38.98 38.32 38.94 0.04
      TiO2 0.16 0.13 0.17 0.13 0.16 0.20 0.19 0.00 0.03 0.15 0.09 0.02 51.86
      Al2O3 21.34 21.04 21.21 21.34 21.45 6.29 9.79 21.22 21.29 29.57 27.36 32.89 0.17
      Cr2O3 0.00 0.04 0.00 0.09 0.14 0.01 0.00 0.19 0.12 0.09 0.10 0.00 0.07
      FeOT 24.59 25.55 30.45 31.33 29.03 11.05 11.79 20.24 19.58 5.91 7.65 1.60 40.73
      MnO 3.32 1.75 0.19 0.09 0.11 0.17 0.18 0.27 0.20 0.16 0.22 0.02 6.63
      MgO 2.04 2.54 2.51 2.17 2.98 14.75 12.94 18.70 18.96 0.10 0.04 0.04 0.09
      CaO 10.78 10.76 7.85 7.86 8.08 10.39 9.47 0.03 0.01 22.76 22.84 23.77 0.19
      Na2O 0.05 0.09 0.02 0.02 0.00 1.87 2.81 0.31 0.00 0.02 0.00 0.00 0.07
      K2O 0.00 0.01 0.02 0.01 0.00 0.03 0.05 0.02 0.02 0.00 0.00 0.00 0.01
      Totals 99.91 99.69 100.00 100.88 99.85 97.24 98.23 88.42 87.15 97.73 96.62 97.27 99.86
      Oxygens 12 12 12 12 12 23 23 14 14 12.5 12.5 12.5 3
      Si 2.98 2.99 2.99 2.99 3.00 7.49 7.23 2.78 2.76 3.01 3.01 2.98 0.00
      Ti 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.00 0.00 0.01 0.01 0.00 0.98
      Al 1.99 1.96 1.99 1.99 2.00 1.06 1.64 2.54 2.57 2.69 2.53 2.97 0.01
      Cr 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.02 0.01 0.01 0.01 0.00 0.00
      Fe3+ 0.03 0.05 0.02 0.01 0.00 0.15 0.13 0.00 0.00 0.30 0.46 0.03 0.03
      Fe2+ 1.60 1.64 2.01 2.06 1.92 1.17 1.27 1.72 1.68 0.08 0.05 0.08 0.83
      Mn 0.22 0.12 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.01 0.01 0.00 0.14
      Mg 0.24 0.30 0.30 0.26 0.35 3.14 2.73 2.83 2.90 0.01 0.01 0.00 0.00
      Ca 0.92 0.91 0.67 0.67 0.69 1.59 1.44 0.00 0.00 1.88 1.92 1.95 0.01
      Na 0.01 0.01 0.00 0.00 0.00 0.52 0.77 0.06 0.00 0.00 0.00 0.00 0.00
      K 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00
      Sum 8 8 8 8 7.99 15.15 15.26 9.97 9.95 7.99 7.99 8.02 2
      注:矿物成分由北京大学电子探针实验室完成,单位为质量百分含量.型号:JOEL-JXA8100,加速电压15 kV,电流10 nA,束斑2 μm,采用PRZ修正数据;矿物化学式采用AX软件计算;C.核部;M.幔部;R.边部;S.细粒;L.粗粒;Ps.(交代)假象
      下载: 导出CSV

      表  2  西南天山超高压变质带中两类石榴角闪岩的全岩成分(%)

      Table  2.   XRF analytical results of two representative garnet amphibolites from the UHP belt of southwestern Tianshan (%)

      Sample No. SiO2 Al2O3 TiO2 Fe2O3T CaO MgO K2O Na2O MnO P2O5 LOI Total
      H713-30 46.17 15.80 1.44 12.78 10.19 10.03 0.11 1.90 0.21 0.09 2.33 101.04
      H161-29 47.32 15.22 0.69 10.43 12.00 9.06 0.14 1.90 0.17 0.04 2.26 99.23
      注:全铁当作三价铁;LOI.烧失量.
      下载: 导出CSV
    • [1] Ai, Y.L., Zhang, L.F., Li, X.P., et al., 2006.Geochemical Characteristics and Tectonic Implications of HP-UHP Eclogites and Blueschists in Southwestern Tianshan, China.Progress in Natural Science, 16(6):624-632. https://doi.org/10.1080/10020070612330044
      [2] Bernini, D., Audétat, A., Dolejš, D., et al., 2013.Zircon Solubility in Aqueous Fluids at High Temperatures and Pressures.Geochimica et Cosmochimica Acta, 119:178-187. https://doi.org/10.1016/j.gca.2013.05.018
      [3] Bucher, K., Grapes, R., 2011.Petrogenesis of Metamorphic Rocks.Springer-Verlag, Berlin.
      [4] Carpenter, M.A., 1980.Mechanisms of Exsolution in Sodic Pyroxenes.Contributions to Mineralogy and Petrology, 71(3):289-300. https://doi.org/10.1007/bf00371671
      [5] Chen, B., Zhu, Y.F., Wei, S.N., et al., 2008.Garnet Amphibolite Found in Keramay Ophiolitic Melange, Western Junggar, NW China.Acta Petrologica Sinica, 24(5):1034-1040 (in Chinese with English abstract). http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20080509
      [6] Chen, X.Y., Tong, L.X., Zhang, C.L., et al., 2015.Retrograde Garnet Amphibolite from Eclogite of the Zhejiang Longyou Area:New Evidence of the Caledonian Orogenic Event in the Cathaysia Block.Chinese Science Bulletin, 60(13):1207-1225 (in Chinese with English abstract). doi: 10.1360/N972015-00094
      [7] Clarke, G.L., Powell, R., Fitzherbert, J.A., 2006.The Lawsonite Paradox:A Comparison of Field Evidence and Mineral Equilibria Modelling.Journal of Metamorphic Geology, 24(8):715-725. https://doi.org/10.1111/j.1525-1314.2006.00664.x
      [8] Coggon, R., Holland, T.J.B., 2002.Mixing Properties of Phengitic Micas and Revised Garnet-Phengite Thermobarometers.Journal of Metamorphic Geology, 20(7):683-696. https://doi.org/10.1046/j.1525-1314.2002.00395.x
      [9] Diener, J.F.A., Powell, R., 2012.Revised Activity-Composition Models for Clinopyroxene and Amphibole.Journal of Metamorphic Geology, 30(2):131-142. https://doi.org/10.1111/j.1525-1314.2011.00959.x
      [10] Diener, J.F.A., Powell, R., White, R.W., et al., 2007.A New Thermodynamic Model for Clino-and Orthoamphiboles in the System Na2O-CaO-FeO-MgO-Al2O3-SiO2-H2O-O.Journal of Metamorphic Geology, 25(6):631-656. https://doi.org/10.1111/j.1525-1314.2007.00720.x
      [11] Dong, X.F., Tang, Z.C., Chen, Z.D., et al., 2016.Geochemical Characteristics of the Basic and Magnesian Metamorphic Rocks in Longyou Area, Zhejiang Province and Their Tectonic Setting.Earth Science, 41(8):1322-1333 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.517
      [12] Endo, S., Nowak, I., Wallis, S.R., 2013.High-Pressure Garnet Amphibolite from the Funaokayama Unit, Western Kii Peninsula and the Extent of Eclogite Facies Metamorphism in the Sanbagawa Belt.Journal of Mineralogical and Petrological Sciences, 108(4):189-200. https://doi.org/10.2465/jmps.121125
      [13] Endo, S., Tsuboi, M., 2013.Petrogenesis and Implications of Jadeite-Bearing Kyanite Eclogite from the Sanbagawa Belt (SW Japan).Journal of Metamorphic Geology, 31(6):647-661. https://doi.org/10.1111/jmg.12038
      [14] Evans, B.W., 1990.Phase Relations of Epidote-Blueschists.Lithos, 25(1-3):3-23. https://doi.org/10.1016/0024-4937(90)90003-j
      [15] Gao, J., Klemd, R., 2003.Formation of HP-LT Rocks and Their Tectonic Implications in the Western Tianshan Orogen, NW China:Geochemical and Age Constraints.Lithos, 66(1-2):1-22. https://doi.org/10.1016/s0024-4937(02)00153-6
      [16] Gao, J., Klemd, R., Zhang, L., et al., 1999.P-T Path of High-Pressure/Low-Temperature Rocks and Tectonic Implications in the Western Tianshan Mountains, NW China.Journal of Metamorphic Geology, 17(6):621-636. https://doi.org/10.1046/j.1525-1314.1999.00219.x
      [17] Green, E., Holland, T.J.B., Powell, R., 2007.An Order-Disorder Model for Omphacitic Pyroxenes in the System Jadeite-Diopsidehedenbergite-Acmite, with Applications to Eclogitic Rocks.American Mineralogist, 92(7):1181-1189. https://doi.org/10.2138/am.2007.2401
      [18] Holland, T.J.B., Baker, J.M., Powell, R., 1998.Mixing Properties and Activity-Composition Relationships of Chlorites in the System MgO-FeO-Al2O3-SiO2-H2O.European Journal of Mineralogy, 10(3):395-406. https://doi.org/10.1127/ejm/10/3/0395
      [19] Holland, T.J.B., Powell, R., 1998.An Internally Consistent Thermodynamic Data Set for Phases of Petrological Interest.Journal of Metamorphic Geology, 16(3):309-343. https://doi.org/10.1111/j.1525-1314.1998.00140.x
      [20] Holland, T.J.B., Powell, R., 2011.An Improved and Extended Internally Consistent Thermodynamic Dataset for Phases of Petrological Interest, Involving a New Equation of State for Solids.Journal of Metamorphic Geology, 29(3):333-383. https://doi.org/10.1111/j.1525-1314.2010.00923.x
      [21] Hoschek, G., 2007.Metamorphic Peak Conditions of Eclogites in the Tauern Window, Eastern Alps, Austria:Thermobarometry of the Assemblage Garnet+Omphacite+Phengite+Kyanite+Quartz.Lithos, 93(1-2):1-16. https://doi.org/10.1016/j.lithos.2006.03.042
      [22] John, T., Klemd, R., Klemme, S., et al., 2011.Nb-Ta Fractionation by Partial Melting at the Titanite-Rutile Transition.Contributions to Mineralogy and Petrology, 161(1):35-45. https://doi.org/10.1007/s00410-010-0520-4
      [23] Klemd, R., John, T., Scherer, E.E., et al., 2011.Changes in Dip of Subducted Slabs at Depth:Petrological and Geochronological Evidence from HP-UHP Rocks (Tianshan, NW-China).Earth and Planetary Science Letters, 310(1-2):9-20. https://doi.org/10.1016/j.epsl.2011.07.022
      [24] Krohe, A., 2017.The Franciscan Complex (California, USA)-The Model Case for Return-Flow in a Subduction Channel Put to the Test.Gondwana Research, 45:282-307. https://doi.org/10.1016/j.gr.2017.02.003
      [25] Leake, B.E., Woolley, A.R., Arps, C.E.S., et al., 1997.Nomenclature of Amphiboles:Report of the Subcommittee on Amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names.American Mineralogist, 82(2):1019-1037. https://doi.org/10.1127/ejm/9/3/0623
      [26] Li, J., Gao, J., Wang, X., 2016.A Subduction Channel Model for Exhumation of Oceanic-Type High-Pressure to Ultrahigh-Pressure Eclogite-Facies Metamorphic Rocks in SW Tianshan, China.Science China Earth Sciences, 59(12):2339-2354. https://doi.org/10.1007/s11430-016-5103-7
      [27] Liu, F.L., Xu, Z.Q., Xue, H.M., et al., 2005.Ultrahigh-Pressure Mineral Inclusions Preserved in Zircons Separated from Eclogite and Its Country-Rocks in the Main Drill Hole of Chinese Continental Scientific Drilling Project (0-4 500 m).Acta Petrologica Sinica, 21(2):277-292 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB200502003.htm
      [28] Liu, F.L., Xue, H.M., Liu, P.H., 2009.Genetic Mechanism of Garnet-Bearing Amphibolite in the North Sulu Ultrahigh-Pressure (UHP) Metamorphic Belt.Acta Petrologica Sinica, 25(7):1575-1586 (in Chinese with English abstract). http://www.oalib.com/paper/4874372
      [29] Lou, Y.X., Wei, C.J., Liu, X.C., et al., 2013.Metamorphic Evolution of Garnet Amphibolite in the Western Dabieshan Eclogite Belt, Central China:Evidence from Petrography and Phase Equilibria Modeling.Journal of Asian Earth Sciences, 63:130-138. https://doi.org/10.1016/j.jseaes.2012.11.031
      [30] Lü, Z., Bucher, K., Zhang, L.F., et al., 2012.The Habutengsu Metapelites and Metagreywackes in Western Tianshan, China:Metamorphic Evolution and Tectonic Implications.Journal of Metamorphic Geology, 30(9):907-926. https://doi.org/10.1111/j.1525-1314.2012.01002.x
      [31] Lü, Z., Bucher, K., Zhang, L.F., 2013.Omphacite-Bearing Calcite Marble and Associated Coesite-Bearing Pelitic Schist from the Meta-Ophiolitic Belt of Chinese Western Tianshan.Journal of Asian Earth Sciences, 76:37-47. https://doi.org/10.1016/j.jseaes.2013.07.034
      [32] Lü, Z., Zhang, L.F., 2012.Coesite in the Eclogite and Schist of the Atantayi Valley, Southwestern Tianshan, China.Chinese Science Bulletin, 57(13):1467-1472. https://doi.org/10.1007/s11434-012-4979-4
      [33] Lü, Z., Zhang, L.F., Du, J., et al., 2008.Coesite Inclusions in Garnet from Eclogitic Rocks in Western Tianshan, Northwest China:Convincing Proof of UHP Metamorphism.American Mineralogist, 93(11-12):1845-1850. https://doi.org/10.2138/am.2008.2800
      [34] Lü, Z., Zhang, L.F., Du, J., et al., 2009.Petrology of Coesite-Bearing Eclogite from Habutengsu Valley, Western Tianshan, NW China and Its Tectonometamorphic Implication.Journal of Metamorphic Geology, 27(9):773-787. https://doi.org/10.1111/j.1525-1314.2009.00845.x
      [35] Lü, Z., Zhang, L.F., Shen, T.T., et al., 2017.Metamorphism and Juxtaposition of Lawsonite-Bearing UHP and HP Slices in the Muzhaerte Cross Section, Western Tianshan, NW China.Journal of Metamorphic Geology, in Review. https://www.sciencedirect.com/science/article/pii/S0024493717300257
      [36] Lü, Z., Zhang, L.F., 2014.New Progress in the Study of UHP Metamorphism of China's Southwestern Tianshan Orogenic Belt.Acta Petrologica et Mineralogica, 33(4):770-778 (in Chinese with English abstract). doi: 10.1007/s11434-013-6074-x.pdf
      [37] Lü, Z., Zhang, L.F., Qu, J.F., et al., 2007.Petrology and Metamorphic P-T Path of Eclogites from Habutengsu, Southwestern Tianshan, Xinjiang.Acta Petrologica Sinica, 23(7):1617-1626 (in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S0016703713003578
      [38] Manning, C.E., 1998.Fluid Composition at the Blueschist-Eclogite Transition in the Model System Na2O-MgO-Al2O3-SiO2-H2O-HCl.Schweizerische Mineralogische and Petrographische Mitteilungen, 78(2):225-242. https://www.researchgate.net/.../247777702_Plate_tectonic_gemstones
      [39] Maresch, W.V., Grevel, C., Stanek, K.P., et al., 2012.Multiple Growth Mechanisms of Jadeite in Cuban Metabasite.European Journal of Mineralogy, 24(2):217-235. https://doi.org/10.1127/0935-1221/2012/0024-2179
      [40] Mattinson, C.G., Zhang, R.Y., Tsujimori, T., et al., 2004.Epidote-Rich Talc-Kyanite-Phengite Eclogites, Sulu Terrane, Eastern China:P-T-fO2 Estimates and the Significance of the Epidote-Talc Assemblage in Eclogite.American Mineralogist, 89(11-12):1772-1783. https://doi.org/10.2138/am-2004-11-1224
      [41] Meyer, M., Klemd, R., John, T., 2016.An (in-) Coherent Metamorphic Evolution of High-Peclogites and Their Host Rocks in the Chinese Southwest Tianshan? Journal of Metamorphic Geology, 34(2):121-146. https://doi.org/10.1111/jmg.12175
      [42] Miyashiro, A., 1974.Volcanic Rock Series in Island Arcs and Active Continental Margins.American Journal of Science, 274(4):321-355. https://doi.org/10.2475/ajs.274.4.321
      [43] Morimoto, N., 1988.Nomenclature of Pyroxenes.Mineralogy and Petrology, 39(1):55-76. https://doi.org/10.1007/BF01226262
      [44] Niu, H.C., Shan, Q., Zhang, B., et al., 2009.Discovery of Garnet Amphibolite in Zaheba Ophiolitic Mélange, Eastern Junggar, NW China.Acta Petrologica Sinica, 25(6):1484-1491 (in Chinese with English abstract). doi: 10.1007/s11434-013-5842-y
      [45] O'Brien, P.J., Rotzler, J., 2003.High-Pressure Granulites:Formation, Recovery of Peak Conditions and Implications for Tectonics.Journal of Metamorphic Geology, 21(1):3-20. https://doi.org/10.1046/j.1525-1314.2003.00420.x
      [46] Palin, R.M., White, R.W., 2016.Emergence of Blueschists on Earth Linked to Secular Changes in Oceanic Crust Composition.Nature Geoscience, 9(1):60-64. https://doi.org/10.1038/ngeo2605
      [47] Powell, R., Holland, T.J.B., Worley, B., 1998.Calculating Phase Diagrams Involving Solid Solutions via Non-Linear Equations, with Examples Using THERMOCALC.Journal of Metamorphic Geology, 16(4):577-588. https://doi.org/10.1111/j.1525-1314.1998.00157.x
      [48] Spear, F.S., 1993.Metamorphic Phase Equilibira and Pressure-Temperature-Time Paths.Mineralogical Society of America, Chantilly.
      [49] Stern, C.R., Kilian, R., 1996.Role of the Subducted Slab, Mantle Wedge and Continental Crust in the Generation of Adakites from the Andean Austral Volcanic Zone.Contributions to Mineralogy and Petrology, 123(3):263-281. https://doi.org/10.1007/s004100050155
      [50] Tian, Z.L., Wei, C.J., 2013.Metamorphism of Ultrahigh-Pressure Eclogites from the Kebuerte Valley, South Tianshan, NW China:Phase Equilibria and P-T Path.Journal of Metamorphic Geology, 31(3):281-300. https://doi.org/10.1111/jmg.12021
      [51] Tsujimori, T., 1997.Omphacite-Diopside Vein in an Omphacitite Block from the Osayama Serpentinite Melange, Sangun-Renge Metamorphic Belt, Southwestern Japan.Mineralogical Magazine, 61(409):845-852. https://doi.org/10.1180/minmag.1997.061.409.07
      [52] Tsujimori, T., Ernst, W.G., 2014.Lawsonite Blueschists and Lawsonite Eclogites as Proxies for Palaeo-Subduction Zone Processes:A Review.Journal of Metamorphic Geology, 32(5):437-454. https://doi.org/10.1111/jmg.12057
      [53] Wei, C.J., Clarke, G.L., 2011.Calculated Phase Equilibria for MORB Compositions:A Reappraisal of the Metamorphic Evolution of Lawsonite Eclogite.Journal of Metamorphic Geology, 29(9):939-952. https://doi.org/10.1111/j.1525-1314.2011.00948.x
      [54] Wei, C.J., Powell, R., Zhang, L.F., 2003.Eclogites from the South Tianshan, NW China:Petrological Characteristic and Calculated Mineral Equilibria in the Na2O-CaO-FeO-MgO-Al2O3-SiO2-H2O System.Journal of Metamorphic Geology, 21(2):163-179. https://doi.org/10.1046/j.1525-1314.2003.00435.x
      [55] White, R.W., Pomroy, N.E., Powell, R., 2005.An In-Situ Metatexite-Diatexite Transition in Upper Amphibolite Facies Rocks from Broken Hill, Australia.Journal of Metamorphic Geology, 23(7):579-602. https://doi.org/10.1111/j.1525-1314.2005.00597.x
      [56] Whitney, D.L., Evans, B.W., 2010.Abbreviations for Names of Rock-Forming Minerals.American Mineralogist, 95(1):185-187. https://doi.org/10.2138/am.2010.3371
      [57] Xiao, Y., Lavis, S., Niu, Y., et al., 2012.Trace-Element Transport during Subduction-Zone Ultrahigh-Pressure Metamorphism:Evidence from Western Tianshan, China.Geological Society of America Bulletin, 124(7-8):1113-1129. https://doi.org/10.1130/b30523.1
      [58] Zack, T., Foley, S.F., Rivers, T., 2002.Equilibrium and Disequilibrium Trace Element Partitioning in Hydrous Eclogites (Trescolmen, Central Alps).Journal of Petrology, 43(10):1947-1974. https://doi.org/10.1093/petrology/43.10.1947
      [59] Zhang, L.F., Ai, Y.L., Li, Q., et al., 2005.The Formation and Tectonic Evolution of UHP Metamorphic Belt in Southwestern Tianshan, Xinjiang.Acta Petrologica Sinica, 21(4):1029-1038 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200504000.htm
      [60] 陈博, 朱永峰, 魏少妮, 等, 2008.西准噶尔克拉玛依蛇绿混杂岩中的石榴角闪岩.岩石学报, 24(5):1034-1040. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200805009
      [61] 陈相艳, 仝来喜, 张传林, 等, 2015.浙江龙游石榴石角闪岩(退变榴辉岩):华夏加里东期碰撞造山事件的新证据.科学通报, 60(13):1207-1225. http://www.oalib.com/paper/4267633
      [62] 董学发, 唐增才, 陈忠大, 等, 2016.浙江龙游地区基性及镁质变质岩的地球化学特征及其构造环境.地球科学, 41(8):1322-1333. http://earth-science.net/WebPage/Article.aspx?id=3340
      [63] 刘福来, 许志琴, 薛怀民, 等, 2005.中国大陆科学钻探主孔0~4 500米变质岩石锆石中保存的超高压矿物包体.岩石学报, 21(2):277-292. http://www.oalib.com/paper/4898223
      [64] 刘福来, 薛怀民, 刘平华, 2009.北苏鲁超高压变质带中斜长角闪岩的成因.岩石学报, 25(7):1575-1586. http://www.oalib.com/paper/4874372
      [65] 吕增, 张立飞, 2014.西南天山造山带超高压变质作用研究新进展.岩石矿物学杂志, 33(4):770-778. http://www.ysxb.ac.cn/ysxb/ch/reader/create_pdf.aspx?file_no=20050499&journal_id=ysxb&year_id=2005
      [66] 吕增, 张立飞, 曲军锋, 等, 2007.新疆西南天山哈布腾苏一带榴辉岩的岩石学特征及变质作用P-T轨迹.岩石学报, 23(7):1617-1626. http://d.wanfangdata.com.cn/Periodical_ysxb98200707007.aspx
      [67] 牛贺才, 单强, 张兵, 等, 2009.东准噶尔扎河坝蛇绿混杂岩中的石榴角闪岩.岩石学报, 25(6):1484-1491. https://core.ac.uk/display/71716062
      [68] 张立飞, 艾永亮, 李强, 等, 2005.新疆西南天山超高压变质带的形成与演化.岩石学报, 21(4):1029-1038. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20050499
    • 加载中
    图(5) / 表(2)
    计量
    • 文章访问数:  4076
    • HTML全文浏览量:  1785
    • PDF下载量:  29
    • 被引次数: 0
    出版历程
    • 收稿日期:  2017-07-10
    • 刊出日期:  2018-01-15

    目录

      /

      返回文章
      返回