Trace Element Systematics of Granulite-Facies Rutile
-
摘要: 麻粒岩是研究地壳演化最重要的变质岩类,金红石作为麻粒岩中常见的副矿物之一,深入探究其微量元素体系特点,可为大陆地壳演化研究提供新的视角.根据麻粒岩金红石的基础数据(显微结构、微量元素、离子替换方式)以及地壳常见造岩矿物的微量元素特点,初步探讨了麻粒岩变质过程中微量元素行为和扩散效应.麻粒岩金红石Zr含量可记录不同阶段的变质温度,但次生锆石和钛铁矿可对其Zr含量有较大影响,作为孤立体系(不与锆石和石英平衡)的金红石不能用于温度计算;金红石Nb、Ta、Cr和V不仅受全岩成分控制,还与变质过程中黑云母、钛铁矿、蓝晶石等矿物的形成和分解紧密相关;金红石与富Fe矿物之间有强烈的Fe扩散效应.深入理解麻粒岩变质过程中金红石微量元素行为,可为限定大陆地壳变质演化和动力学过程提供重要的矿物学信息.Abstract: Granulite is the most important metamorphic rock type for the study of crust evolution. As a common accessary mineral in granulite, rutile provides a new research window for the evolution of the continental crust. Based on fundamental information for granulite-facies rutile (microtextures, trace elements, and cation substitution) and related trace elements in major rock-forming minerals in the crust, this paper discusses the potential trace element behaviors and diffusion effects during granulite-facies metamorphism, which have received much less attention than eclogite ones during the last decades. The Zr contents in granulite-facies rutile may reflect metamorphic temperatures of different metamorphic stages; however, the formation of secondary zircon and/or ilmenite would significantly affect the Zr contents of former rutile via diffusion effects. The isolated rutile that is not equilibrated with zircon and quartz (e.g., rutile boundaries close to the secondary zircon and ilmenite, orientated rutile needles in garnet) cannot be used to calculate temperatures by Zr-in-rutile thermometer. The Nb, Ta, Cr and V contents of granulite-facies rutile are largely influenced by bulk-rock composition and by the formation and breakdown of biotite, ilmenite and kyanite. In addition, the Fe contents of rutile adjacent to garnet may be significantly modified due to the fast diffusion rate of Fe. Understanding the behaviors of rutile trace elements during granulite-facies metamorphism can provide important mineral constraints for the metamorphic evolution and dynamic processes of the continental crust.
-
Key words:
- granulite /
- rutile /
- trace element systematics /
- Zr-in-rutile thermometer /
- diffusion effect /
- petrology
-
图 1 麻粒岩金红石显微照片中所显示的常见显微结构
图a、d、e、f为单偏光电子显微照片;图b、c为电子背散射图像;a.石榴石边部的基质金红石和内部的金红石包裹体,样品:缅甸Mogok变质带泥质麻粒岩;b.条纹长石内部的自形金红石包裹体,样品:喀麦隆蓝晶石泥质麻粒岩;c.石榴石中的金红石-黑云母-石英多晶包裹体,样品:喀麦隆蓝晶石泥质麻粒岩;d.环边状石榴石(“红眼圈”)中的金红石包裹体,样品:巴基斯坦Stak基性麻粒岩;e.石英中的金红石棒状体,样品:意大利北部Ivrea-Verbano泥质麻粒岩,据Ewing et al.(2013);f.石榴石中的定向金红石棒状体,样品:美国Acadian造山带泥质麻粒岩,据Ague and Eckert(2012)
Fig. 1. Microphotographs showing common microtextures of granulite-facies rutile
图 2 麻粒岩中与金红石相关的次生锆石和钛铁矿
a.金红石中的锆石棒状体;b.金红石边部发育细粒次生锆石,内部发育钛铁矿条纹;c.基质金红石边部的钛铁矿;d.次生钛铁矿贯穿基质金红石;其中图a、b来自于意大利北部Ivrea-Verbano泥质麻粒岩,据Ewing et al.(2013);图c、d来自于缅甸Mogok变质带泥质麻粒岩
Fig. 2. Secondary zircon and ilmenite replacing rutile
图 3 地壳岩石中主要造岩矿物HFSE和Cr含量对比
图中单矿物微量元素数据取自于GEOROC数据库(http://georoc.mpch-mainz.gwdg.de/georoc/),选取的地壳岩石包括砂岩、杂砂岩、角闪岩、麻粒岩、辉长岩、片岩、片麻岩、花岗岩和闪长岩等;图中阴影区域代表含量范围,红色粗线代表平均值
Fig. 3. HFSE and Cr concentrations of major rock-forming minerals in the crust
图 4 南极泥质麻粒岩样品(Z7-14-5)金红石微量元素
Fig. 4. Rutile trace elements concentrations in a felsic granulite sample (Z7-14-5) from East Antarctica
图 5 加拿大太古代Pikwitonei泥质麻粒岩(样号589)的金红石V-Cr(a)和V-Nb(b)相关系图解
Fig. 5. Cr-V (a) and Nb-V (b) concentration diagrams of metamorphic rutile grains from a pelitic granulite (sample 589) of the Archean Pikwitonei granulite domain, Canada
图 7 金红石内部各元素扩散系数对比
数据来源:Zr, Hf据Cherniak et al.(2007);Pb据Cherniak(2000);Ba据Nakayama and Sasaki(1963);Nb, Ta据Marschall et al.(2013);Sc, Cr, Fe, Mn, Co据Sasaki et al.(1985);Ti据van Orman and Crispin(2010).图中阴影区域代表麻粒岩相变质温度(800~1 100 ℃)
Fig. 7. Plots summarizing diffusion of various cations in rutile
-
[1] Ague, J.J., Eckert, J.O., 2012.Precipitation of Rutile and Ilmenite Needles in Garnet:Implications for Extreme Metamorphic Conditions in the Acadian Orogen, U.S.A..American Mineralogist, 97(5-6):840-855. https://doi.org/10.2138/am.2012.4015 [2] Ague, J.J., Eckert, J.O., Chu, X., et al., 2013.Discovery of Ultrahigh-Temperature Metamorphism in the Acadian Orogen, Connecticut, USA.Geology, 41(2):271-274. https://doi.org/10.1130/g33752.1 [3] Antignano, A., Manning, C.E., 2008.Rutile Solubility in H2O, H2O-SiO2, and H2O-NaAlSi3O8 Fluids at 0.7-2.0 GPa and 700-1 000℃:Implications for Mobility of Nominally Insoluble Elements.Chemical Geology, 255(1-2):283-293. https://doi.org/10.1016/j.chemgeo.2008.07.001 [4] Audétat, A., Keppler, H., 2005.Solubility of Rutile in Subduction Zone Fluids, as Determined by Experiments in the Hydrothermal Diamond Anvil Cell.Earth and Planetary Science Letters, 232(3-4):393-402. https://doi.org/10.1016/j.epsl.2005.01.028 [5] Axler, J.A., Ague, J.J., 2015a.Exsolution of Rutile or Apatite Precipitates Surrounding Ruptured Inclusions in Garnet from UHT and UHP Rocks.Journal of Metamorphic Geology, 33(8):829-848. https://doi.org/10.1111/jmg.12145 [6] Axler, J.A., Ague, J.J., 2015b.Oriented Multiphase Needles in Garnet from Ultrahigh-Temperature Granulites, Connecticut, U.S.A..American Mineralogist, 100(10):2254-2271. https://doi.org/10.2138/am-2015-5018 [7] Baldwin, J.A., Brown, M., 2008.Age and Duration of Ultrahigh-Temperature Metamorphism in the Anápolis-Itauçu Complex, Southern Brasília Belt, Central Brazil-Constraints from U-Pb Geochronology, Mineral Rare Earth Element Chemistry and Trace-Element Thermometry.Journal of Metamorphic Geology, 26(2):213-233. https://doi.org/10.1111/j.1525-1314.2007.00759.x [8] Baldwin, J.A., Brown, M., Schmitz, M.D., 2007.First Application of Titanium-in-Zircon Thermometry to Ultrahigh-Temperature Metamorphism.Geology, 35(4):295. https://doi.org/10.1130/g23285a.1 [9] Bendaoud, A., Derridj, A., Ouzegane, K., et al., 2004.Granulitic Metamorphism in the Laouni Terrane (Central Hoggar, Tuareg Shield, Algeria).Journal of African Earth Sciences, 39(3-5):187-192. https://doi.org/10.1016/j.jafrearsci.2004.07.050 [10] Bingen, B., Austrheim, H., Whitehouse, M., 2001.Ilmenite as a Source for Zirconium during High-Grade Metamorphism? Textural Evidence from the Caledonides of Western Norway and Implications for Zircon Geochronology.Journal of Petrology, 42(2):355-375. https://doi.org/10.1093/petrology/42.2.355 [11] Blackburn, T., Shimizu, N., Bowring, S.A., et al., 2012.Zirconium in Rutile Speedometry:New Constraints on Lower Crustal Cooling Rates and Residence Temperatures.Earth and Planetary Science Letters, 317-318:231-240. https://doi.org/10.1016/j.epsl.2011.11.012 [12] Bloss, F.D., 1994.Crystallography and Crystal-Chemistry.Mineralogical Society of America, Washington D.C.. [13] Bohlen, S.R., Liotta, J.J., 1986.A Barometer for Garnet Amphibolites and Garnet Granulites.Journal of Petrology, 27(5):1025-1034. https://doi.org/10.1093/petrology/27.5.1025 [14] Bohlen, S.R., Wall, V.J., Boettcher, A.L., 1983.Experimental Investigations and Geological Applications of Equilibria in the System FeO-TiO2-Al2O3-SiO2-H2O.American Mineralogist, 68(11):1049-1058. https://www.researchgate.net/publication/285844028_Experimental_investigations_and_geological_applications_of_equilibria_in_the_system_FeO-TiO2-Al2O3-SiO2-_H2O [15] Bromiley, G.D., Hilairet, N., 2005.Hydrogen and Minor Element Incorporation in Synthetic Rutile.Mineralogical Magazine, 69(3):345-358. https://doi.org/10.1180/0026461056930256 [16] Bromiley, G.D., Hilairet, N., McCammon, C., 2004.Solubility of Hydrogen and Ferric Iron in Rutile and TiO2 (Ⅱ):Implications for Phase Assemblages during Ultrahigh-Pressure Metamorphism and for the Stability of Silica Polymorphs in the Lower Mantle.Geophysical Research Letters, 31:LO4610. https://doi.org/10.1029/2004GL019430 [17] Brown, M., 2014.The Contribution of Metamorphic Petrology to Understanding Lithosphere Evolution and Geodynamics.Geoscience Frontiers, 5(4):553-569. https://doi.org/10.1016/j.gsf.2014.02.005 [18] Cave, B.J., Stepanov, A.S., Craw, D., et al., 2015.Release of Trace Elements through the Sub-Greenschist Facies Breakdown of Detrital Rutile to Metamorphic Titanite in the Otago Schist, New Zealand.The Canadian Mineralogist, 53(3):379-400. https://doi.org/10.3749/canmin.1400097 [19] Chen, Y., Ye, K., Liu, J.B., et al., 2006.Multistage Metamorphism of the Huangtuling Granulite, Northern Dabie Orogen, Eastern China:Implications for the Tectonometamorphic Evolution of Subducted Lower Continental Crust.Journal of Metamorphic Geology, 24(7):633-654. https://doi.org/10.1111/j.1525-1314.2006.00659.x [20] Chen, Z.Y., Li, Q.L., 2007.Zr-in-Rutile Thermometry in Eclogite at Jinheqiao in the Dabie Orogen and Its Geochemical Implications.Chinese Science Bulletin, 52(22):2638-2645 (in Chinese). http://www.cqvip.com/QK/86894X/200805/26743755.html [21] Chen, Z.Y., Wang, D.H., Chen, Y.C., et al., 2006.Mineral Geochemistry of Rutile in Eclogite and Its Implications.Earth Science, 31(4):533-538 (in Chinese with English abstract). https://doi.org/10.3321/j.issn:1000-2383.2006.04.011 [22] Cherniak, D.J., 2000.Pb Diffusion in Rutile.Contributions to Mineralogy and Petrology, 139(2):198-207. https://doi.org/10.1007/pl00007671 [23] Cherniak, D.J., Manchester, J., Watson, E.B., 2007.Zr and Hf Diffusion in Rutile.Earth and Planetary Science Letters, 261(1-2):267-279. https://doi.org/10.1016/j.epsl.2007.06.027 [24] Cherniak, D.J., Watson, E.B., 2007.Ti Diffusion in Zircon.Chemical Geology, 242(3-4):470-483. https://doi.org/10.1016/j.chemgeo.2007.05.005 [25] Choukroun, M., O'Reilly, S.Y., Griffin, W.L., et al., 2005.Hf Isotopes of MARID (Mica-Amphibole-Rutile-Ilmenite-Diopside) Rutile Trace Metasomatic Processes in the Lithospheric Mantle.Geology, 33(1):45. https://doi.org/10.1130/g21084.1 [26] Clark, C., Collins, A.S., Santosh, M., et al., 2009.The P-T-t Architecture of a Gondwanan Suture:REE, U-Pb and Ti-in-Zircon Thermometric Constraints from the Palghat Cauvery Shear System, South India.Precambrian Research, 174(1-2):129-144. https://doi.org/10.1016/j.precamres.2009.07.003 [27] Colasanti, C.V., Johnson, E.A., Manning, C.E., 2011.An Experimental Study of OH Solubility in Rutile at 500-900℃, 0.5-2 GPa, and a Range of Oxygen Fugacities.American Mineralogist, 96(8-9):1291-1299. https://doi.org/10.2138/am.2011.3708 [28] Collett, S., típská, P., Kusbach, V., et al., 2016.Dynamics of Saxothuringian Subduction Channel/Wedge Constrained by Phase-Equilibria Modelling and Micro-Fabric Analysis.Journal of Metamorphic Geology, 35(3):253-280. https://doi.org/10.1111/jmg.12226 [29] Cruz-Uribe, A.M., Feineman, M.D., Zack, T., et al., 2014.Metamorphic Reaction Rates at 650-800℃ from Diffusion of Niobium in Rutile.Geochimica et Cosmochimica Acta, 130:63-77. https://doi.org/10.1016/j.gca.2013.12.015 [30] Diener, J.F.A., Powell, R., 2012.Revised Activity-Composition Models for Clinopyroxene and Amphibole.Journal of Metamorphic Geology, 30(2):131-142. https://doi.org/10.1111/j.1525-1314.2011.00959.x [31] Diener, J.F.A., Powell, R., White, R.W., et al., 2007.A New Thermodynamic Model for Clino-and Orthoamphiboles in the System Na2O-CaO-FeO-MgO-Al2O3-SiO2-H2O-O.Journal of Metamorphic Geology, 25(6):631-656. https://doi.org/10.1111/j.1525-1314.2007.00720.x [32] Dymek, R.F., 1983.Fe-Ti Oxides in the Malene Supracrustals and the Occurrence of Nb-Rich Rutile.Report-Geological Survey of Greenland, 112:83-94. doi: 10.1007/978-1-4612-4896-5_2 [33] Escudero, A., Langenhorst, F., 2012.Incorporation of Si into TiO2 Phases at High Pressure.American Mineralogist, 97(4):524-531. https://doi.org/10.2138/am.2012.3941 [34] Ewing, T.A., Hermann, J., Rubatto, D., 2013.The Robustness of the Zr-in-Rutile and Ti-in-Zircon Thermometers during High-Temperature Metamorphism (Ivreae-Verbano Zone, Northern Italy).Contributions to Mineralogy and Petrology, 165(4):757-779. https://doi.org/10.1007/s00410-012-0834-5 [35] Ewing, T.A., Rubatto, D., Beltrando, M., et al., 2015.Constraints on the Thermal Evolution of the Adriatic Margin during Jurassic Continental Break-Up:U-Pb Dating of Rutile from the Ivrea-Verbano Zone, Italy.Contributions to Mineralogy and Petrology, 169(4):44. https://doi.org:10.1007/s00410-015-1135-6 [36] Ewing, T.A., Rubatto, D., Hermann, J., 2014.Hafnium Isotopes and Zr/Hf of Rutile and Zircon from Lower Crustal Metapelites (Ivrea-Verbano Zone, Italy):Implications for Chemical Differentiation of the Crust.Earth and Planetary Science Letters, 389:106-118. https://doi.org/10.1016/j.epsl.2013.12.029 [37] Ferry, J.M., Watson, E.B., 2007.New Thermodynamic Models and Revised Calibrations for the Ti-in-Zircon and Zr-in-Rutile Thermometers.Contributions to Mineralogy and Petrology, 154(4):429-437. https://doi.org/10.1007/s00410-007-0201-0 [38] Foley, S.F., Barth, M.G., Jenner, G.A., 2000.Rutile/Melt Partition Coefficients for Trace Elements and an Assessment of the Influence of Rutile on the Trace Element Characteristics of Subduction Zone Magmas.Geochimica et Cosmochimica Acta, 64(5):933-938. https://doi.org/10.1016/s0016-7037(99)00355-5 [39] Fraser, G., McDougall, I., Ellis, D.J., et al., 2000.Timing and Rate of Isothermal Decompression in Pan-African Granulites from Rundvågshetta, East Antarctica.Journal of Metamorphic Geology, 18(4):441-454. https://doi.org/10.1046/j.1525-1314.2000.00270.x [40] Gao, C.G., Liu, Y.S., Zong, K.Q., et al., 2008.Distributions and Geodynamic Implications of High Field Strength Elements in Rutile from Ultrahigh Pressure Eclogites.Earth Science, 33(4):487-503 (in Chinese with English abstract). https://doi.org/10.3321/j.issn:1000-2383.2008.04.006 [41] Gao, X.Y., Zheng, Y.F., 2011.On the Zr-in-Rutile and Ti-in-Zircon Geothermometers.Acta Petrologica Sinica, 27(2):417-432 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201102006.htm [42] Ghent, E.D., Stout, M.Z., 1984.TiO2 Activity in Metamorphosed Pelitic and Basic Rocks:Principles and Applications to Metamorphism in Southeastern Canadian Cordillera.Contributions to Mineralogy and Petrology, 86(3):248-255. https://doi.org/10.1007/bf00373670 [43] Ghiorso, M.S., Evans, B.W., 2008.Thermodynamics of Rhombohedral Oxide Solid Solutions and a Revision of the Fe-Ti Two-Oxide Geothermometer and Oxygen-Barometer.American Journal of Science, 308(9):957-1039. https://doi.org/10.2475/09.2008.01 [44] Gong, B., Zheng, Y.F., Wu, Y.B., et al., 2007.Geochronology and Stable Isotope Geochemistry of UHP Metamorphic Rocks at Taohang in the Sulu Orogen, East-Central China.International Geology Review, 49(3):259-286. https://doi.org/10.2747/0020-6814.49.3.259 [45] Gou, L.L., Zhang, C.L., Zhang, L.F., et al., 2014.Precipitation of Rutile Needles in Garnet from Sillimanite-Bearing Pelitic Granulite from the Khondalite Belt, North China Craton.Chinese Science Bulletin, 59(32):4359-4366. https://doi.org/10.1007/s11434-014-0598-6 [46] Grammatikopoulos, T., McKen, A., Hamilton, C., et al., 2002.Vanadium-Bearing Magnetite and Ilmenite Mineralization and Beneficiation from the Sinarsuk V-Ti Project, West Greenland.Cim Bulletin, 95(1060):87-95. https://www.researchgate.net/publication/270579726_Vanadium-bearing_Magnetite_from_the_Matagami_and_Chibougamau_Mining_Districts_Abitibi_Quebec_Canada [47] Hacker, B.R., Kelemen, P.B., Behn, M.D., 2015.Continental Lower Crust.Annual Review of Earth and Planetary Sciences, 43(1):167-205. https://doi.org/10.1146/annurev-earth-050212-124117 [48] Hammer, V.M.F., Beran, A., 1991.Variations in the OH Concentration of Rutiles from Different Geological Environments.Mineralogy and Petrology, 45(1):1-9. https://doi.org/10.1007/bf01164498 [49] Harley, S.L., 2004.Extending Our Understanding of Ultrahigh Temperature Crustal Metamorphism.Journal of Mineralogical and Petrological Sciences, 99(4):140-158. https://doi.org/10.2465/jmps.99.140 [50] Harley, S.L., 2008.Refining the P-T Records of UHT Crustal Metamorphism.Journal of Metamorphic Geology, 26(2):125-154. https://doi.org/10.1111/j.1525-1314.2008.00765.x [51] Harley, S.L., 2016.A Matter of Time:The Importance of the Duration of UHT Metamorphism.Journal of Mineralogical and Petrological Sciences, 111(2):50-72. https://doi.org/10.2465/jmps.160128 [52] Hoffmann, A.E., Baker, M.B., Eiler, J.M., 2013.An Experimental Study of Ti and Zr Partitioning among Zircon, Rutile, and Granitic Melt.Contributions to Mineralogy and Petrology, 166(1):235-253. https://doi.org/10.1007/s00410-013-0873-6 [53] Hoffmann, J.E., Münker, C., Naeraa, T., et al., 2011.Mechanisms of Archean Crust Formation Inferred from High-Precision HFSE Systematics in TTGs.Geochimica et Cosmochimica Acta, 75(15):4157-178. https://doi.org/10.1016/j.gca.2011.04.027 [54] Hollis, J.A., Harley, S.L., White, R.W., et al., 2006.Preservation of Evidence for Prograde Metamorphism in Ultrahigh-Temperature, High-Pressure Kyanite-Bearing Granulites, South Harris, Scotland.Journal of Metamorphic Geology, 24(3):263-279. https://doi.org/10.1111/j.1525-1314.2006.00636.x [55] Horng, W.S., Hess, P.C., 2000.Partition Coefficients of Nb and Ta between Rutile and Anhydrous Haplogranite Melts.Contributions to Mineralogy and Petrology, 138(2):176-185. https://doi.org/10.1007/s004100050016 [56] Huang, J., Xiao, Y., Gao, Y., et al., 2012.Nb-Ta Fractionation Induced by Fluid-Rock Interaction in Subduction-Zones:Constraints from UHP Eclogite-and Vein-Hosted Rutile from the Dabie Orogen, Central-Eastern China.Journal of Metamorphic Geology, 30(8):821-842. https://doi.org/10.1111/j.1525-1314.2012.01000.x [57] Hwang, S.L., Shen, P., Chu, H.T., et al., 2015.Origin of Rutile Needles in Star Garnet and Implications for Interpretation of Inclusion Textures in Ultrahigh-Pressure Metamorphic Rocks.Journal of Metamorphic Geology, 33(3):249-272. https://doi.org/10.1111/jmg.12119 [58] Hwang, S.L., Yui, T.F., Chu, H.T., et al., 2007.On the Origin of Oriented Rutile Needles in Garnet from UHP Eclogites.Journal of Metamorphic Geology, 25(3):349-362. https://doi.org/10.1111/j.1525-1314.2007.00699.x [59] Jacob, J.B., Scott, J.M., Turnbull, R.E., et al., 2017.High to Ultrahigh-Temperature Metamorphism in the Lower Crust:An Example Resulting from Hikurangi Plateau Collision and Slab Roll-Back in New Zealand.Journal of Metamorphic Geology, 35(8):831-853. https://doi.org/10.1111/jmg.12257 [60] Jiao, S., Guo, J., Mao, Q., et al., 2011.Application of Zr-in-Rutile Thermometry:A Case Study from Ultrahigh-Temperature Granulites of the Khondalite Belt, North China Craton.Contributions to Mineralogy and Petrology, 162(2):379-393. https://doi.org/10.1007/s00410-010-0602-3 [61] Johnson, O.W., 1964.One-Dimensional Diffusion of Li in Rutile.Physical Review, 136(1A):284-290. https://doi.org/10.1103/physrev.136.a284 [62] Johnson, O.W., Paek, S.H., DeFord, J.W., 1975.Diffusion of H and D in TiO2:Suppression of Internal Fields by Isotope Exchange.Journal of Applied Physics, 46(3):1026-1033. https://doi.org/10.1063/1.322206 [63] Kaminsky, F.V., Belousova, E.A., 2009.Manganoan Ilmenite as Kimberlite/Diamond Indicator Mineral.Russian Geology and Geophysics, 50(12):1212-1220. https://doi.org/10.1016/j.rgg.2009.11.019 [64] Katayama, I., Nakashima, S., Yurimoto, H., 2006.Water Content in Natural Eclogite and Implication for Water Transport into the Deep Upper Mantle.Lithos, 86(3-4):245-259. https://doi.org/10.1016/j.lithos.2005.06.006 [65] Kelsey, D.E., 2008.On Ultrahigh-Temperature Crustal Metamorphism.Gondwana Research, 13(1):1-29. https://doi.org/10.1016/j.gr.2007.06.001 [66] Kelsey, D.E., Hand, M., 2015.On Ultrahigh Temperature Crustal Metamorphism:Phase Equilibria, Trace Element Thermometry, Bulk Composition, Heat Sources, Timescales and Tectonic Settings.Geoscience Frontiers, 6(3):311-356. https://doi.org/10.1016/j.gsf.2014.09.006 [67] Kelsey, D.E., Powell, R., 2011.Progress in Linking Accessory Mineral Growth and Breakdown to Major Mineral Evolution in Metamorphic Rocks:A Thermodynamic Approach in the Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-ZrO2 System.Journal of Metamorphic Geology, 29(1):151-166. https://doi.org/10.1111/j.1525-1314.2010.00910.x [68] Kelsey, D.E., White, R.W., Powell, R., et al., 2003.New Constraints on Metamorphism in the Rauer Group, Prydz Bay, East Antarctica.Journal of Metamorphic Geology, 21(8):739-759. https://doi.org/10.1046/j.1525-1314.2003.00476.x [69] Klemme, S., Prowatke, S., Hametner, K., et al., 2005.Partitioning of Trace Elements between Rutile and Silicate Melts:Implications for Subduction Zones.Geochimica et Cosmochimica Acta, 69(9):2361-2371. https://doi.org/10.1016/j.gca.2004.11.015 [70] Kooijman, E., Smit, M.A., Mezger, K., et al., 2012.Trace Element Systematics in Granulite Facies Rutile:Implications for Zr Geothermometry and Provenance Studies.Journal of Metamorphic Geology, 30(4):397-412. https://doi.org/10.1111/j.1525-1314.2012.00972.x [71] Korhonen, F.J., Clark, C., Brown, M., et al., 2014.Taking the Temperature of Earth's Hottest Crust.Earth and Planetary Science Letters, 408:341-354. https://doi.org/10.1016/j.epsl.2014.10.028 [72] Lamadrid, H.M., 2016.Geochemistry of Fluid-Rock Processes (Dissertations).Virginia Polytechnic Institute and State University, Blacksburg. https://doi.org/10.13140/RG.2.2.29189.96480 [73] Larsen, R.B., Eide, E.A., Burke, E.A.J., 1998.Evolution of Metamorphic Volatiles during Exhumation of Microdiamond-Bearing Granulites in the Western Gneiss Region, Norway.Contributions to Mineralogy and Petrology, 133(1-2):106-121. https://doi.org/10.1007/s004100050441 [74] Li, Q.L., Lin, W., Su, W., et al., 2011.SIMS U-Pb Rutile Age of Low-Temperature Eclogites from Southwestern Chinese Tianshan, NW China.Lithos, 122(1-2):76-86. https://doi.org/10.1016/j.lithos.2010.11.007 [75] Li, Q.L., Yang, Y.N., Shi, Y.H., et al., 2013.Eclogite Rutile U-Pb Dating:Constraint for Formation and Evolution of Continental Collisional Orogen.Chinese Science Bulletin, 58(23):2279-2284 (in Chinese). [76] Li, X.L., Zhang, L.F., Wei, C.J., et al., 2017.Application of Zr-in-Rutile Thermometry and Its Interpretation on the Archean Eclogite from Belomorian Province, Russia.Acta Petrologica Sinica, 33(10):3263-3277 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201710018 [77] Li, Y., Yang, Y.H., Jiao, S.J., et al., 2015.In Situ Determination of Hafnium Isotopes from Rutile Using LA-MC-ICP-MS.Science China Earth Sciences, 58(12):2134-2144. https://doi.org/10.1007/s11430-015-5215-2 [78] Liou, J.G., Zhang, R., Ernst, W.G., et al., 1998.Mineral Paragenesis in the Pianpaludo Eclogitis Body, Gruppo di Voltri, Western Ligurian Alps.Schweizerische Mineralogische und Petrographische Mitteilungen, 78:317-335. doi: 10.1007/BF02894794 [79] Liu, L., Xiao, Y.L., Aulbach, S., et al., 2014.Vanadium and Niobium Behavior in Rutile as a Function of Oxygen Fugacity:Evidence from Natural Samples.Contributions to Mineralogy and Petrology, 167:1-26. https://doi.org/10.1007/s00410-014-1026-2 [80] Liu, S.J., Li, J.H., Santosh, M., 2010.First Application of the Revised Ti-in-Zircon Geothermometer to Paleoproterozoic Ultrahigh-Temperature Granulites of Tuguiwula, Inner Mongolia, North China Craton.Contributions to Mineralogy and Petrology, 159(2):225-235. https://doi.org/10.1007/s00410-009-0425-2 [81] Lucassen, F., Dulski, P., Abart, R., et al., 2010.Redistribution of HFSE Elements during Rutile Replacement by Titanite.Contributions to Mineralogy and Petrology, 160(2):279-295. https://doi.org/10.1007/s00410-009-0477-3 [82] Lucassen, F., Muller, M.K., Taran, M., et al., 2013.Coupled H and Nb, Cr, and V Trace Element Behavior in Synthetic Rutile at 600℃, 400 MPa and Possible Geological Application.American Mineralogist, 98(1):7-18. https://doi.org/10.2138/am.2013.4183 [83] Luvizotto, G.L., Zack, T., 2009.Nb and Zr Behavior in Rutile during High-Grade Metamorphism and Retrogression:An Example from the Ivrea-Verbano Zone.Chemical Geology, 261(3-4):303-317. https://doi.org/10.1016/j.chemgeo.2008.07.023 [84] Luvizotto, G.L., Zack, T., Meyer, H.P., et al., 2009.Rutile Crystals as Potential Trace Element and Isotope Mineral Standards for Microanalysis.Chemical Geology, 261(3-4):346-369. https://doi.org/10.1016/j.chemgeo.2008.04.012 [85] Manning, C.E., Aranovich, L.Y., 2014.Brines at High Pressure and Temperature:Thermodynamic, Petrologic and Geochemical Effects.Precambrian Research, 253:6-16. https://doi.org/10.1016/j.precamres.2014.06.025 [86] Manning, C.E., Wilke, M., Schmidt, C., et al., 2008.Rutile Solubility in Albite-H2O and Na2Si3O7-H2O at High Temperatures and Pressures by In-Situ Synchrotron Radiation Micro-XRF.Earth and Planetary Science Letters, 272(3-4):730-737. https://doi.org/10.1016/j.epsl.2008.06.004 [87] Marschall, H.R., Dohmen, R., Ludwig, T., 2013.Diffusion-Induced Fractionation of Niobium and Tantalum during Continental Crust Formation.Earth and Planetary Science Letters, 375:361-371. https://doi.org/10.1016/j.epsl.2013.05.055 [88] Marsh, J.H., Culshaw, N.G., 2014.Timing and Conditions of High-Pressure Metamorphism in the Western Grenville Province:Constraints from Accessory Mineral Composition and Phase Equilibrium Modeling.Lithos, 200-201:402-417. https://doi.org/10.1016/j.lithos.2014.04.016 [89] Marsh, J.H., Kelly, E.D., 2017.Petrogenetic Relations among Titanium-Rich Minerals in an Anatectic High-P Mafic Granulite.Journal of Metamorphic Geology, 35(7):717-738. https://doi.org/10.1111/jmg.12252 [90] Meinhold, G., 2010.Rutile and Its Applications in Earth Sciences.Earth-Science Reviews, 102(1-2):1-28. https://doi.org/10.1016/j.earscirev.2010.06.001 [91] Meinhold, G., Anders, B., Kostopoulos, D., et al., 2008.Rutile Chemistry and Thermometry as Provenance Indicator:An Example from Chios Island, Greece.Sedimentary Geology, 203(1-2):98-111. https://doi.org/10.1016/j.sedgeo.2007.11.004 [92] Meyer, M., John, T., Brandt, S., et al., 2011.Trace Element Composition of Rutile and the Application of Zr-in-Rutile Thermometry to UHT Metamorphism (Epupa Complex, NW Namibia).Lithos, 126(3-4):388-401. https://doi.org/10.1016/j.lithos.2011.07.013 [93] Mitchell, R.J., Harley, S.L., 2017.Zr-in-Rutile Resetting in Aluminosilicate Bearing Ultra-High Temperature Granulites:Refining the Record of Cooling and Hydration in the Napier Complex, Antarctica.Lithos, 272-273:128-146. https://doi.org/10.1016/j.lithos.2016.11.027 [94] Moore, D.K., Cherniak, D.J., Watson, E.B., 1998.Oxygen Diffusion in Rutile from 750 to 1 000℃ and 0.1 to 1 000 MPa.American Mineralogist, 83(7-8):700-711. https://doi.org/10.2138/am-1998-7-803 [95] Morisset, C.E., Scoates, J.S., Weis, D., et al., 2014.Methodology and Application of Hafnium Isotopes in Ilmenite and Rutile by MC-ICP-MS.Geostandards and Geoanalytical Research, 38:159-176. https://doi.org/10.1111/j.1751-908x.2013.00207.x [96] Morton, A., Chenery, S., 2009.Detrital Rutile Geohemistry and Thermometry as Guides to Provenance of Jurassic-Paleocene Sandstones of the Norwegian Sea.Journal of Sedimentary Research, 79(7):540-553. https://doi.org/10.2110/jsr.2009.054 [97] Münker, C., Pfänder, J., Weyer, S., et al., 2003.Evolution of Planetary Cores and the Earth-Moon System from Nb/Ta Systematics.Science, 301(5629):84-87. https://doi.org/10.1126/science.1084662 [98] Nakayama, T., Sasaki, T., 1963.The Diffusion of Barium in a Rutile Single Crystal.Bulletin of the Chemical Society of Japan, 36(5):569-574. https://doi.org/10.1246/bcsj.36.569 [99] Nowotny, J., Bak, T., Nowotny, M.K., et al., 2006.Chemical Diffusion in Metal Oxides:Example of TiO2.Ionics, 12(3):227-243. https://doi.org/10.1007/s11581-006-0036-0 [100] Nowotny, M.K., Sheppard, L.R., Bak, T., et al., 2008.Defect Chemistry of Titanium Dioxide:Application of Defect Engineering in Processing of TiO2-Based Photocatalysts.Journal of Physical Chemistry C, 112(14):5275-5300. https://doi.org/10.1021/jp077275m [101] Ohyama, H., Tsunogae, T., Santosh, M., 2008.CO2-Rich Fluid Inclusions in Staurolite and Associated Minerals in a High-Pressure Ultrahigh-Temperature Granulite from the Gondwana Suture in Southern India.Lithos, 101(3-4):177-190. https://doi.org/10.1016/j.lithos.2007.07.004 [102] Palin, R.M., White, R.W., Green, E.C.R., 2016.Partial Melting of Metabasic Rocks and the Generation of Tonalitic-Trondhjemitic-Granodioritic (TTG) Crust in the Archaean:Constraints from Phase Equilibrium Modelling.Precambrian Research, 287:73-90. https://doi.org/10.1016/j.precamres.2016.11.001 [103] Palke, A.C., Breeding, C.M., 2017.The Origin of Needle-Like Rutile Inclusions in Natural Gem Corundum:A Combined EPMA, LA-ICP-MS, and Nano SIMS Investigation.American Mineralogist, 102(7):1451-1461. https://doi.org/10.2138/am-2017-5965 [104] Pape, J., Mezger, K., Robyr, M., 2016.A Systematic Evaluation of the Zr-in-Rutile Thermometer in Ultra-High Temperature (UHT) Rocks.Contributions to Mineralogy and Petrology, 171:44. https://doi.org/10.1007/s00410-016-1254-8 [105] Pauly, J., Marschall, H.R., Meyer, H.P., et al., 2016.Prolonged Ediacaran-Cambrian Metamorphic History and Short-Lived High-Pressure Granulite-Facies Metamorphism in the H.U. Sverdrupfjella, Dronning Maud Land (East Antarctica):Evidence for Continental Collision during Gondwana Assembly.Journal of Petrology, 57(1):185-228. https://doi.org/10.1093/petrology/egw005 [106] Phillips, G.N., 1981.Water Activity Changes across an Amphibolite-Granulite Facies Transition, Broken-Hill, Australia.Contributions to Mineralogy and Petrology, 75(4):377-386. https://doi.org/10.1007/bf00374721 [107] Pivin, M., Berger, J., Demaiffe, D., 2011.Nature and Origin of an Exceptional Cr-Rich Kyanite-Bearing Clinopyroxenite Xenolith from Mbuji-Mayi Kimberlite (DRC).European Journal of Mineralogy, 23(2):257-268. https://doi.org/10.1127/0935-1221/2011/0023-2086 [108] Pownall, J.M., Hall, R., Armstrong, R.A., et al., 2014.Earth's Youngest Known Ultrahigh-Temperature Granulites Discovered on Seram, Eastern Indonesia.Geology, 42(4):279-282. https://doi.org/10.1130/g35230.1 [109] Proyer, A., Habler, G., Abart, R., et al., 2013.TiO2 Exsolution from Garnet by Open-System Precipitation:Evidence from Crystallographic and Shape Preferred Orientation of Rutile Inclusions.Contributions to Mineralogy and Petrology, 166(1):211-234. https://doi.org/10.1007/s00410-013-0872-7 [110] Pyka, P., Gawęda, A., Szopa, K., et al., 2015.Petrogenesis of Kyanite-Quartz Segregations in Mica Schists of the Western Tatra Mountains (Slovakia).Mineralogia, 45:99-120. https://doi.org/10.1515/mipo-2015-0007 [111] Raith, M., Karmakar, S., Brown, M., 1997.Ultra-High-Temperature Metamorphism and Multistage Decompressional Evolution of Sapphirine Granulites from the Palni Hill Ranges, Southern India.Journal of Metamorphic Geology, 15(3):379-399. https://doi.org/10.1111/j.1525-1314.1997.00027.x [112] Rapp, J.F., Klemme, S., Butler, I.B., et al., 2010.Extremely High Solubility of Rutile in Chloride and Fluoride-Bearing Metamorphic Fluids:An Experimental Investigation.Geology, 38(4):323-326. https://doi.org/10.1130/g30753.1 [113] Reznitsky, L.Z., Sklyarov, E.V., Suvorova, L.F., et al., 2016.Niobian Rutile in Cr-V-Bearing Rocks of the Sludyanka Metamorphic Complex (Southern Baikal Area).Russian Geology and Geophysics, 57(12):1716-1727. https://doi.org/10.1016/j.rgg.2016.03.012 [114] Rudnick, R.L., Barth, M., Horn, I.I., et al., 2000.Rutile-Bearing Refractory Eclogites:Missing Link between Continents and Depleted Mantle.Science, 287(5451):278-281. https://doi.org/10.1126/science.287.5451.278 [115] Santosh, M., Tsunogae, T., Shimizu, H., et al., 2010.Fluid Characteristics of Retrogressed Eclogites and Mafic Granulites from the Cambrian Gondwana Suture Zone in Southern India.Contributions to Mineralogy and Petrology, 159(3):349-369. https://doi.org/10.1007/s00410-009-0431-4 [116] Sasaki, J., Peterson, N.L., Hoshino, K., 1985.Tracer Impurity Diffusion in Single-Crystal Rutile (TiO2-x).Journal of Physics and Chemistry of Solids, 46(11):1267-1283. https://doi.org/10.1016/0022-3697(85)90129-5 [117] Schmidt, M.W., Dardon, A., Chazot, G., et al., 2004.The Dependence of Nb and Ta Rutile-Melt Partitioning on Melt Composition and Nb/Ta Fractionation during Subduction Processes.Earth and Planetary Science Letters, 226(3-4):415-432. https://doi.org/10.1016/j.epsl.2004.08.010 [118] Seifert, F., Langner, K., 1970.Stability Relations of Chromium Kyanite at High Pressures and Temperatures.Contributions to Mineralogy and Petrology, 28(1):9-18. https://doi.org/10.1007/BF00389223 [119] Skrzypek, E., típská, P., Cocherie, A., 2012.The Origin of Zircon and the Significance of U-Pb Ages in High-Grade Metamorphic Rocks:A Case Study from the Variscan Orogenic Root (Vosges Mountains, NE France).Contributions to Mineralogy and Petrology, 164(6):935-957. https://doi.org/10.1007/s00410-012-0781-1 [120] Smith, D., Perseil, E.A., 1997.Sb-Rich Rutile in the Manganese Concentrations at St.Marcel-Praborna, Aosta Valley, Italy:Petrology and Crystal-Chemistry.Mineralogical Magazine, 61(408):655-659. https://doi.org/10.1180/minmag.1997.061.408.04 [121] Sobolev, N.V., Yefimova, E.S., 2000.Composition and Petrogenesis of Ti-Oxides Associated with Diamonds.International Geology Review, 42(8):758-767. https://doi.org/10.1080/00206810009465110 [122] Spear, F.S., Wark, D.A., Cheney, J.T., et al., 2006.Zr-in-Rutile Thermometry in Blueschists from Sifnos, Greece.Contributions to Mineralogy and Petrology, 152(3):375-385. https://doi.org/10.1007/s00410-006-0113-4 [123] Stepanov, A.S., Hermann, J., 2013.Fractionation of Nb and Ta by Biotite and Phengite:Implications for the "Missing Nb Paradox".Geology, 41(3):303-306. https://doi.org/10.1130/g33781.1 [124] Tanis, E.A., Simon, A., Zhang, Y.X., et al., 2016.Rutile Solubility in NaF-NaCl-KCl-Bearing Aqueous Fluids at 0.5-2.79 GPa and 250-650℃.Geochimica et Cosmochimica Acta, 177:170-181. https://doi.org/10.1016/j.gca.2016.01.003 [125] Tao, R.B., Zhang, L.F., Stagno, V., et al., 2017.High-Pressure Experimental Verification of Rutile-Ilmenite Oxybarometer:Implications for the Redox State of the Subduction Zone.Science China Earth Sciences, 60(10):1817-1825. https://doi.org/10.1007/s11430-016-9082-5 [126] Taylor-Jones, K., Powell, R., 2015.Interpreting Zirconium-in-Rutile Thermometric Results.Journal of Metamorphic Geology, 33(2):115-122. https://doi.org/10.1111/jmg.12109 [127] Tomkins, H.S., Powell, R., Ellis, D.J., 2007.The Pressure Dependence of the Zirconium-in-Rutile Thermometer.Journal of Metamorphic Geology, 25(6):703-713. https://doi.org/10.1111/j.1525-1314.2007.00724.x [128] Touret, J.L.R., 2009.Mantle to Lower-Crust Fluid/Melt Transfer through Granulite Metamorphism.Russian Geology and Geophysics, 50(12):1052-1062. https://doi.org/10.1016/j.rgg.2009.11.004 [129] Touret, J.L.R., Huizenga, J.M., 2012.Fluid-Assisted Granulite Metamorphism:A Continental Journey.Gondwana Research, 21(1):224-235. https://doi.org/10.1016/j.gr.2011.07.022 [130] Triebold, S., von Eynatten, H.V., Luvizotto, G.L., et al., 2007.Deducing Source Rock Lithology from Detrital Rutile Geochemistry:An Example from the Erzgebirge, Germany.Chemical Geology, 244(3-4):421-436. https://doi.org/10.1016/j.chemgeo.2007.06.033 [131] Triebold, S., von Eynatten, H.V., Zack, T., 2012.A Recipe for the Use of Rutile in Sedimentary Provenance Analysis.Sedimentary Geology, 282:268-275. https://doi.org/10.1016/j.sedgeo.2012.09.008 [132] Tropper, P., Manning, C., 2005.Very Low Solubility of Rutile in H2O at High Pressure and Temperature, and Its Implications for Ti Mobility in Subduction Zones.American Mineralogist, 90(2-3):502-505. https://doi.org/10.2138/am.2005.1806 [133] Tsunogae, T., Santosh, M., Dubessy, J., 2008.Fluid Characteristiscs of High-to Ultrahigh-Temperature Metamorphism in Southern India:A Quantitative Raman Spectroscopic Study.Precambrian Research, 162(1-2):198-211. https://doi.org/10.1016/j.precamres.2007.07.026 [134] Valley, J.W., Bohlen, S.R., Essene, E.J., et al., 1990.Metamorphism in the Adirondacks:Ⅱ.The Role of Fluids.Journal of Petrology, 31(3):555-596. https://doi.org/10.1093/petrology/31.3.555 [135] van Orman, J.A., Crispin, K.L., 2010.Diffusion in Oxides.Reviews in Mineralogy and Geochemistry, 72(1):757-825. https://doi.org/10.2138/rmg.2010.72.17 [136] van Roermund, H.L.M., Drury, M.R., Barnhoorn, A., et al., 2000.Non-Silicate Inclusions in Garnet from an Ultra-Deep Orogenic Peridotite.Geological Journal, 35(3-4):209-229. https://doi.org/10.1002/gj.858 [137] Vlassopoulos, D., Rossman, G.R., Haggerty, S.E., 1993.Coupled Substitution of H and Minor Elements in Rutile and Their Implications of OH Contents in Nb-and Cr-Rich Rutile from the Upper Mantle.American Mineralogist, 78:1181-1191. https://core.ac.uk/display/19897872 [138] Vry, J.K., Baker, J.A., 2006.LA-MC-ICPMS Pb-Pb Dating of Rutile from Slowly Cooled Granulites:Confirmation of the High Closure Temperature for Pb Diffusion in Rutile.Geochimica et Cosmochimica Acta, 70(7):1807-1820. https://doi.org/10.1016/j.gca.2005.12.006 [139] Wade, J., Wood, B., 2001, The Earth's 'Missing' Niobium may be in the Core.Nature, 409(6816):75-78. https://doi.org/10.1038/35051064 [140] Wang, J., Chen, Y., Mao, Q., et al., 2017.Electron Microprobe Trace Element Analysis of Rutile.Acta Petrologica Sinica, 33(6):1934-1946 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-YSXB201706019.htm [141] Wang, R.C., Wang, S., Qiu, J.S., et al., 2005.Rutile in the UHP Eclogites from the CCSD Main Drillhole (Donghai, Eastern China):Trace-Element Geochemistry and Metallogenetic Implications.Acta Petrologica Sinica, 21(2):465-474 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical_ysxb98200502020.aspx [142] Watson, E.B., Wark, D.A., Thomas, J.B., 2006.Crystallization Thermometers for Zircon and Rutile.Contributions to Mineralogy and Petrology, 151(4):413-433.doi: 10.1007/s00410-006-0068-5 [143] Weller, O. M., St-Onge, M. R., 2017.Record of Modern-Style Plate Tectonics in the Palaeoproterozoic Trans-Hudson Orogen.Nature Geoscience, 10(4):305-311.doi: 10.1038/ngeo2904 [144] Weyer, S., Münker, C., Rehkamper, M., et al., 2002.Determination of Ultra-Low Nb, Ta, Zr and Hf Concentrations and the Chondritic Zr/Hf and Nb/Ta Ratios by Isotope Dilution Analyses with Multiple Collector ICP-MS.Chemical Geology, 187(3-4):295-313.doi: 10.1016/S0009-2541(02)00129-8 [145] White, R.W., Palin, R.M., Green, E.C.R., 2017.High-Grade Metamorphism and Partial Melting in Archean Composite Grey Gneiss Complexes.Journal of Metamorphic Geology, 35(2):181-195.doi: 10.1111/jmg.12227 [146] Whitney, D.L., Roger, F., Teyssier, C., et al., 2015.Syn-Collapse Eclogite Metamorphism and Exhumation of Deep Crust in a Migmatite Dome:The P-T-t Record of the Youngest Variscan Eclogite (Montagne Noire, French Massif Central).Earth and Planetary Science Letters, 430:224-234.doi: 10.1016/j.epsl.2015.08.026 [147] Win, M.M., Enami, M., Kato, T., et al., 2017.A Mechanism for Nb Incorporation in Rutile and Application of Zr-in-Rutile Thermometry:A Case Study from Granulite Facies Paragneisses of the Mogok Metamorphic Belt, Myanmar.Mineralogical Magazine, Online.doi: 10.1180/minmag.2017.081.014 [148] Xiao, Y.L., Huang, J., Liu, L., et al., 2011.Rutile:An Important "Reservoir" for Geochemical Information.Acta Petrologica Sinica, 27(2):398-416 (in Chinese with English abstract). https://www.researchgate.net/publication/282808723_Rutile_An_important_reservoir_for_geochemical_information [149] Xiao, Y.L., Sun, W.D., Hoefs, J., et al., 2006.Making Continental Crust through Slab Melting:Constraints from Niobium-Tantalum Fractionation in UHP Metamorphic Rutile.Geochimica et Cosmochimica Acta, 70(18):4770-4782.doi: 10.1016/j.gca.2006.07.010 [150] Xiong, X.L., Adam, J., Green, T.H., 2005.Rutile Stability and Rutile/Melt HFSE Partitioning during Partial Melting of Hydrous Basalt:Implications for TTG Genesis.Chemical Geology, 218(3-4):339-359.doi: 10.1016/j.chemgeo.2005.01.014 [151] Xiong, X.L., Keppler, H., Audétat, A., et al., 2011.Partitioning of Nb and Ta between Rutile and Felsic Melt and the Fractionation of Nb/Ta during Partial Melting of Hydrous Metabasalt.Geochimica et Cosmochimica Acta, 75(7):1673-1692.doi: 10.1016/j.gca.2010.06.039 [152] Yu, S.Y., Zhang, J.X., Gong, J.H., 2011.Zr-in-Rutile Thermometry in Hp/UHT Granulite in the Bashiwake Area of the South Altun and Its Geological Implications.Earth Science Frontiers, 18(2):140-150 (in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S0024493714001601 [153] Zack, T., Kronz, A., Foley, S.F., et al., 2002.Trace Element Abundances in Rutiles from Eclogites and Associated Garnet Mica Schists.Chemical Geology, 184(1-2):97-122.doi: 10.1016/s0009-2541(01)00357-6 [154] Zack, T., Moraes, R., Kronz, A., 2004a.Temperature Dependence of Zr in Rutile:Empirical Calibration of a Rutile Thermometer.Contributions to Mineralogy and Petrology, 148(4):471-488.doi: 10.1007/s00410-004-0617-8 [155] Zack, T., von Eynatten, H., Kronz, A., 2004b.Rutile Geohemistry and Its Potential Use in Quantitative Provenance Studies.Sedimentary Geology, 171(1-4):37-58.doi: 10.1016/j.sedgeo.2004.05.009 [156] Zhang, G.B., Zhang, L.F., 2011.The Progress and Some Problems in the Study of Ruffle in Metamorphic Rocks.Earth Science Frontiers, 18(2):26-32 (in Chinese with English abstract). https://www.scientific.net/AMR.826.34 [157] Zhang, J.X., Mattinson, C.G., Yu, S.Y., et al., 2014.Combined Rutile-Zircon Thermometry and U-Pb Geochronology:New Constraints on Early Paleozoic HP/UHT Granulite in the South Altyn Tagh, North Tibet, China.Lithos, 200-201:241-57.doi: 10.1016/j.lithos.2014.05.006 [158] Zhang, R.Y., Zhai, S.M., Fei, Y.W., et al., 2003.Titanium Solubility in Coexisting Garnet and Clinopyroxene at very High Pressure:The Significance of Exsolved Rutile in Garnet.Earth and Planetary Science Letters, 216(4):591-601.doi: 10.1016/S0012-821X(03)00551-X [159] Zhang, Y.H., Wei, C.J., Tian, W., et al., 2013.Reinterpretation of Metamorphic Age of the Hengshan Complex, North China Craton.Chinese Science Bulletin, 58(34):4300-4307.doi: 10.1007/s11434-013-5993-x [160] Zhao, D.G., Essene, E.J., Zhang, Y.X., 1999.An Oxygen Barometer for Rutile-Ilmenite Assemblages:Oxidation State of Metasomatic Agents in the Mantle.Earth and Planetary Science Letters, 166(3-4):127-137.doi: 10.1016/s0012-821x(98)00281-7 [161] Zheng, Y.F., 2009.Fluid Regime in Continental Subduction Zones:Petrological Insights from Ultrahigh-Pressure Metamorphic Rocks.Journal of the Geological Society, 166(4):763-782.doi: 10.1144/0016-76492008-016r [162] Zheng, Y.F., Gao, X.Y., Chen, R.X., et al., 2011.Zr-In-Rutile Thermometry of Eclogite in the Dabie Orogen:Constraints on Rutile Growth during Continental Subduction-Zone Metamorphism.Journal of Asian Earth Sciences, 40(2):427-451.doi: 10.1016/j.jseaes.2010.09.008 [163] 陈振宇, 李秋立, 2007.大别山金河桥榴辉岩中金红石Zr温度计及其意义.科学通报, 52(22):2638-2645. doi: 10.3321/j.issn:0023-074x.2007.22.010 [164] 陈振宇, 王登红, 陈毓川, 等, 2006.榴辉岩中金红石的矿物地球化学研究及其意义.地球科学, 31(4):533-538. http://earth-science.net/WebPage/Article.aspx?id=1599 [165] 高长贵, 刘勇胜, 宗克清, 等, 2008.超高压榴辉岩金红石中高场强元素变化的控制因素及其地球动力学意义.地球科学, 33(4):487-503. http://earth-science.net/WebPage/Article.aspx?id=1716 [166] 高晓英, 郑永飞, 2011.金红石Zr和锆石Ti含量地质温度计.岩石学报, 27(2):417-432. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20110205 [167] 李秋立, 杨亚楠, 石永红, 等, 2013.榴辉岩中金红石U-Pb定年:对大陆碰撞造山带形成和演化的制约.科学通报, 58(23):2279-2284. http://www.cnki.com.cn/Article/CJFDTotal-JSKX201303025.htm [168] 李小犁, 张立飞, 魏春景, 等, 2017.俄罗斯白海地区太古代榴辉岩的金红石Zr温度计应用及其地质意义.岩石学报, 33(10):3263-3277. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20171018 [169] 王娟, 陈意, 毛骞, 等, 2017.金红石微量元素电子探针分析.岩石学报, 33(6):1934-1946. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20170619 [170] 王汝成, 王硕, 邱检生, 等, 2005.CCSD主孔揭示的东海超高压榴辉岩中的金红石:微量元素地球化学及其成矿意义.岩石学报, 21(2):465-474. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20050248&journal_id=ysxb [171] 肖益林, 黄建, 刘磊, 等, 2011.金红石:重要的地球化学"信息库".岩石学报, 27(2):398-416. http://mall.cnki.net/magazine/Article/YSXB201102005.htm [172] 于胜尧, 张建新, 宫江华, 2011.南阿尔金巴什瓦克高压/超高温麻粒岩中金红石Zr温度计及其地质意义.地学前缘, 18(2):140-150. http://www.doc88.com/p-9002325504771.html [173] 张贵宾, 张立飞, 2011.变质岩中金红石研究进展及存在问题.地学前缘, 18(2):26-32. doi: 10.11867/j.issn.1001-8166.2012.08.0828