Using Contact Metamorphic Criteria in Contact Aureole to Preliminarily Discriminate Magma Emplacement Mechanisms of Fangshan Pluton, Beijing
-
摘要: 近同心状房山岩体接触变质晕中变斑晶-基质关系与变质作用P-T轨迹样式的结合可以区分岩浆底劈式侵位与气球膨胀式侵位机制.例如,该房山岩体南侧接触变质晕中的下马岭组泥质变质岩的变斑晶-基质关系显示强烈的面状压扁应变变形,其变质作用P-T轨迹具等压加热趋势,综合前人成果估算该岩体4个依次侵位的岩石单元的最终就位岩浆结晶深度彼此近于一致,倾向于认为该岩体的岩浆侵位机制为气球膨胀式.Abstract: Relationship between metamorphic porphyroblasts and their matrices in the contact aureole of the concentric zoned Fangshan pluton, Beijing, combined with P-T patterns can be used as criteria to distinguish between magmatic diapirism and balloon expansion mechanisms for pluton emplacement in this study. It is found that, pelitic metamorphic rocks in the Xiamaling Formation in the southern part of the aureole display porphyroblast-matrix relationships reflecting intense plane-strain deformation combined with a nearly isobaric heating P-T trajectory towards the contact. Incorporating previously published estimates of final crystallization depths of four successively emplaced magmatic units, the results favor the balloon-inflation intrusion mechanism.
-
图 1 房山岩体岩浆底劈侵位模式
图据He et al.(2009)重绘并略作修改;图中展示了位于接触变质晕内环的高温剪切晕(HTSA)、由岩体中心向外辐射的陡倾面理构造、显著垂直上升的太古代岩片、边缘向斜构造和向斜压缩程度与深度的关系
Fig. 1. Magmatic diapir intrusive model for Fangshan pluton
图 2 底劈型岩浆侵位岩体变质晕(a)和相应的变质P-T轨迹示意(b)
图据He et al.(2009)简化
Fig. 2. Diapiric magma pluton (a) aureole and corresponding metamorphic P-T path (b)
图 4 接触变质晕代表性显微构造照片
a.夕线石-白云母带柱状红柱石核部为玫瑰红色的低温晶体相,边部为无色的中-高温晶体相,中-高温相红柱石末端多型转变为纤维状夕线石集合体,另一红柱石晶体的横断面显示十字包裹物迹线,由其分割的4个扇形区内可见断续排列的管状石英包体垂直于晶面;b.夕线石-白云母带的红柱云母片岩中的红柱石变斑晶和黑云母呈眼球状或鱼状,晶内面理呈平直状被晶外面理交切,显示变质结晶早于剪切面理;c.夕线石-钾长石带的眼球状钾长石变斑晶与夕线石共生,其核部由黑云母、石英和白云母组成的平直的晶内面理与由纤维状夕线石、黑云母等组成的晶外面理呈~45°相交;d.石榴子石呈自形-半自形晶,显示弱的溶蚀特征,核部的石英包裹体呈不定向或弱的直线状排列,近边部由一环状石英包裹体为界划分出两个带
Fig. 4. Representative microtectonic photos of contact aureole
图 5 房山岩体接触变质晕夕线石-钾长石带的初步限定的P-T轨迹
图中黑色轨迹由本文约束,红色轨迹据刘小丽(2015).底图据Mueller and Saxena(1977).反应资料:①And、Ky和Sil的相平衡是Mueller and Saxena(1977)据Richardson(1968)和Holdaway(1971)的实验成果和Ganguly的论据推断;②Pyp=And+3Q+H2O,据Kerrick(1968);③Chd+Al2SiO5=St+Q+H2O,据Richardson(1968);④(Fe-Mg)Chl+Ms=(Fe-Mg)St+(Fe-Mg)Bi+Q+H2O,据Hoschek(1969);⑤(Fe-Mg)St+Ms+Q=Al2SiO5+(Fe-Mg)Bi+H2O,据Hoschek(1969);⑥Ma+Q=Al2SiO5+K-fs+H2O,据Day(1973);⑦Fe-St+Q=Alm+Al2SiO5+H2O;⑧Fe-St+Fe-Bi=Fe-Cord+Ms,据Richardson(1968);⑨Ab+Ms+Q+H2O=L(熔体),据Storre and Karotke(1971);⑩Ar-Or-Q-H2O体系熔融开始,据Merrill et al.(1970);⑪ Ma+Q=L(熔体)+Al2SiO5+K-fs,据Storre(1972).矿物代号:Q.石英;Ab.钠长石;Or.正长石;Ms.白云母;Bi.黑云母;Chl.绿泥石;Chd.硬绿泥石;Alm.铁铝榴石;St.十字石;Cord.堇青石;K-fs.钾长石;And.红柱石;Ky.蓝晶石;Sil.夕线石
Fig. 5. P-T path preliminarily constrained for the sillimanite-K-feldspar zone in Fangshan pluton contact aureole
表 1 岩浆气球膨胀与底劈侵位机制在围岩接触变质晕中的判别标志
Table 1. Criteria in contact aureole for discrimination of ballooning from diapiric intrusive mechanisms
岩浆底劈机制 气球膨胀机制 房山岩体 He et al.(2009) 本文和前人观察资料 前进变质阶段拉伸线理 向岩体外辐射和陡倾 不发育 向外辐射和陡倾 另有不同的线理产状测量结果,可能是峰期后退变质作用相关的线理? 变质峰期的面理构造 同心状 同心状 同心状 同心状 前进变质阶段高温剪切晕 发育 不发育 发育 剪切明显,但可能不属前进变质阶段的同剪切构造变晶,强烈剪切面理发育在峰期变质之后变质峰期 垂向位移 明显 不明显 明显 有岩体侵位前拆离断层剥露的不同意见 边缘向斜 发育,为不对称型 可能发育,对称型或不对称 发育,为不对称型 发育,为不对称型 前进变质阶段应变类型 剪切为主,压扁次之 压扁为主,剪切次之 剪切 前进变质以压扁为主,峰期变质后强烈剪切 前进变质阶段变斑晶-基质关系 变斑晶主体发育同岩体侵位的上、下剪切相关的旋转型晶内面理,次之为平直的晶内面理 变斑晶主体发育同岩体侵位的平直的晶内面理,或与水平剪切相关的旋转型晶内面理 ? 主体为平直晶内面理,少量为微弱的S-型或Z-型剪切面理变质作用 P-T轨迹 具体视岩石所处部位而定,顶部为减压幅度较大的升温轨迹,边缘向斜内为明显增压的升温轨迹 总体为近等压升温或压力变化幅度较小,升温明显的P-T轨迹 未研究 近等压升温轨迹 注:表据 He et al.(2009) 修改. -
[1] Bateman, R., 1984.On the Role of Diapirism in the Segregation, Ascent and Final Emplacement of Granitoid Magmas.Tectonophysics, 110(3-4):211-231. https://doi.org/10.1016/0040-1951(84)90262-2 [2] Brown, M., 1994.The Generation, Segregation, Ascent and Emplacement of Granite Magma:The Migmatite-to-Crustally-Derived Granite Connection in Thickened Orogens.Earth-Science Reviews, 36(1-2):83-130. https://doi.org/10.1016/0012-8252(94)90009-4 [3] Cai, J.H., Yan, G.H., Mu, B.L., et al., 2005.Zircon U-Pb Age, Sr-Nd-Pb Isotopic Compositions and Trace Element of Fangshan Complex in Beijing and Their Petrogenesis Significance.Acta Petrologica Sinica, 21(3):776-788 (in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S1367912009000637 [4] Castro, A., 1987.On Granitoid Emplacement and Related Structures.A Review.Geologische Rundschau, 76(1):101-124. https://doi.org/10.1007/bf01820576 [5] Chen, N.S., Sun, M., You, Z.D., et al., 1998.Well-Preserved Garnet Growth Zoning in Granulite from the Dabie Mountains, Central China.Journal of Metamorphic Geology, 16(2):213-222. https://doi.org/10.1111/j.1525-1314.1998.00074.x [6] Clemens, J.D., 1998.Observations on the Origins and Ascent Mechanisms of Granitic Magmas.Journal of the Geological Society, 155(5):843-851. https://doi.org/10.1144/gsjgs.155.5.0843 [7] Cruden, A.R., 1988.Deformation around a Rising Diapir Modeled by Creeping Flow Past a Sphere.Tectonics, 7(5):1091-1101. https://doi.org/10.1029/tc007i005p01091 [8] Cruden, A.R., 1990.Flow and Fabric Development during the Diapiric Rise of Magma.Journal of Geology, 98(5):681-698. https://doi.org/10.1086/629433 [9] Day, H.W., 1973.The High Temperature Stability of Muscovite Plus Quartz.American Mineralogists, 58:255-262. doi: 10.1007/BF00405224.pdf [10] Dorfler, K.M., Tracy, R.J., Caddick, M.J., 2014.Late-Stage Orogenic Loading Revealed by Contact Metamorphism in the Northern Appalachians, New York.Journal of Metamorphic Geology, 32(1):113-132. https://doi.org/10.1111/jmg.12061 [11] England, R.W., 1990.The Identification of Granitic Diapirs.Journal of the Geological Society, 147(6):931-933. https://doi.org/10.1144/gsjgs.147.6.0931 [12] Fyson, W.K., 1975.Fabrics and Deformation of Archean Metasedimentary Rocks, Ross Lake-Gordon Lake Area, Slave Province, Northwest Territories.Canadian Journal of Earth Sciences, 12(5):765-776. https://doi.org/10.1139/e75-067 [13] He, B., Xu, Y.G., Paterson, S., 2009.Magmatic Diapirism of the Fangshan Pluton, Southwest of Beijing, China.Journal of Structural Geology, 31(6):615-626. https://doi.org/10.1016/j.jsg.2009.04.007 [14] Holdaway, M.J., 1971.Stability of Andalusite and the Aluminum Silicate Phase Diagram.American Journal of Science, 271(2):97-131. https://doi.org/10.2475/ajs.271.2.97 [15] Hoschek, G., 1969.The Stability of Staurolite and Chloritoid and Their Significance in Metamorphism of Pelitic Rocks.Contributions to Mineralogy and Petrology, 22(3):208-232. https://doi.org/10.1007/bf00387954 [16] Kerrick, D.M., 1968.Experiments on the Upper Stability Limit of Pyrophyllite at 1.8 Kilobars and 3.9 Kilobars Water Pressure.American Journal of Science, 266(3):204-214. https://doi.org/10.2475/ajs.266.3.204 [17] Liu, G.H., Wu, J.S., 1987.Metamorphic Zones of the Fangshan Area in Beijing.Bulletin of the Chinese Academy of Geological Sciences, 16:113-137 (in Chinese with English abstract). http://www.oalib.com/paper/1559599 [18] Liu, X.L., 2015.Study of Phase Equilibrium Modeling on KMnFMASH Syetem about Mica-Schists of the Contact Metamorphic Zones in Fangshan, Beijing (Dissertation).China University of Geosciences, Beijing (in Chinese with English abstract). [19] Liu, X.L., Cheng, S.H., Zhang, H.Y., 2015.Polybaric Crystallization of Granitic Magmas and Its Dynamic Significance:A Case from the Fangshan Pluton of Beijing.Geoscience, 29(3):514 -528 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ201503004.htm [20] Ma, C.Q., 1988.The Magma-Dynamic Mechanism of Emplacement and Compositional Zonation of the Zhoukoudian Stock, Beijing.Acta Geologica Sinica, 62(4):329-341, 373-374 (in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S0191814109000856 [21] Ma, C.Q., Wang, R.J., Yang, K.G., 1996.Magmatic Thermodynamic Structures of the Zhoukoudian Granodioritic Intrusion in the Western Hills of Beijing.Field Trip Guide of 30th International Geological Congress, Beijing. [22] Mahon, K.I., Harrison, T.M., Drew, D.A., 1988.Ascent of a Granitoid Diapir in a Temperature Varying Medium.Journal of Geophysical Research, 93(B2):1174-1188. https://doi.org/10.1029/jb093ib02p01174 [23] Marsh, B.D., 1982.On the Mechanics of Igneous Diapirism, Stoping, and Zone Melting.American Journal of Science, 282(6):808-855. https://doi.org/10.2475/ajs.282.6.808 [24] Mason, R., Burton, K.W., Yuan, Y.M., et al., 2010.Chiastolite.Gondwana Research, 18(1):222-229. https://doi.org/10.1016/j.gr.2010.03.005 [25] Meneilly, A.W., 1983.Development of Early Composite Cleavage in Pelites from West Donegal.Journal of Structural Geology, 5(1):83-97. https://doi.org/10.1016/0191-8141(83)90010-x [26] Merrill, R.B., Robertson, J.K., Wyllie P.J., 1970.Melting Reactions in the System NaAlSi3O8-KAlSi3O8-SiO2-H2O to 20 Kilobars Compared with Results for Other Feldspar-Quartz-H2O and H2O Systems.Journal of Geology, 78(5):558-569. https://doi.org/10.1086/627553 [27] Miller, R.B., Paterson, S.R., 1999.In Defense of Magmatic Diapers.Journal of Structural Geology, 21(8):1161-1173. https://doi.org/10.1016/S0191-8141(99)00033-4 [28] Muller, R.F., Saxena, S.K., 1977.Chemical Petrology.Translated by Cong, B.L., Li, J.L., Geological Publishing House, Beijing, 193 (in Chinese with English abstract). [29] Paterson, S.R., Vernon, R.H., 1995.Bursting the Bubble of Ballooning Plutons:A Return to Nested Diapirs Emplaced by Multiple Processes.Geological Society of America Bulletin, 107(11):1356-1380.https://doi.org/10.1130/0016-7606(1995)107<1356:btbobp>2.3.co;2 doi: 10.1130/0016-7606(1995)107<1356:btbobp>2.3.co;2 [30] Pattison, D.R.M., Tracy, R.J., 1991.Phase Equilibria and Thermobarometry of Metapelites.Reviews in Mineralogy and Geochemistry, 26(1):105-206. [31] Pitcher, W.S., Read, H.H., 1960.The Aureole of the Main Donegal Granite.Geological Society of London Quarterly Journal, 116:1-36. https://doi.org/10.1144/gsjgs.116.1.0001 [32] Ramsay, J.G., 1989.Emplacement Kinematics of a Granite Diapir:The Chindamora Batholith, Zimbabwe.Journal of Structural Geology, 11(1-2):191-209. https://doi.org/10.1016/0191-8141(89)90043-6 [33] Richardson, S.W., 1968.Staurolite Stability in a Part of the System Fe-Al-Si-O-H.Journal of Petrology, 9(3):467-488. https://doi.org/10.1093/petrology/9.3.467 [34] Schmeling, H., Cruden, A.R., Marquart, G., 1988.Finite Deformation in and around a Fluid Sphere Moving through a Viscous Medium:Implications for Diapiric Ascent.Tectonophysics, 149(1-2):17-34. https://doi.org/10.1016/0040-1951(88)90116-3 [35] Spear, F.S., 1993.Metamorphic Phase Equilibria and Pressure-Temperature-Time Paths.Mineralogical Society of America Monograph, Washington DC. https://ci.nii.ac.jp/ncid/BB09108583 [36] Storre, B., 1972.Dry Melting of Muscovite+Quartz in the Range Ps=7 kb to Ps=20 kb.Contributions of Mineralogy and Petrology, 37(1):87-89. https://doi.org/10.1007/BF00377309 [37] Storre, B., Karotke, E., 1971.An Experimental Determination of the Upper Stability Limit of Muscovite+Quartz in the Range 7-20 kb Water Pressure.Neues Jahrb.Mineral.Monasch, 237-240. doi: 10.1007/BF00444341 [38] Sun, J.F., Yang, J.H., Wu, F.Y., et al., 2010.Magma Mixing Controlling the Origin of the Early Cretaceous Fangshan Granitic Pluton, North China Craton:In Situ U-Pb Age and Sr-, Nd-, Hf-and O-Isotope Evidence.Lithos, 120(3-4):421-438. https://doi.org/10.1016/j.lithos.2010.09.002 [39] Sylvester, A.G., Ortel, G., Nelson, C.A., et al., 1978.Papoose Flat Pluton:A Granitic Blister in the Inyo Mountains, California.Geological Society of America Bulletin, 89(8):1205-1219.https://doi.org/10.1130/0016-7606(1978)89<1205:pfpagb>2.0.co;2 doi: 10.1130/0016-7606(1978)89<1205:pfpagb>2.0.co;2 [40] Vernon, R.H., 1989.Porphyroblast-Matrix Microstructural Relationships:Recent Approaches and Problems.Geological Society, London, Special Publications, 43(1):83-102. https://doi.org/10.1144/GSL.SP.1989.043.01.05 [41] Vernon, R.H., Paterson, S.R., 1993.The Ardara Pluton, Ireland:Deflating an Expanded Intrusion.Lithos, 31(1-2):17-32. https://doi.org/10.1016/0024-4937(93)90030-g [42] Viete, D.R., Oliver, G.J.H., Fraser, G.L., et al., 2013.Timing and Heat Sources for the Barrovian Metamorphism, Scotland.Lithos, 177:148-163. https://doi.org/10.1016/j.lithos.2013.06.009 [43] Wang, F.Z., Chen, N.S., 1996.Regional and Thermodynamic Metamorphism of the Western Hills of Beijing.Field Trip Guide of 30th International Geological Congress, Beijing. [44] Wang, J.Y., 1951.On the Chloritoid Belt in Wstern Hills of Peking.Bulletin of the Geological Society of China, 31:23-30 (in Chinese with English abstract). doi: 10.1111/j.1755-6724.1951.mp31001003.x [45] Wang, R. J., 1987. Intrusive Rocks. In: Tan, Y. J., Ye, J. L., eds., The Geology of Zhoukoudian Area, Beijing and Geological Practice Teaching Guide Book. Press of Wuhan College of Geology, Wuhan, 36-53 (in Chinese). [46] Wang, R.J., Ma, C.Q., 1989.Features and Emplacement of the Zhoukoudian Stock, Beijing.Earth Science, 14(4):399-406 (in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S0191814109000856 [47] Weinberg, R.F., Podladchikov, Y., 1994.Diapiric Ascent of Magmas through Power Law Crust and Mantle.Journal of Geophysical Research:Solid Earth, 99(B5):9543-9559. https://doi.org/10.1029/93jb03461 [48] Zhang, J. S., Li, Z. Z., 1990. Emplacement Deformations and Ballooning Mechanism about Fangshan Granodiorite Pluton, Beijing. In: Zhang, J. S., Shan, W. L., eds., The Geological Study of Xishan, Beijing. China University of Geosciences Press, Wuhan, 48-63 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2013.007 [49] Zhang, J.Y., Ma, C.Q., Wang, R.J., et al., 2013.Mineralogical, Geochronological and Geochemical Characteristics of Zhoukoudian Intrusion and Their Magmatic Source and Evolution.Earth Science, 38(1):68-86 (in Chinese with English abstract).https://doi.org/10.3799/dqkx.2013.007 http://www.cqvip.com/Main/Detail.aspx?id=947705 [50] Zhou, Z.G., Luo, Z.H., He, M.Y., 1992.On the Mapping Units of the Fangshan Intrusion of Beijing.Regional Geology of China, (2):156-160 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD199202008.htm [51] 蔡剑辉, 阎国翰, 牟保磊, 等, 2005.北京房山岩体锆石U-Pb年龄和Sr、Nd、Pb同位素与微量元素特征及成因探讨.岩石学报, 21(3):776-788. https://www.wenkuxiazai.com/doc/da8ad7e8e009581b6bd9ebd5.html [52] 刘国惠, 伍家善, 1987.北京房山地区的变质带.中国地质科学院院报, 16:113-137. http://www.oalib.com/paper/1559599 [53] 刘小丽, 2015.北京房山接触变质带云母片岩KMnFMASH体系相平衡研究(硕士学位论文).北京:中国地质大学. [54] 刘小丽, 程素华, 张宏远, 2015.花岗质岩浆的变压结晶作用及其动力学意义:以北京房山岩体为例.现代地质, 29(3):514-528. http://mall.cnki.net/magazine/magadetail/XDDZ201503.htm [55] 马昌前, 1988.北京周口店岩株侵位和成分分带的岩浆动力学机理.地质学报, 62(4):329-341, 373-374. http://www.oalib.com/paper/4895963 [56] Muller, R. F., Saxena, S. K., 1977. 化学岩石学. 从柏林, 李继亮译. 北京: 地质出版社, 193. [57] 王嘉荫, 1951.北京西山硬绿泥石带.中国地质学会志, 31:23-30. https://www.researchgate.net/profile/Tingting_Shen4/publication/301656421_Metamorphism_of_subduction_zone_serpentinite/links/5720662208aefa64889a9418.pdf [58] 王人镜, 1987.侵入体.见:谭应家, 叶俊林主编, 北京周口店地质及地质教学实习指导书.武汉:武汉地质学院出版社, 36-53. [59] 王人镜, 马昌前, 1989.北京周口店侵入体特征及其侵位机制.地球科学, 14(4):399-406. http://www.oalib.com/paper/4895963 [60] 张吉顺, 李志忠, 1990.北京房山花岗闪长岩体的侵位变形构造及气球膨胀式侵位机制.见:张吉顺, 单文琅编, 北京西山地质研究.武汉:中国地质大学出版社, 48-63. [61] 张金阳, 马昌前, 王人镜, 等, 2013.周口店岩体矿物学、年代学、地球化学特征及其岩浆起源与演化.地球科学, 38(1):68-86. http://earth-science.net/WebPage/Article.aspx?id=2345 [62] 周正国, 罗照华, 何明跃, 1992.对北京房山岩体填图单位的初步探讨.中国区域地质, (2):156-160. http://www.cqvip.com/Main/Detail.aspx?id=947705