Paleoproterozoic Metamorphism and Tectonic Evolution in Wutai-Hengshan Region, Trans-North China Orogen
-
摘要: 华北克拉通古元古代造山带的时空分布与构造属性尚有很大争论,一种观点认为华北克拉通从新太古代至古元古代受大洋俯冲闭合控制,在1.85~1.95 Ga之间先后发生3次陆-陆碰撞形成3条造山带,即孔兹岩带、胶-辽-吉带和中部造山带;另一种观点强调华北克拉通这3条元古代造山带在1.80~1.98 Ga之间经历了相同的漫长演化过程,指示当时特有的热俯冲和碰撞环境.通过总结中部造山带中的五台-恒山地区变质作用研究进展,阐述该区古元古代造山时代与构造属性.五台-恒山地区的主要变质岩石-构造单元包括恒山杂岩、五台杂岩和滹沱群.恒山杂岩和五台杂岩主体为新太古代TTG片麻岩和表壳岩,它们在古元古代晚期经历了两期变质作用改造.第一期变质作用为中压型,是由于陆-陆碰撞导致弧后伸展盆地闭合、地壳加厚造山所致,从南向北形成一个递增序列:包括五台群下部和南恒山杂岩南部的低角闪岩相、南恒山杂岩北部高角闪岩相和北恒山杂岩的高压麻粒岩相,其压力峰期所对应的地热梯度为~15 ℃/km.变质锆石所记录的年龄峰值随着变质程度增高而降低,依次为~1.95 Ga、~1.92 Ga和~1.85 Ga,这是因为在变质过程中锆石生长受流体和熔体行为控制:在亚固相线下,变质锆石可记录峰期变质年龄,而在超固相线条件下记录伴随熔体结晶的退变质年龄.由此确定该区中压相系变质作用压力峰期时间为~1.95 Ga,对应地壳加厚造山的峰期.加厚地壳由于重力均衡导致变质岩从深部地壳折返至中部地壳,在P-T轨迹上表现为压力峰期之后发生等温减压(ITD)至0.5~0.7 GPa,岩相学上表现为峰期石榴石分解形成斜长石"白眼圈"等,指示缺流体条件.南恒山北部高角闪岩相岩石中的变质锆石记录的折返时间为~1.92 Ga,指示第一次造山结束.第二期变质作用为中-低压型,系为板内变形所致,表现为折返至中地壳的岩石伴随挤压型剪切变形和流体注入形成平衡矿物组合.朱家坊韧性剪切带就是这次板内变形的强构造域,其中也记录了顺时针型P-T轨迹,但所反映的地壳加厚程度有限,第二期变质-变形峰期时间为~1.85 Ga.由于朱家坊韧性剪切带左行走滑,导致北恒山麻粒岩地体抬升.五台-恒山地区在1.80~1.96 Ga之间经历两期变质-变形事件,这一认识或对讨论华北克拉通其他地区的古元古代造山带演化有一定启示意义.Abstract: The tempo-spatial distribution and tectonic attribute of the Paleoproterozoic orogens of the North China Craton (NCC) are strongly controversial. One model argues that three times of continental collision occurred sequentially during the period of 1.85-1.95 Ga in the NCC, resulted in the formation of three Paleoproterozoic orogens, i.e. the Khondalite belt, Jiao-Liao-Ji belt and the Trans-North China orogen (TNCO). The other model contests that the above three orogens may have experienced the same long-lived evolutional history within the period of 1.80-1.98 Ga, suggesting particular hot subduction and collision in Paleoproterozoic. Summarizing the recent advances of the study on metamorphism in the Wutai-Hengshan region, this paper presents the time and tectonic attribute of the Paleoproterozoic orogeny. The main litho-structural units in the Wutai-Hengshan region include the Hengshan complex, Wutai complex and Hutuo Group. The Hengshan and Wutai complexes are recognized to have undergone two phases of metamorphism. The first phase was identified to be a medium-pressure type, which was attributed to resulting from a crust thickening orogeny related to the closure of back-arc basins due to continental collision. A progressive metamorphic series can be revealed, including, from south to north, the low-amphibolite facies of the lower Wutai Group and the southern part of the south Hengshan complex, the high-amphibolite facies of the northern part of the south Hengshan complex and the high-pressure granulite facies of the north Hengshan complex, with their pressure peak conditions corresponding to a geothermal gradient of~15℃/km. With increasing in metamorphic grade, the peak ages from metamorphic zircons show a decreasing trend, which are~1.95 Ga, ~1.92 Ga and~1.85 Ga for the low-amphibolite, high-amphibolite and granulite facies rocks respectively. This is because zircon growth during metamorphism depends on the behaviors of fluids and melts, which results in that metamorphic zircons tend to record the time of the peak stages for metamorphism under subsolidus conditions, but to date the retrograde stage with melt crystallization during metamorphism under suprasolidus conditions. As a result, the pressure peak stage of the medium-pressure type metamorphism is determined to be~1.95 Ga, also equivalent to the peak stage of the crust-thickening orogeny. Due to gravity isostasy in the thickening crust region, metamorphic rocks may exhume from deep crust to middle crust, displaying as the post-peak isothermal decompression (ITD) to 0.5-0.7 GPa in P-T paths, and suggested from the 'white eye socket' textures formed by the decomposition of peak garnet under fluid-absent conditions. The metamorphic zircon ages of 1.92 Ga from the high-amphibolite facies rocks of the northern part of the south Hengshan complex were interpreted to represent the decompression of medium-pressure rocks, also constraining the termination of the first-phase orogeny. The second phase of metamorphism is inferred to be a low-pressure type, resulted from deformation within-plate, and displaying as the formation of equilibrium assemblages that overprinted the exhumed medium-pressure rocks triggered by compressional shearing and fluid infiltration. The Zhujiafang shearing belt could be a high-strain zone produced in this within-plate deformation, which also records a clockwise P-T path, but indicating limited crustal thickening. The second phase of metamorphism and deformation was constrained to occur mainly at~1.85 Ga. The sinistral strike-slip of the Zhujiafang shearing belt may have resulted in the uplifting of the north Hengshan granulite terranes. Two phases of metamorphism and deformation were proposed to have occurred within the period of 1.80-1.96 Ga in the Wutai-Hengshan region, which could be significant for discussing the Paleoproterozoic orogenic evolution from the other domains in the NCC.
-
Key words:
- metamorphism /
- P-T path /
- Hengshan complex /
- Wutai complex /
- tectonic evolution /
- Trans-North China orogen /
- petrology
-
图 1 华北中部造山带地质略图(a),五台-恒山地区地质图(b)
图 1a中变质地体缩写:CD.承德;DF.登封;FP.阜平;HA.怀安;HS.恒山;LL.吕梁;NH.冀北;TH.太华;WT.五台;XH.宣化;ZH.赞皇;ZT.中条.图a据Zhao et al.(2007)修改;图b据Kröner et al.(2006)和Li et al.(2008)修改
Fig. 1. A geological sketch of the Trans-North China orogen (a), a geological sketch of the Wutai-Hengshan region (b)
图 2 北恒山杂岩的野外及岩相学特征
a.大石峪基性高压麻粒岩布丁(GRN),围岩为混合岩化TTG片麻岩和二长花岗岩脉体(GRA);b.基性高压麻粒岩布丁中石榴石变斑晶发育白眼圈结构,从布丁内部向外部,变成斜长石假象;c.TTG片麻岩中基性麻粒岩小布丁(GRN)中石榴石全部变成斜长石假象;d.TTG片麻岩中发育大量深熔脉体,脉体受到明显变形;e.显微照片(长边约1.2 mm)表示基性麻粒岩中石榴石(gt)发育斜长石(pl)冠状体,原来的单斜辉石转变为单斜辉石(cpx)+斜长石和斜方辉石(opx)构成的后成合晶;f.显微照片(长边约1.5 mm)表示基性麻粒岩中粗大角闪石(hb)晶体包裹早期石榴石等
Fig. 2. Field and petrographic characteristics of the north Hengshan complex
图 3 北恒山杂岩基性麻粒岩石榴石成分环带(a)和变质作用P-T轨迹(b)
图引自张颖慧(2013);图a:Xalm, Xgr, Xpy和Xsp,高压麻粒岩样品H944(样品位置见图 1)中石榴石的铁铝榴石、钙铝榴石、镁铝榴石和锰铝榴石组分;C, M, R.核部、幔部和边部;图b:WBS.基性岩饱和水固相线,据Schmidt and Poli(1998);WGS.花岗岩饱和水固相线,据Johannes and Holtz(1996);C、M.依据石榴石核部到幔部成分确定的P-T条件;变质相界限魏春景等(2017):EC.榴辉岩相;GR.麻粒岩相;HAM.高角闪岩相;HGR.高压麻粒岩相;LAM.低角闪岩相
Fig. 3. arnet zoning (a) and metamorphic P-T path (b) for basic granulites from the north Hengshan complex
图 4 南恒山杂岩的岩相学特征
a.英云闪长质片麻岩;b.石榴斜长角闪岩,石榴石发育“白眼圈”结构;c.石榴石直闪石岩;d.直闪石岩中的红柱石(and)脉体,其中残留有蓝晶石(ky);e.变质基性岩墙侵入TTG片麻岩,明显切割围岩面理;f.显微照片显示半自形岩浆斜长石周围出现串珠状石榴石,构成“红眼圈”结构.矿物代号见图 2
Fig. 4. Petrographic characteristics of rocks in the south Hengshan complex
图 5 南恒山石榴斜长角闪岩和石榴直闪石岩变质作用P-T轨迹
图据Qian et al.(2015)、Qian and Wei(2016);WBS.基性岩饱和水固相线,据Schmidt and Poli(1998);WGS.花岗岩饱和水固相线,据Johannes and Holtz(1996);GOR.石榴直闪石岩;H1301、H1307和H1313为石榴斜长角闪岩(详见文本);变质相界限引自Oh and Liou(1998)、魏春景等(2017):BS.蓝片岩相;EAM.绿帘角闪岩相;EC.榴辉岩相;GR.麻粒岩相;HAM.高角闪岩相;HGR.高压麻粒岩相;LAM.低角闪岩相,红柱石(and)、夕线石(sill)和蓝晶石(ky)之间的相平衡关系是利用THERMOCALC程序计算的
Fig. 5. Metamorphic P-T paths for garnet orthoamphibole rocks and garnet amphibolites from the south Hengshan complex
图 7 金岗库组中的石榴云母片岩和石榴斜长角闪岩的特征与石榴石成分环带
a.石榴云母片岩;b.强变形石榴斜长角闪岩;c.石榴云母片岩(W109)中石榴石成分环带引自Trap et al.(2012);d.石榴斜长角闪岩(H1228)中石榴石成分环带引自Qian and Wei(2016)
Fig. 7. Field characteristics and garnet zoning of garnet mica schists and garnet amphibolites in the Jingangku Formation
图 8 金岗库组石榴斜长角闪岩和石榴云母片岩变质作用P-T轨迹
图中石榴云母片岩(W109)轨迹引自Qian et al.(2013);石榴斜长角闪岩(H1228)轨迹引自Qian and Wei(2016);南金岗库组石榴斜长角闪岩(Zhao99)轨迹引自Zhao et al.(1999).其他同图 5
Fig. 8. etamorphic P-T paths for garnet amphibolites and garnet mica schists in the Jingangku Formation
图 9 五台-恒山地区变质锆石年龄分布
为了对比,图中包括了阜平杂岩麻粒岩变质年龄;图据Qian et al.(2017)
Fig. 9. Age distribution of metamorphic zircons in the Wutai-Henghan region
图 10 五台-恒山地区古元古代两期变质作用P-T轨迹
图中第一期变质作用(图中粗实线和粗虚线)峰期条件为中压相系,年龄为~1.95 Ga;第二期变质作用(图中细实线和虚线)峰期条件为低压相系,年龄为~1.85 Ga.WT、SHS和NHS依次为五台岩群下部低角闪岩相、南恒山高角闪岩相和北恒山麻粒岩相岩石,ZJF为朱家坊韧性剪切带的P-T轨迹,OR表示南恒山直闪石岩中红柱石脉体的条件.其他同图 3和图 5
Fig. 10. P-T paths for the two phases of the Paleoproterozoic metamorphism in the Wutai-Hengshan region
-
[1] Bai, J., 1986.The Early Precambrian Geology of Wutaishan.Tianjin Science and Technology Press, Tianjin (in Chinese). [2] Chen, B., Liu, S.W., Wang, R., et al., 2006.Nd-Sr Isotopic Geochemistry of the Late Archean-Paleoproterozoic Granitoids in the Lüliang-Wutai Terrain, North China Craton, and Implications for Petrogenesis.Acta Geologica Sinica (English Edition), 80(6):834-843. https://doi.org/10.1111/j.1755-6724.2006.tb00306.x [3] Du, L.L., Yang, C.H., Guo, J.H., et al., 2010.The Age of the Base of the Paleoproterozoic Hutuo Group in the Wutai Mountains Area, North China Craton:SHRIMP Zircon U-Pb Dating of Basaltic Andesite.Chinese Science Bulletin, 55(3):246-254 (in Chinese). doi: 10.1007/s11434-009-0690-5 [4] Du, L.L., Yang, C.H., Ren, L.D., et al., 2009.Petrology, Geochemistry and Petrogenesis of the Metabasalts of the Hutuo Group, Wutai Mountain, Shanxi, China.Geological Bulletin of China, 28(7):867-876 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZQYD200907008.htm [5] Du, L.L., Yang, C.H., Wang, W., et al., 2011.The Re-Examination of the Age and Stratigraphic Subdivision of the Hutuo Group in the Wutai Mountains Area, North China Craton:Evidences from Geology and Zircon U-Pb Geochronology.Acta Petrologica Sinica, 27(4):1037-1055 (in Chinese with English abstract). http://www.oalib.com/paper/1475349 [6] Du, L.L., Yang, C.H., Wang, W., et al., 2013.Paleoproterozoic Rifting of the North China Craton:Geochemical and Zircon Hf Isotopic Evidence from the 2 137 Ma Huangjinshan A-Type Granite Porphyry in the Wutai Area.Journal of Asian Earth Sciences, 72:190-202. https://doi.org/10.1016/j.jseaes.2012.11.040 [7] Guiraud, M., Powell, R., Rebay, G., 2001.H2O in Metamorphism and Unexpected Behaviour in the Preservation of Metamorphic Mineral Assemblages.Journal of Metamorphic Geology, 19(4):445-454. https://doi.org/10.1046/j.0263-4929.2001.00320.x [8] Guo, J.H., Zhai, M.G., Li, Y.G., et al., 1999.Metamorphism, Pt Paths and Tectonic Significance of Garnet Amphibolite and Granulite from Hengshan, North China Craton.Scientia Geologica Sinica, 34(3):311-325 (in Chinese with English abstract). doi: 10.1007/BF03187002 [9] Jia, X.M., 2007.Study on the Mineralogy and Chronology of the Nianzigou Rutile Ore Deposit in Daixian County, Shanxi Province (Dissertation).China University of Geosciences, Beijing (in Chinese with English abstract). [10] Johannes, W., Holtz, F., 1996.Petrogenesis and Experimental Petrology of Granitic Rocks.Springer, Berlin. [11] Kelsey, D.E., Powell, R., 2011.Progress in Linking Accessory Mineral Growth and Breakdown to Major Mineral Evolution in Metamorphic Rocks:A Thermodynamic Approach in the Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-ZrO2 System.Journal of Metamorphic Geology, 29(1):151-166. https://doi.org/10.1111/j.1525-1314.2010.00910.x [12] Kröner, A., Wilde, S.A., Li, J.H., et al., 2005a.Age and Evolution of a Late Archean to Paleoproterozoic Upper to Lower Crustal Section in the Wutaishan/Hengshan/Fuping Terrain of Northern China.Journal of Asian Earth Sciences, 24(5):577-595. https://doi.org/10.1016/j.jseaes.2004.01.001 [13] Kröner, A., Wilde, S.A., O'Brien, P.J., et al., 2005b.Field Relationships, Geochemistry, Zircon Ages and Evolution of a Late Archean to Paleoproterozoic Lower Crustal Section in the Hengshan Terrain of Northern China.Acta Geologica Sinica (English Edition), 79(5):605-629. [14] Kröner, A., Wilde, S.A., Zhao, G.C., et al., 2006.Zircon Geochronology and Metamorphic Evolution of Mafic Dykes in the Hengshan Complex of Northern China:Evidence for Late Palaeoproterozoic Extension and Subsequent High-Pressure Metamorphism in the North China Craton.Precambrian Research, 146(1-2):45-67. https://doi.org/10.1016/j.precamres.2006.01.008 [15] Li, Q.G., Liu, S.W., Wang, Z.Q., et al., 2008.Contrasting Provenance of Late Archean Metasedimentary Rocks from the Wutai Complex, North China Craton:Detrital Zircon U-Pb, Whole-Rock Sm-Nd Isotopic, and Geochemical Data.International Journal of Earth Sciences, 97(3):443-458. https://doi.org/10.1007/s00531-007-0170-6 [16] Liu, C.H., Zhao, G.C., Sun, M., et al., 2011.U-Pb and Hf Isotopic Study of Detrital Zircons from the Hutuo Group in the Trans-North China Orogen and Tectonic Implications.Gondwana Research, 20(1):106-121. https://doi.org/10.1016/j.gr.2010.11.016 [17] Liu, S.W., Pan, Y.M., Xie, Q.L., et al., 2004.Archean Geodynamics in the Central Zone, North China Craton:Constraints from Geochemistry of Two Contrasting Series of Granitoids in the Fuping and Wutai Complexes.Precambrian Research, 130(1-4):229-249. https://doi.org/10.1016/j.precamres.2003.12.001 [18] Liu, S.W., Zhao, G.C., Wilde, S.A., et al., 2006.Th-U-Pb Monazite Geochronology of the Lüliang and Wutai Complexes:Constraints on the Tectonothermal Evolution of the Trans-North China Orogen.Precambrian Research, 148(3-4):205-225. https://doi.org/10.1016/j.precamres.2006.04.003 [19] Lu, S.N., Li H.K., Tian, Y.Q., 2003.Preliminary Study of Giant-Crystal Garnet-Gedrite Rocks in Hengshan Mountain, Shanxi Province.Geological Survey and Research, 26(1):15-20, 26 (in Chinese with English abstract). https://www.deepdyve.com/lp/elsevier/metamorphic-evolution-and-zircon-ages-of-garnet-orthoamphibole-rocks-mUm1BC7Occ [20] Miao, P.S., Zhang, Z.F., Zhang, J.Z., et al., 1999.Paleoproterozoic Stratigraphic Sequence in the Wutai Mountain Area.Regional Geology of China, 18(4):405-413 (in Chinese with English abstract). doi: 10.1007/s11434-009-0615-3 [21] Miyashiro, A., 1994.Metamorphic Petrology.UCL Press Limited, London. [22] O'Brien, P.J., Walte, N., Li, J.H., 2005.The Petrology of Two Distinct Granulite Types in the Hengshan Mts, China, and Tectonic Implications.Journal of Asian Earth Sciences, 24(5):615-627. https://doi.org/10.1016/j.jseaes.2004.01.002 [23] Oh, C.W., Liou, J.G., 1998.A Petrogenetic Grid for Eclogite and Related Facies under High-Pressure Metamorphism.The Island Arc, 7(1-2):36-51. https://doi.org/10.1046/j.1440-1738.1998.00180.x [24] Pang, E.C., Xu, Y.J., Shi, G.H., et al., 2010.Geochemistry and Chronology of Hongtang Ore-Bearing Rocks in the Daixian Rutile Deposit, Shanxi Province.Acta Petrologica et Mineralogica, 29(5):497-506 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW201005005.htm [25] Peng, P., Guo, J.H., Zhai, M.G., et al., 2012.Genesis of the Hengling Magmatic Belt in the North China Craton:Implications for Paleoproterozoic Tectonics.Lithos, 148(3):27-44. https://doi.org/10.1016/j.lithos.2012.05.021 [26] Peng, P., Zhai, M., Zhang, H., et al., 2005.Geochronological Constraints on the Paleoproterozoic Evolution of the North China Craton:SHRIMP Zircon Ages of Different Types of Mafic Dikes.International Geology Review, 47(5):492-508. https://doi.org/10.2747/0020-6814.47.5.492 [27] Peng, P., Wang, X.P., Windley, B.F., et al., 2014.Spatial Distribution of~1 950-1 800 Ma Metamorphic Events in the North China Craton:Implications for Tectonic Subdivision of the Craton.Lithos, 202-203:250-266. https://doi.org/10.1016/j.lithos.2014.05.033 [28] Qian, J.H., Wei, C.J., 2016.P-T-t Evolution of Garnet Amphibolites in the Wutai-Hengshan Area, North China Craton:Insights from Phase Equilibria and Geochronology.Journal of Metamorphic Geology, 34(5):423-446. https://doi.org/10.1111/jmg.12186 [29] Qian, J.H., Wei, C.J., Clarke, G.L., et al., 2015.Metamorphic Evolution and Zircon Ages of Garnet-Orthoamphibole Rocks in Southern Hengshan, North China Craton:Insights into the Regional Paleoproterozoic P-T-t History.Precambrian Research, 256:223-240. https://doi.org/10.1016/j.precamres.2014.11.013 [30] Qian, J.H., Wei, C.J., Yin, C.Q., 2017.Paleoproterozoic P-T-t Evolution in the Hengshan-Wutai-Fuping Area, North China Craton:Evidence from Petrological and Geochronological Data.Precambrian Research, (in Press). http://www.sciencedirect.com/science/article/pii/S0301926816305186 [31] Qian, J.H., Wei, C.J., Zhou, X.W., et al., 2012.Genesis of the Megacryst Orthoamphibole Rock from Hengshan Mts, Shanxi Province:Evidence from Geochemistry and Sm-Nd Isotopic Data.Acta Petrologica Sinica, 28(9):2819-2830 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201209013.htm [32] Qian, J.H., Wei, C.J., Zhou, X.W., et al., 2013.Metamorphic P-T Paths and New Zircon U-Pb Age Data for Garnet-Mica Schist from the Wutai Group, North China Craton.Precambrian Research, 233:282-296. https://doi.org/10.1016/j.precamres.2013.05.012 [33] Roberts, M.P., Finger, F., 1997.Do U-Pb Zircon Ages from Granulites Reflect Peak Metamorphic Conditions? Geology, 25(4):319-322.https://doi.org/10.1130/0091-7613(1997)025<0319:dupzaf>2.3.co;2 doi: 10.1130/0091-7613(1997)025<0319:dupzaf>2.3.co;2 [34] Rubatto, D., 2002.Zircon Trace Element Geochemistry:Partitioning with Garnet and the Link between U-Pb Ages and Metamorphism.Chemical Geology, 184(1-2):123-138. https://doi.org/10.1016/s0009-2541(01)00355-2 [35] Schmidt, M.W., Poli, S., 1998.Experimentally Based Water Budgets for Dehydrating Slabs and Consequences for Arc Magma Generation.Earth and Planetary Science Letters, 163(1-4):361-379. https://doi.org/10.1016/s0012-821x(98)00142-3 [36] Shi, G.H., Li, X.H., Li, Q.L., et al., 2012.Ion Microprobe U-Pb Age and Zr-in-Rutile Thermometry of Rutiles from the Daixian Rutile Deposit in the Hengshan Mountains, Shanxi Province, China.Economic Geology, 107(3):525-535. https://doi.org/10.2113/econgeo.107.3.525 [37] Thompson, A.B., England, P.C., 1984.Pressure-Temperature-Time Paths of Regional Metamorphism 2.Their Inference and Interpretation Using Mineral Assemblages in Metamorphic Rocks.Journal of Petrology, 25(4):929-955. doi: 10.1093/petrology/25.4.929 [38] Tian, Y.Q., 1991.Geology and Gold Mineralization of Wutai-Hengshan Greenstone Belt.Shanxi Science and Technology Press, Taiyuan (in Chinese). [39] Trap, P., Faure, M., Lin, W., et al., 2007.Late Paleoproterozoic (1 900-1 800 Ma) Nappe Stacking and Polyphase Deformation in the Hengshan-Wutaishan Area:Implications for the Understanding of the Trans-North-China Belt, North China Craton.Precambrian Research, 156(1-2):85-106. https://doi.org/10.1016/j.precamres.2007.03.001 [40] Trap, P., Faure, M., Lin, W., et al., 2009.The Lüliang Massif:A Key Area for the Understanding of the Palaeoproterozoic Trans-North China Belt, North China Craton.Geological Society, London, Special Publications, 323(1):99-125. https://doi.org/10.1144/sp323.5 [41] Trap, P., Faure, M., Lin, W., et al., 2012.Paleoproterozoic Tectonic Evolution of the Trans-North China Orogen:Toward a Comprehensive Model.Precambrian Research, 222-223:191-211. https://doi.org/10.1016/j.precamres.2011.09.008 [42] Wan, Y.S., Miao, P.S., Liu, D.Y., et al., 2010.Formation Ages and Source Regions of the Palaeoproterozoic Gaofan, Hutuo and Dongjiao Groups in the Wutai and Dongjiao Areas of the North China Craton from SHRIMP U-Pb Dating of Detrital Zircons:Resolution of Debates over Their Stratigraphic Relationships.Chinese Science Bulletin, 55(13):1278-1284. https://doi.org/10.1007/s11434-009-0615-3 [43] Wang, K.Y., Hao, J., Wilde, S.A., et al., 2000.Reconsideration of Some Key Geological Problems of Late Archean-Early Proterozoic in the Wutaishan-Hengshan Area:Constraints from SHRIMP U-Pb Zircon Data.Scientia Geologica Sinica, 35(2):175-184 (in Chinese with English abstract). doi: 10.1360/03yd0265 [44] Wang, K.Y., Zhou, S.P., Hao, J., 1996.The Metamorphism and Significance of Kyanite-Bearing Assemblages from the Original Jingangku Formation of Wutaishan Area.Acta Petrologica Sinica, 12(1):88-97 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB601.007.htm [45] Wang, Z.H., Wilde, S.A., Wan, J.L., 2010.Tectonic Setting and Significance of 2.3-2.1 Ga Magmatic Events in the Trans-North China Orogen:New Constraints from the Yanmenguan Mafic-Ultramafic Intrusion in the Hengshan-Wutai-Fuping Area.Precambrian Research, 178(1-4):27-42. https://doi.org/10.1016/j.precamres.2010.01.005 [46] Wang, Z.H., Wilde, S.A., Wang, K.Y., et al., 2004.A MORB-Arc Basalt-Adakite Association in the 2.5 Ga Wutai Greenstone Belt:Late Archean Magmatism and Crustal Growth in the North China Craton.Precambrian Research, 131(3-4):323-343. https://doi.org/10.1016/j.precamres.2003.12.014 [47] Watson, E.B., Harrison, T.M., 1984.Accessory Minerals and the Geochemical Evolution of Crustal Magmatic Systems:A Summary and Prospectus of Experimental Approaches.Physics of the Earth and Planetary Interiors, 35(1-3):19-30. https://doi.org/10.1016/0031-9201(84)90031-1 [48] Wei, C.J., 2016.Granulite Facies Metamorphism and Petrogenesis of Granite (Ⅱ):Quantitative Modeling of the HT-UHT Phase Equilibria for Metapelites and the Petrogenesis of S-Type Granite.Acta Petrologica Sinica, 32(6):1625-1643 (in Chinese with English abstract). doi: 10.1007/s11430-016-9029-7 [49] Wei, C.J., Guan, X., Dong, J., 2017.HT-UHT Metamorphism of Metabasites and the Petrogenesis of TTGs.Acta Petrologica Sinica, 33(5):1381-1404 (in Chinese with English abstract). http://www.ysxb.ac.cn/ysxb/ch/reader/view_news.aspx?id=20170926060627381 [50] Wei, C.J., Qian, J.H., Zhou, X.W., 2014.Paleoproterozoic Crustal Evolution of the Hengshan-Wutai-Fuping Region, North China Craton.Geoscience Fronteris, 5(4):485-497. https://doi.org/10.1016/j.gsf.2014.02.008 [51] Wei, C.J., Zhang, J.S., 2007.H2O Behaviour in Subsolidus Metamorphic Processes.Geological Journal of China Universities, 13(3):507-514 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-GXDX200703014.htm [52] White, R.W., Powell, R., Holland, T.J.B., 2001.Calculation of Partial Melting Equilibria in the System Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O (NCKFMASH).Journal of Metamorphic Geology, 19(2):139-153. https://doi.org/10.1046/j.0263-4929.2000.00303.x [53] Wilde, S.A., Cawood, P., Wang, K.Y., 1997.The Relationship and Timing of Granitoid Evolution with Respect to Felsic Volcanism in the Wutai Complex, North China Craton.Proceedings of the 30th IGC, Beijing. [54] Wilde, S.A., Cawood, P.A., Wang, K.Y., et al., 2005.Granitoid Evolution in the Late Archean Wutai Complex, North China Craton.Journal of Asian Earth Sciences, 24(5):597-613. https://doi.org/10.1016/j.jseaes.2003.11.006 [55] Wilde, S.A., Cawood, P.A., Wang, K.Y., et al., 2004a.Determining Precambrian Crustal Evolution in China:A Case-Study from Wutaishan, Shanxi Province, Demonstrating the Application of Precise SHRIMP U-Pb Geochronology.Geological Society, London, Special Publications, 226(1):5-25. https://doi.org/10.1144/gsl.sp.2004.226.01.02 [56] Wilde, S.A., Zhao, G.C., Wang, K.Y., et al., 2004b.First SHRIMP Zircon U-Pb Ages for Hutuo Group in Wutaishan:Further Evidence for Palaeoproterozoic Amalgamation of North China Craton.Chinese Science Bulletin, 49(1):83-90. https://doi.org/10.1007/bf02901747 [57] Xu, S., K., Deng, X.L., Liu, L.S., et al., 2008.Geochemical Characteristics of Nianzigou Rutile Deposit in Daixian County, Shanxi Province.Mineral Deposits, 27(4):503-519 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ200804007.htm [58] Xu, S.K., Liu, L.S., Yun, L.T., 2002.Metamorphic Process of Nianzigou Rutile Deposit and Its Relation to Rutile Miner.Geology of Chemical Minerals, 24 (1):48-56 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HGKC201003003.htm [59] Zhai, M.G., 2009.Two Kinds of Granulites (HT-HP and HT-UHT) in North China Craton:Their Genetic Relation and Geotectonic Implications.Acta Petrologica Sinica, 25(8):1753-1771 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200908005.htm [60] Zhai, M.G., 2011.Cratonization and the Ancient North China Continent:A Summary and Review.Science China Earth Sciences, 54(8):1110-1120. https://doi.org/10.1007/s11430-011-4250-x [61] Zhai, M.G., Bian, A.G., Zhao, T.P., 2000.The Amalgamation of the Supercontinent of North China Craton at the End of Neo-Archaean and Its Breakup during Late Palaeoproterozoic and Meso-Proterozoic.Science China Earth Sciences, 43(S1):219-232. https://doi.org/10.1007/bf02911947 [62] Zhai, M.G., Guo, J.H., Liu, W.J., 2005.Neoarchean to Paleoproterozoic Continental Evolution and Tectonic History of the North China Craton:A Review.Journal of Asian Earth Sciences, 24(5):547-561. https://doi.org/10.1016/j.jseaes.2004.01.018 [63] Zhai, M.G., Santosh, M., 2011.The Early Precambrian Odyssey of the North China Craton:A Synoptic Overview.Gondwana Research, 20(1):6-25. https://doi.org/10.1016/j.gr.2011.02.005 [64] Zhang, J., Zhao, G.C., Li, S.Z., et al., 2007.Deformation History of the Hengshan Complex:Implications for the Tectonic Evolution of the Trans-North China Orogen.Journal of Structural Geology, 29(6):933-949. https://doi.org/10.1016/j.jsg.2007.02.013 [65] Zhang, R.Y., Liou, J.G., 1997.Partial Transformation of Gabbro to Coesite-Bearing Eclogite from Yangkou, the Sulu Terrane, Eastern China.Journal of Metamorphic Geology, 15(2):183-202. https://doi.org/10.1111/j.1525-1314.1997.00012.x [66] Zhang, Y.H., 2013.Phase Equilibria Modelling for Metamorphic Evolution of High-Pressure Granulites and Anatexis of Gneisses in the Hengshan Complex, Shanxi Province (Dissertation).Peking University, Beijing (in Chinese with English abstract). [67] Zhang, Y.H., Wei, C.J., Tian, W., et al., 2013.Reinterpretation of Metamorphic Age of the Hengshan Complex, North China Craton.Chinese Science Bulletin, 58(34):4300-4307. https://doi.org/10.1007/s11434-013-5993-x [68] Zhao, G.C., Cawood, P.A., Li, S.Z., et al., 2012.Amalgamation of the North China Craton:Key Issues and Discussion.Precambrian Research, 222-223:55-76. https://doi.org/10.1016/j.precamres.2012.09.016 [69] Zhao, G.C., Cawood, P.A., Lu, L.Z., 1999.Petrology and P-T History of the Wutai Amphibolites:Implications for Tectonic Evolution of the Wutai Complex, China.Precambrian Research, 93(2-3):181-199. https://doi.org/10.1016/s0301-9268(98)00090-4 [70] Zhao, G.C., Kröner, A., Wilde, S.A., et al., 2007.Lithotectonic Elements and Geological Events in the Hengshan-Wutai-Fuping Belt:A Synthesis and Implications for the Evolution of the Trans-North China Orogen.Geological Magazine, 144 (5):753-775. https://doi.org/10.1017/s0016756807003561 [71] Zhao, G.C., Sun, M., Wilde, S.A., et al., 2005.Late Archean to Paleoproterozoic Evolution of the North China Craton:Key Issues Revisited.Precambrian Research, 136(2):177-202. https://doi.org/10.1016/j.precamres.2004.10.002 [72] Zhao, G.C., Wilde, S.A., Cawood, P.A., et al., 2001.Archean Blocks and Their Boundaries in the North China Craton:Lithological, Geochemical, Structural and P-T Path Constraints and Tectonic Evolution.Precambrian Research, 107(1-2):45-73. https://doi.org/10.1016/s0301-9268(00)00154-6 [73] Zhao, R.F., Guo, J.H., Peng, P., et al., 2011.2.1 Ga Crustal Remelting Event in Hengshan Complex:Evidence from Zircon U-Pb Dating and Hf-Nd Isotopic Study on Potassic Granites.Acta Petrologica Sinica, 27(6):1607-1623 (in Chinese with English abstract). doi: 10.1007/s11434-012-5315-8 [74] Zhou, L.G., Zhai, M.G., Lu, J.S., et al., 2017.Paleoproterozoic Metamorphism of High-Grade Granulite Facies Rocks in the North China Craton:Study Advances, Questions and New Issues.Precambrian Research, 303:520-547. https://doi.org/10.1016/j.precamres.2017.06.025 [75] Zhou, X.W., Zhao, G.C., Geng, Y.S., 2010.Helanshan High Pressure Pelitic Granulite:Petrologic Evidence for Collision Event in the Western Block of the North China Craton.Acta Petrologica Sinica, 26(7):2113-2121 (in Chinese with English abstract). http://www.oalib.com/paper/1475792 [76] 白瑾, 1986.五台山早前寒武纪地质.天津:天津科学技术出版社. [77] 杜利林, 杨崇辉, 郭敬辉, 等, 2010.五台地区滹沱群底界时代:玄武安山岩SHRIMP锆石U-Pb定年.科学通报, 55(3):246-254. http://www.oalib.com/paper/4152179 [78] 杜利林, 杨崇辉, 任留东, 等, 2009.山西五台山区滹沱群变质玄武岩岩石学、地球化学特征及其成因意义.地质通报, 28(7):867-876. http://www.oalib.com/paper/4152179 [79] 杜利林, 杨崇辉, 王伟, 等, 2011.五台地区滹沱群时代与地层划分新认识:地质学与锆石年代学证据.岩石学报, 27(4):1037-1055. http://www.doc88.com/p-7137673371198.html [80] 郭敬辉, 翟明国, 李永刚, 等, 1999.恒山西段石榴石角闪岩和麻粒岩的变质作用、PT轨迹及构造意义.地质科学, 34(3):311-325. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200302005.htm [81] 贾琇明, 2007. 山西代县碾子沟金红石矿床矿物学及年代学研究(博士学位论文). 北京: 中国地质大学. [82] 陆松年, 李怀坤, 田永清, 2003.恒山雁门关巨晶石榴子石直闪石岩的初步研究.地质调查与研究, 26(1):15-20, 26. doi: 10.3969/j.issn.1672-4135.2003.01.004 [83] 苗培森, 张振福, 张建中, 等, 1999.五台山区早元古代地层层序探讨.中国区域地质, 18(4):405-413. doi: 10.1360/zd-2013-43-10-1583 [84] 庞尔成, 徐永婧, 施光海, 等, 2010.山西代县金红石矿床洪塘矿区含矿岩石的地球化学及年代学.岩石矿物学杂志, 29(5):497-506. http://www.cnki.com.cn/Article/CJFDTOTAL-JXTW201334016.htm [85] 钱加慧, 魏春景, 周喜文, 等, 2012.山西恒山巨晶状直闪岩的成因:来自地球化学和Sm-Nd同位素的证据, 岩石学报, 28(9):2819-2830. https://www.wenkuxiazai.com/doc/d1b5b7f5f705cc175527096b.html [86] 田永清, 1991.五台山-恒山绿岩带地质及金的成矿作用.太原:山西科学技术出版社. [87] 王凯怡, 郝杰, Wilde, S.A., 等, 2000.山西五台山-恒山地区晚太古-早元古代若干关键地质问题的再认识:单颗粒锆石离子探针质谱年龄提出的地质制约.地质科学, 35(2):175-184. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_dzkx200002006 [88] 王凯怡, 周少平, 郝杰, 1996.五台山地区原金刚库组中含蓝晶石组合的变质作用及其意义.岩石学报, 12(1):88-97. https://mall.cnki.net/qikan-QHWJ200301003.html [89] 魏春景, 2016.麻粒岩相变质作用与花岗岩成因-Ⅱ:变质泥质岩高温-超高温变质相平衡与S型花岗岩成因的定量模拟, 岩石学报, 32(6):1625-1643. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201606004.htm [90] 魏春景, 关晓, 董杰, 2017.基性岩高温-超高温变质作用与TTG质岩成因.岩石学报, 33(5):1381-1404. https://mall.cnki.net/qikan-YSXB201705002.html [91] 魏春景, 张景森, 2007.固相线以下变质过程中水的行为, 高校地质学报, 13(3):507-514. doi: 10.3969/j.issn.1006-7493.2007.03.019 [92] 徐少康, 邓小林, 刘力生, 等, 2008.山西代县碾子沟金红石矿床地球化学特征.矿床地质, 27(4):503-519. http://www.cnki.com.cn/Article/CJFDTOTAL-HGKC603.013.htm [93] 徐少康, 刘力生, 云连涛, 2002.碾子沟金红石矿床变质作用特征及其与成矿的关系.化工矿产地质, 24(1):48-56. https://www.wenkuxiazai.com/doc/eb9c0a1dff00bed5b9f31d4b.html [94] 翟明国, 2009.华北克拉通两类早前寒武纪麻粒岩(HT-HP和HT-UHT)及其相关问题.岩石学报, 25(8):1753-1771. doi: 10.1360/csb2014-59-7-593 [95] 张颖慧, 2013. 山西恒山高压麻粒岩变质演化与片麻岩深熔作用的相平衡研究(博士学位论文). 北京: 北京大学. [96] 赵瑞幅, 郭敬辉, 彭澎, 等, 2011.恒山地区古元古代2.1 Ga地壳重熔事件:钾质花岗岩锆石U-Pb定年及Hf-Nd同位素研究.岩石学报, 27(6):1607-1623. http://www.cnki.com.cn/Article/CJFDTotal-JDXK201509004.htm [97] 周喜文, 赵国春, 耿元生, 2010.贺兰山高压泥质麻粒岩-华北克拉通西部陆块拼合的岩石学证据, 岩石学报, 26(7):2113-2121. http://www.oalib.com/paper/1475792