Thermodynamic Impact on Deepwater Sandstone Diagenetic Evolution of Zhuhai Formation in Baiyun Sag, Pearl River Mouth Basin
-
摘要: 珠江口盆地白云凹陷位于中国南海北部,是目前我国深水油气勘探研究的重要区域.盆地现今大地热流值为24.2~121.0 mW/m2,单井现今地温梯度(Gra)最高可达6.64 ℃/100 m,具"热盆"属性.白云凹陷裂后沉降阶段,特别是白云运动(23.8 Ma)发生之后,盆地由断裂控盆转变为断裂、热作用共同控盆,热作用及热动力条件成为控制研究区储层成岩演化过程的重要因素,珠海组地层的镜质体反射率值、砂岩中次生流体包裹体均一温度、热液成因自生矿物等热流背景及岩石学记录为这一观点提供了有力证据.通过铸体薄片显微镜下观察与定量统计、电镜扫描观察、X-射线衍射分析等,发现白云凹陷北部中-低地温梯度(LGR,Gra ≤ 4.5 ℃/100 m)和南部高地温梯度(HGR,Gra>4.5 ℃/100 m)两个地区珠海组砂岩的成岩作用特征、成岩演化过程存在以下差异:(1)中-低地温梯度地区珠海组砂岩的压实作用主要是静岩压实作用;高地温梯度地区珠海组砂岩的原生孔隙受静岩压实作用和热压实作用的共同控制,压实减孔速率高,等孔隙度埋深显著变浅;(2)地层升温速率的增大加快了储层中粘土矿物转化的速率,高地温梯度地区高岭石消失的埋深界限较中-低地温梯度地区浅,I/S(伊利石/蒙皂石混层)有序化进程较中-低地温梯度地区有所加快;(3)中-低地温梯度地区珠海组砂岩成岩演化过程属正常有序演变,高地温梯度地区受构造热事件的影响明显,深部流体参与了高地温梯度地区珠海组砂岩的成岩演化过程,地层孔隙水物质交换过程复杂,成岩演化进程加快,改变了碳酸盐矿物溶解-沉淀热平衡状态,各成岩作用过程活跃并出现一些典型的热液成因自生矿物组合.Abstract: Baiyun sag, located in Pearl River Mouth basin, South China Sea, is regarded as the major region for oil-gas research and exploration in deepwater area in China. The current heat flow of Pearl River Mouth basin is from 24.2 to 121.0 mW/m2, and the maximum geothermal gradient of single well is measured as 6.64℃/100 m, which proves that the basin is hot. The governing factor of the basin evolution was transformed from fault to fault-thermal collectively during the post-breakup subsidence stage, especially after the generation of the Baiyun movement (23.8 Ma). Since then, the thermal effect is known as one of the crucial elements in controlling the diagenetic evolution of the sedimentary strata in Baiyun sag, which is demonstrated by some petrological and heating records in sedimentary layer, such as the vitrinite reflectance, the homogenization temperatures of secondary fluid inclusions in sandstone and the authigenic minerals of hydrothermal genesis. Baiyun sag can be divided into low geothermal gradient region (LGR, Gra ≤ 4.5℃/100 m) and high geothermal gradient region(HGR, Gra>4.5℃/100 m). Analytical results of observation of casting thin sections, electron microscope scanning, and X-ray diffraction analysis, show the differences between these two regions in diagenetic processes of sandstone in Zhuhai Formation. (1) The compaction of sandstone in LGR is controlled mainly by lithostatic effect, while in HGR it is controlled by both thermal and lithostatic effect so that the isoporosity limit buried depth is more shallow than that in LGR. (2) The increase of heating rate accelerates the transformation progress of clay minerals in stratum, the depth that indicates the vanishment of the kaolinite in HGR is more shallow than that in LGR, and the ordering process of I/S (illite/smectite mixed layer) in HGR is more mature than that in LGR. (3) Deep-sourced fluid is involved in the diagenetic processes of sandstone in Zhuhai Formation in HGR, which is influenced by the tectonic heating event obviously, so that the thermal equilibrium of dissolution-precipitation of carbonate minerals is changed. The exchange process in interstitial water of the stratum is complex and active, and the authigenic hydrothermal minerals are produced in this process.
-
图 2 白云凹陷典型单井镜质体反射率(Ro)-埋藏深度关系图
a.Y33-1,Gra=3.56 ℃/100 m;b.P11-1,Gra=4.00 ℃/100 m;c.H21-1,Gra=5.10 ℃/100 m;d.W3-1,Gra=5.30 ℃/100 m;T80:不整合界面,对应36 Ma珠琼运动二幕;T70:不整合界面,对应30.0 Ma南海运动;T60:不整合界面,对应23.8 Ma白云运动;T35:不整合界面,对应13.8 Ma最大海侵期;T32:不整合界面,对应10.5 Ma东沙运动
Fig. 2. Relationship between the vitrinite reflectance(Ro)and burial depth of typical wells in Baiyun sag
图 7 白云凹陷珠海组砂岩成岩作用镜下特征
a.骨架矿物颗粒间以线-凹凸接触为主,铁白云石(Ank)充填粒间孔隙,单偏光200×,Y35-2,Gra=3.93 ℃/100 m;b.方解石(Cal)连晶式胶结交代长石,单偏光100×,Y20-1,Gra=3.54 ℃/100 m;c.高岭石(Kln)充填粒间溶蚀扩大孔隙,结晶度较低,单偏光200×,P11-1,Gra=4.00 ℃/100 m;d.高岭石(Kln)沉淀于长石铸模孔内,单偏光200×,P11-1,Gra=4.00 ℃/100 m;e.粒表丝状伊利石(I)和叶片状绿泥石(Chl),电镜扫描3 870×,H16-2,Gra=3.68 ℃/100 m;f.铁白云石(Ak)、钾长石(Or)及片状伊/蒙混层(I/S)发生溶蚀,电镜扫描2 000×,P11-1,Gra=4.00 ℃/100 m;g.骨架矿物颗粒间线-凹凸接触,石英次生加大边发育,单偏光50×,W3-2,Gra=4.72 ℃/100 m;h.方解石(Cal)充填长石粒内溶孔、交代长石,单偏光200×,W3-2,Gra=4.72 ℃/100 m;i.高岭石(Kln)充填长石粒内溶孔及粒间溶蚀扩大孔,结晶度较高,单偏光200×,W3-2,Gra=4.72 ℃/100 m;j.自生高岭石(Kln)充填于长石铸模孔内,形成于长石溶蚀之后,单偏光100×,W3-2,Gra=4.72 ℃/100 m;k.石膏(G)、片状伊/蒙混层(I/S)充填粒间孔隙,电镜扫描6 000×,W6-1,Gra=6.67 ℃/100 m;l.铁方解石胶结(Cal)孔隙式胶结,并发生溶蚀,单偏光100×,W21-1,Gra=6.64 ℃/100 m
Fig. 7. Diagenetic characteristics of sandstone in Zhuhai Formation in Baiyun sag
表 1 白云凹陷珠海组砂岩中流体包裹体均一温度数据统计
Table 1. Data statistics of homogenization temperatures of fluid inclusions in sandstone in Zhuhai Formation, Baiyun sag
岩石类型 宿主矿物及产状 均一温度(℃) 测点数(个) 范围 平均值 砂岩 切穿石英颗粒愈合裂隙 89.7~192.0 157.4 33 石英次生加大边 142.0~215.0 187.9 3 石英颗粒表面微裂隙 87.9~201.3 138.0 78 -
[1] Chen, G.J., Lü, C.F., Wang, Q., et al., 2010.Characteristics of Pore Evolution and Its Controlling Factors of Baiyun Sag in Deepwater Area of Pearl River Mouth Basin.Acta Petrolei Sinica, 31(4):566-572(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201004008 [2] Chen, H.H., Chen, C.M., Pang, X., et al., 2006.Natural Gas Sources, Migration and Accumulation in the Shallow Water Area of the Panyu Lower Uplift:An Insight into the Deep Water Prospects of the Pearl River Mouth Basin, South China Sea.Journal of Geochemical Exploration, 89(1-3):47-52. https://doi.org/10.1016/j.gexplo.2005.11.016 [3] Chen, W.T., Du, J.Y., Long, G.S., et al., 2012.Analysis on Controlling Factors of Marine Sequence Stratigraphy Evolution in Pearl River Mouth Basin.Acta Sedimentologica Sinica, 30(1):73-83(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201200135775 [4] Fu, P.E., Li, X.Y., Tang, Q.Y., et al., 2013.Hydrocarbon Geochemistry from Kerogen Pyrolysis in Panyu Low Massif and North Slope of Baiyun Sag in Pearl River Mouth Basin.Acta Sedimentologica Sinica, 31(1):176-183(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjxb201301019 [5] Gao, G., Gang, W.Z., Zhang, G.C., et al., 2015.Physical Simulation of Gas Reservoir Formation in the Liwan 3-1 Deep-Water Gas Field in the Baiyun Sag, Pearl River Mouth Basin.Natural Gas Industry B, 2(1):77-87. https://doi.org/10.1016/j.ngib.2015.02.006 [6] Gao, Y.Q., Liu, L., Qu, X.Y., 2007.Mechanism of CO2-Sandstone Interaction and Formative Authigenic Mineral Assemblage.Xinjiang Petroleum Geology, 28(5):579-584(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xjsydz200705015 [7] Guo, Z.F., Liu, Z., Wang, W., et al., 2011.Characteristics of Geotemperature-Pressure Systems and Their Implications for Petroleum Geology at Baiyun Depression, Deep-Water Area of Northern South China Sea.Earth Science, 36(5):831-836(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201105007 [8] He, D., Hou, D., Zhang, P., et al., 2016.Reservoir Characteristics in the LW3-1 Structure in the Deepwater Area of the Baiyun Sag, South China Sea.Arabian Journal of Geosciences, 9(4):1-12. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=85312974b0269e55f6dcbfcb217108b7 [9] Hoffman, J., Hower, J., 1979.Clay Mineral Assemblages as Low Grade Metamorphic Geothermometers:Application to the Thrust Faulted Disturbed Belt of Montana, U.S.A..Aspects of Diagenesis, 26:55-79. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.561.5677 [10] Huang, K.K., Huang, S.J., Tong, H.P., et al., 2009.Thermodynamic Simulation of Carbonate-Carbon Dioxide Equilibrium System during Diagenetic Processes.Acta Petrologica Sinica, 25(10):2417-2424(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200910011 [11] Huang, S.J., Huang, K.K., Feng, W.L., et al., 2009.Mass Exchange among Feldspar, Kaolinite and Illite and Their Influences on Secondary Porosity Formation in Clastic Diagenesis-A Case Study on the Upper Paleozoic, Ordos Basin and Xujiahe Formation, Western Sichuan Depression.Geochimica, 38(5):498-506(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX200905010.htm [12] Li, R.X., Duan, L.Z., Chen, B.Y., et al., 2012.Albitization and Hydrothermal Diagenesis of Yanchang Oil Sandstone Reservoir, Ordos Basin.Acta Petrologica et Mineralogica, 31(2):173-180(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yskwxzz201202006 [13] Liao, J.H., Xu, Q., Chen, Y., et al., 2016.Sedimentary Characteristics and Genesis of the Deepwater Channel System in Zhujiang Formation of Baiyun-Liwan Sag.Earth Science, 41(6):1041-1054(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201606010 [14] Lu, H.Z., 2004.Fluid Inclusion.Science Press, Beijing (in Chinese). [15] Luo, J.L., Liu, X.H., Lin, T., et al., 2006.Impact of Diagenesis and Hydrocarbon Emplacement on Sandstone Reservoir Quality of the Yanchang Formation (Upper Triassic) in the Ordos Basin.Acta Geologica Sinica, 80(5):664-673(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200605005 [16] Luo, J.L., Wang, D.F., Hu, H.Y., et al., 2015.Comprehensive Research on Diagenesis of Sandstone Reservoir in Baiyun Sag (Internal Report)(in Chinese). [17] Ma, B.J., Wu, S.G., Sun, Q.L., et al., 2015.The Late Cenozoic Deep-Water Channel System in the Baiyun Sag, Pearl River Mouth Basin:Development and Tectonic Effects.Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 122:226-239. https://doi.org/10.1016/j.dsr2.2015.06.015 [18] Meng, Y.L., Wu, L., Sun, H.B., et al., 2015.Dynamics of Diagenesis and Prediction of Diagenetic Facies under Abnormally Low Pressure in the Southern Liaohe West Sag.Earth Science Frontiers, 22(1):206-214(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201501017 [19] Mi, L.J., Yuan, Y.S., Zhang, G.C., et al., 2009.Characteristics and Genesis of Geothermal Field in Deep-Water Area of the Northern South China Sea.Acta Petrolei Sinica, 30(1):27-32(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB200901006.htm [20] Morley, C.K., 2016.Major Unconformities/Termination of Extension Events and Associated Surfaces in the South China Seas:Review and Implications for Tectonic Development.Journal of Asian Earth Sciences, 120:62-86. https://doi.org/10.1016/j.jseaes.2016.01.013 [21] Nissen, S.S., Hayes, D.E., Yao, B.C., et al., 1995.Gravity, Heat Flow, and Seismic Constraints on the Processes of Crustal Extension:Northern Margin of the South China Sea.Journal of Geophysical Research Atmospheres, 100(B11):22447-22483. https://doi.org/10.1029/95JB01868 [22] Pang, X., Chen, C.M., Shao, L., et al., 2007.Baiyun Movement, a Great Tectonic Event on the Oligocence-Miocene Boundary in the Northern South China Sea and Its Implications.Geological Review, 53(2):145-151(in Chinese with English abstract). doi: 10.1080/08120099.2015.1034774 [23] Shi, X.B., Burov, E., Leroy, S., et al., 2005.Intrusion and Its Implication for Subsidence:A Case from the Baiyun Sag, on the Northern Margin of the South China Sea.Tectonophysics, 407(1-2):117-134. https://doi.org/10.1016/j.tecto.2005.07.004 [24] Shi, X.B., Qiu, X.L., Xia, K.Y., et al., 2003.Characteristics of Surface Heat Flow in the South China Sea.Journal of Asian Earth Sciences, 22(3):265-277. https://doi.org/10.1016/S1367-9120(03)00059-2 [25] Shi, X.B., Wang, Z.F., Jiang, H.Y., et al., 2015.Vertical Variations of Geothermal Parameters in Rifted Basins and Heat Flow Distribution Features of the Qiongdongnan Basin.Chinese J.Geophys., 58(3):939-952(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQWX201503020.htm [26] Shou, J.F., 2005.Dynamic Diagenesis of Sandstone.Petroleum Industry Press, Beijing (in Chinese). [27] Shou, J.F., Zhang, H.L., Shen, Y., et al., 2006.Diagenetic Mechanisms of Sandstone Reservoirs in China Oil and Gas-Bearing Basins.Acta Petrologica Sinica, 22(8):2165-2170(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200608006 [28] Song, Y., Zhao, C.Y., Zhang, G.C., et al., 2011.Research on Tectono-Thermal Modeling for Qiongdongnan Basin and Pearl River Mouth Basin in the Northern South China Sea.Chinese J.Geophys, 54(12):3057-3069(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201112007 [29] Sun, Q.L., Wu, S.G., Cartwright, J., et al., 2012.Shallow Gas and Focused Fluid Flow Systems in the Pearl River Mouth Basin, Northern South China Sea.Marine Geology, 315-318:1-14. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6ab647482948e848eb254ec0452515a4 [30] Sun, X.G., Li, Y.B., 2011.Characteristics of Fluid Inclusions of Barite in the Longtoushan Polymetallic Sulfide Deposit, Inner Mongolia:Evidence for Submarine Hydrothermal Sedimentary Origin.Acta Petrologica et Mineralogica, 30(4):637-644(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSKW201104008.htm [31] Sun, Y.B., Wu, S.G., Dong, D.D., et al., 2012.Gas Hydrates Associated with Gas Chimneys in Fine-Grained Sediments of the Northern South China Sea.Marine Geology, 311-314:32-40. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=384d3407a2ba808e9561555fc1d44f24 [32] Sun, Z., Xu, Z.Y., Sun, L.T., et al., 2014.The Mechanism of Post-Rift Fault Activities in Baiyun Sag, Pearl River Mouth Basin.Journal of Asian Earth Sciences, 89:76-87. doi: 10.1016/j.jseaes.2014.02.018 [33] Tang, X.Y., Hu, S.B., Zhang, G.C., et al., 2014.Characteristic of Surface Heat Flow in the Pearl River Mouth Basin and Its Relationship with Thermal Lithosphere Thickness.Chinese J.Geophys., 57(6):1857-1867(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQWX201809022.htm [34] Wang, H.C., Li, S.Z., Liu, X., et al., 2013.Cenozoic Geological Processes and Their Bearing on Hydrocarbon Migration and Accumulation in the Continental Marginal Basin Group of the Northern South China Sea.Marine Geology & Quaternary Geology, 33(1):73-82(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20132013040900022450 [35] Wang, Q., Hao, L.W., Chen, G.J., et al., 2010.Forming Mechanism of Carbonate Cements in Siliciclastic Sandstone of Zhuhai Formation in Baiyun Sag.Acta Petrolei Sinica, 31(4):553-558(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201004006 [36] Wu, J.F., Yang, S.C., Zhang, G.C., et al., 2013.Geothermal History and Thermal Evolution of the Source Rocks in the Deep-Water Area of the Northern South China Sea.Chinese J.Geophys., 56(1):170-180(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201301017 [37] Wu, J.F., Zhang, G.C., Wang, P.J., et al., 2012.Geological Response and Forming Mechanisms of 23.8 Ma Tectonic Events in Deepwater Area of the Pearl River Mouth Basin in South China Sea.Earth Science, 37(4):654-666(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201204004 [38] Xie, Z.Y., Li, Y.P., Sun, Z., et al., 2015.A Basin Modeling Study on the Coupling of Fault Activity and Hydrocarbon Accumulation in the Baiyun Sag.Journal of Tropical Oceanography, 34(1):30-41(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rdhy201501005 [39] Yang, Y.K., Liu, B., Qin, S., et al., 2013.Dissolution Response Mechanism of the Carbonate Mineral with the Increase of Depth and its Reservoir Significance.Acta Scientiarum Naturalium Universitatis Pekinensis, 49(5):859-866(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjdxxb201305014 [40] Yuan, Y.S., Zhu, W.L., Mi, L.J., et al., 2009."Uniform Geothermal Gradient" and Heat Flow in the Qiongdongnan and Pearl River Mouth Basins of the South China Sea.Marine and Petroleum Geology, 26(7):1152-1162. https://doi.org/10.1016/j.marpetgeo.2008.08.008 [41] Zeng, Z.W., Yang, X.H., Zhu, H.T., et al., 2017.Development Characteristics and Significance of Large Delta of Upper Enping Formation, Baiyun Sag.Earth Science, 42(1):78-92(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201701006 [42] Zhang, B., Wang, P.J., Zhang, G.C., et al., 2013.Cenozoic Volcanic Rocks in the Pearl River Mouth and Southeast Hainan Basins of South China Sea and Their Implications for Petroleum Geology.Petroleum Exploration and Development, 40(6):704-713. doi: 10.1016/S1876-3804(13)60095-6 [43] Zhang, G.C., Mi, L.J., Qu, H.J., et al., 2011.A Basic Distributional Framework of Global Deepwater Basins and Hydrocarbon Characteristics.Acta Petrolei Sinica, 32(3):369-378(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201103001 [44] Zhang, G.C., Yang, H.C., Chen, Y., et al., 2014.The Baiyun Sag:A Giant Rich Gas-Generation Sag in the Deepwater Area of the Pearl River Mouth Basin.Natural Gas Industry, 34(11):11-25(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-TRQG201411003.htm [45] Zhang, Y.F., Sun, Z., Pang, X., 2014.The Relationship between Extension of Lower Crust and Displacement of the Shelf Break.Science China:Earth Sciences, 44(3):488-496(in Chinese). doi: 10.1007/s11430-013-4676-4 [46] Zhao, F., Alves, T.M., Wu, S.G., et al., 2016.Prolonged Post-Rift Magmatism on Highly Extended Crust of Divergent Continental Margins (Baiyun Sag, South China Sea).Earth and Planetary Science Letters, 445:79-91. https://doi.org/10.1016/j.epsl.2016.04.001 [47] Zhao, Z.X., Sun, Z., Xie, H., et al., 2011.Baiyun Deepwater Cenozoic Subsidence and Lithospheric Stretching Deformation.Chinese J.Geophys., 54(12):3336-3343(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqwlxb201112031 [48] Zheng, Y.F., 2000.Stable Isotope Geochemistry.Science Press, Beijing (in Chinese). [49] Zhu, D.Y., Meng, Q.Q., Jin, Z.J., et al., 2012.Thermodynamic Analysis for Carbonate Dissolution-Filling under Influence of CO2-Rich Deep Fluid.Chinese Journal of Geology, 47(1):187-201(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkx201201016 [50] Zhuo, H.T., Wang, Y.M., Shi, H.S., et al., 2014.Seismic Geomorphology, Architecture and Genesis of Miocene Shelf Sand Ridges in the Pearl River Mouth Basin, Northern South China Sea.Marine and Petroleum Geology, 54:106-122. https://doi.org/10.1016/j.marpetgeo.2014.03.002 [51] 陈国俊, 吕成福, 王琪, 等, 2010.珠江口盆地深水区白云凹陷储层孔隙特征及影响因素.石油学报, 31(4):566-572. http://d.old.wanfangdata.com.cn/Periodical/syxb201004008 [52] 陈维涛, 杜家元, 龙更生, 等, 2012.珠江口盆地海相层序地层发育的控制因素分析.沉积学报, 30(1):73-83. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201200135775 [53] 傅飘儿, 李晓亚, 汤庆艳, 等, 2013.珠江口盆地番禺低隆起-白云凹陷北坡干酪根热演化模拟与生烃.沉积学报, 31(1):176-183. http://www.cqvip.com/QK/95994X/201301/44776056.html [54] 高玉巧, 刘立, 曲希玉, 2007.CO2与砂岩相互作用机理与形成的自生矿物组合.新疆石油地质, 28(5):579-584. doi: 10.3969/j.issn.1001-3873.2007.05.015 [55] 郭志峰, 刘震, 王伟, 等, 2011.南海北部深水区白云凹陷地温-地压系统特征及其石油地质意义.地球科学, 36(5):831-836. http://earth-science.net/WebPage/Article.aspx?id=2156 [56] 黄可可, 黄思静, 佟宏鹏, 等, 2009.成岩过程中碳酸盐-二氧化碳平衡体系的热力学模拟.岩石学报, 25(10):2417-2424. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200910011 [57] 黄思静, 黄可可, 冯文立, 等, 2009.成岩过程中长石、高岭石、伊利石之间的物质交换与次生孔隙的形成:来自鄂尔多斯盆地上古生界和川西凹陷三叠系须家河组的研究.地球化学, 38(5):498-506. doi: 10.3321/j.issn:0379-1726.2009.05.009 [58] 李荣西, 段立志, 陈宝赟, 等, 2012.鄂尔多斯盆地三叠系延长组砂岩钠长石化与热液成岩作用研究.岩石矿物学杂志, 31(2):173-180. doi: 10.3969/j.issn.1000-6524.2012.02.006 [59] 廖计华, 徐强, 陈莹, 等, 2016.白云-荔湾凹陷珠江组大型深水水道体系沉积特征及成因机制.地球科学, 41(6):1041-1054. http://earth-science.net/WebPage/Article.aspx?id=3315 [60] 卢焕章, 2004.流体包裹体.北京:科学出版社. [61] 罗静兰, 刘小洪, 林潼, 等, 2006.成岩作用与油气侵位对鄂尔多斯盆地延长组砂岩储层物性的影响.地质学报, 80(5):664-673. doi: 10.3321/j.issn:0001-5717.2006.05.005 [62] 罗静兰, 王代富, 胡海燕, 等, 2015.白云凹陷深水区砂岩储层成岩作用综合研究(内部报告). [63] 孟元林, 吴琳, 孙洪斌, 等, 2015.辽河西部凹陷南段异常低压背景下的成岩动力学研究与成岩相预测.地学前缘, 22(1):206-214. http://d.old.wanfangdata.com.cn/Periodical/dxqy201501017 [64] 米立军, 袁玉松, 张功成, 等, 2009.南海北部深水区地热特征及其成因.石油学报, 30(1):27-32. doi: 10.3321/j.issn:0253-2697.2009.01.005 [65] 庞雄, 陈长民, 邵磊, 等, 2007.白云运动:南海北部渐新统-中新统重大地质事件及其意义.地质论评, 53(2):145-151. doi: 10.3321/j.issn:0371-5736.2007.02.001 [66] 施小斌, 王振峰, 蒋海燕, 等, 2015.张裂型盆地地热参数的垂向变化与琼东南盆地热流分布特征.地球物理学报, 58(3):939-952. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDW201410037004.htm [67] 寿建峰, 2005.砂岩动力成岩作用.北京:石油工业出版社. [68] 寿建峰, 张惠良, 沈扬, 等, 2006.中国油气盆地砂岩储层的成岩压实机制分析.岩石学报, 22(8):2165-2170. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200608006 [69] 宋洋, 赵长煜, 张功成, 等, 2011.南海北部珠江口与琼东南盆地构造-热模拟研究.地球物理学报, 54(12):3057-3069. doi: 10.3969/j.issn.0001-5733.2011.12.007 [70] 孙兴国, 李永兵, 2011.内蒙古龙头山多金属硫化物矿床同生重晶石流体包裹体特征——海相热水沉积成因证据.岩石矿物学杂志, 30(4):637-644. doi: 10.3969/j.issn.1000-6524.2011.04.007 [71] 唐晓音, 胡圣标, 张功成, 等, 2014.珠江口盆地大地热流特征及其与热岩石圈厚度的关系.地球物理学报, 57(6):1857-1867. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HYC201507200000002500 [72] 王洪才, 李三忠, 刘鑫, 等, 2013.南海北部陆缘盆地群新生代构造过程与油气运聚规律.海洋地质与第四纪地质, 33(1):73-82. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20132013040900022450 [73] 王琪, 郝乐伟, 陈国俊, 等, 2010.白云凹陷珠海组砂岩中碳酸盐胶结物的形成机理.石油学报, 31(4):553-558. http://d.old.wanfangdata.com.cn/Periodical/syxb201004006 [74] 吴景富, 杨树春, 张功成, 等, 2013.南海北部深水区盆地热历史及烃源岩热演化研究.地球物理学报, 56(1):170-180. http://d.old.wanfangdata.com.cn/Periodical/dqwlxb201301017 [75] 吴景富, 张功成, 王璞珺, 等, 2012.珠江口盆地深水区23.8 Ma构造事件地质响应及其形成机制.地球科学, 37(4):654-666. http://earth-science.net/WebPage/Article.aspx?id=2272 [76] 谢志远, 李元平, 孙珍, 等, 2015.白云凹陷断裂活动与油气成藏耦合关系的盆地模拟研究.热带海洋学报, 34(1):30-41. doi: 10.3969/j.issn.1009-5470.2015.01.005 [77] 杨云坤, 刘波, 秦善, 等, 2013.碳酸盐矿物随埋深增加的溶蚀响应机制及其储层意义.北京大学学报(自然科学版), 49(5):859-866. http://d.old.wanfangdata.com.cn/Periodical/bjdxxb201305014 [78] 曾智伟, 杨香华, 朱红涛, 等, 2017.白云凹陷恩平组沉积晚期大型三角洲发育特征及其意义.地球科学, 42 (1):78-92. http://earth-science.net/WebPage/Article.aspx?id=3416 [79] 张功成, 米立军, 屈红军, 等, 2011.全球深水盆地群分布格局与油气特征.石油学报, 32(3):369-378. http://d.old.wanfangdata.com.cn/Periodical/syxb201103001 [80] 张功成, 杨海长, 陈莹, 等, 2014.白云凹陷——珠江口盆地深水区一个巨大的富生气凹陷.天然气工业, 34(11):11-25. doi: 10.3787/j.issn.1000-0976.2014.11.002 [81] 张云帆, 孙珍, 庞雄, 2014.珠江口盆地白云凹陷下地壳伸展与陆架坡折的关系.中国科学:地球科学, 44(3):488-496. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201403009.htm [82] 赵中贤, 孙珍, 谢辉, 等, 2011.白云深水区新生代沉降及岩石圈伸展变形.地球物理学报, 54(12):3336-3343. doi: 10.3969/j.issn.0001-5733.2011.12.031 [83] 郑永飞, 2000.稳定同位素地球化学.北京:科学出版社. [84] 朱东亚, 孟庆强, 金之钧, 等, 2012.富CO2深部流体对碳酸盐岩的溶蚀-充填作用的热力学分析.地质科学, 47(1):187-201. doi: 10.3969/j.issn.0563-5020.2012.01.016