Seepage and Instability Characteristics of Slope Based on Spatial Variation Structure of Saturated Hydraulic Conductivity
-
摘要: 以往研究一般采用单随机变量方法(SRV)或基于水平或垂直方向波动范围生成的空间变异随机场来模拟岩土参数的空间变异性,对具有倾斜定向特征的空间变异随机场未有涉及.基于条件模拟相关理论和非侵入式随机有限元的理论框架,提出了利用序贯高斯模拟方法进行斜坡参数条件随机场模拟并运用有限元方法进行斜坡渗流和稳定性分析的方法.针对理想边坡,对各向同性和几何各向异性的共7种空间变异结构的饱和渗透系数(Ks)各进行了200次条件随机场模拟,基于条件随机场模拟结果进行了有限元渗流和稳定性计算,对每种空间变异结构多次计算结果进行了统计分析.结果表明:本文所提出的方法不仅再现了研究区域参数的空间二阶统计特性,通过设定变异函数参数进行不同空间变异类型、变异程度、变异定向性的随机场模拟,同时利用现场观测数据对随机场模拟结果进行条件限制,从而提高了随机场的赋值精度;Ks的空间变异结构对孔隙水压力的分布规律、地下水位线变化范围、稳定性系数和最危险滑动面分布特征均有一定程度的影响.本研究为库岸斜坡稳定性评价提供方法支撑.Abstract: In the previous studies, the spatial variability of geotechnical parameters was simulated based on singe random variable approach (SRV) or random field approach (RF) according to the horizontal or vertical fluctuation range. The spatial variable conditional random field with slant directional characteristics was not involved. Based on the conditional modelling theory and the framework of non-intrusive stochastic finite element method, an original method has been proposed to study the slope seepage and instability characteristics considering spatial variation structure of Ks. This method firstly simulates the conditional random fields of slope parameters taking advantage of sequential Gaussian simulation method (SGS). The Ks random field realizations of a hypothetic slope has been generated in terms of seven different spatial variation structures repeatedly for 200 times. The considered scenarios involved isotropic structure with various ranges (a) and geometric anisotropic structure with various maximum correlation orientations. Seepage and stability analysis was then performed repeatedly according to the assignment random field using finite element method (FEM). According to the FEM analysis results, statistical analysis was then carried out to find the seepage and instability characteristic of the considering seven spatial variation scenarios. The results, on the one hand, show that the proposed method has the priority of reproducing the second-order spatial statistical characteristic of parameters within the study area by the means of changing the variogram parameters to simulate random fields with different spatial variation types, degrees and orientations. The uncertainty of the random field value assignment adjacent to the measurement locations is also much reduced due to the constraints of field measurements. On the other hand, the results show that the spatial variation structure of Ks has a certain impact on pore-water pressure distribution, phreatic line variation bound, factor of safety and most critical slip surface distribution. This research provides methodology support for reservoir slope stability evaluation.
-
表 1 理想斜坡计算模型参数
Table 1. Parameters for the hypothetic slope study cases
参数(单位) 值 坡高H(m) 50 坡角β(°) 27 垂直降雨量q(m/s) 5×10-7 饱和渗透系数Ks均值(m/s) 5×10-5 有效粘聚力c′均值(kPa) 12 有效内摩擦角ϕ′均值(°) 26 KsA(m/s) 8×10-5 KsF(m/s) 5×10-5 KsE(m/s) 3×10-5 KsD(m/s) 4×10-5 注:KsA、KsF、KsE和KsD分别代表A、F、E和D处的Ks. 表 2 负孔隙水压力界限值
Table 2. Inter quartile range values of negative pore water pressure
IQR(kPa) 各向同性类型 几何异性类型 a b c d e f g XX 15.29 20.77 37.58 31.00 29.09 22.62 86.21 YY 17.30 20.38 44.25 31.30 84.10 53.40 55.58 表 3 地下水位变化范围D
Table 3. Bounds of groundwater table D
参数 各向同性 各向异性 a b c d e f g D(m) 12.61 14.73 18.75 19.15 17.60 15.07 14.93 -
[1] Benson, C.H., Daniel, D.E., Boutwell, G.P., 1999.Field Performance of Compacted Clay Liners.Journal of Geotechnical and Geoenvironmental Engineering, 125(5):390-403. https://doi.org/10.1061/(asce)1090-0241(1999)125:5(390) [2] Cai, J.S., Zha, E.Y., Yeh, T.C.J., et al., 2016.Effects of Heterogeneity Distribution on Hillslope Stability during Rainfalls.Water Science and Engineering, 9(2):134-144. https://doi.org/10.1016/j.wse.2016.06.004 [3] Chilès, J.P., Delfiner, P., 1999.Geostatistics:Modeling Spatial Uncertainty.John Wiley & Sons, New York. https://doi.org/10.1002/9780470316993 [4] Ching, J.Y., Phoon, K.K., Hu, Y.G., 2009.Efficient Evaluation of Reliability for Slopes with Circular Slip Surfaces Using Importance Sampling.Journal of Geotechnical and Geoenvironmental Engineering, 135(6):768-777. https://doi.org/10.1061/(asce)gt.1943-5606.0000035 [5] Cho, S.E., 2007.Effects of Spatial Variability of Soil Properties on Slope Stability.Engeering Geology, 92(3-4):97-109. https://doi.org/10.1016/j.enggeo.2007.03.006 [6] Cho, S.E., 2014.Probabilistic Stability Analysis of Rainfall-Induced Landslides Considering Spatial Variability of Permeability.Engineering Geology, 171:11-20. https://doi.org/10.1016/j.enggeo.2013.12.015 [7] der Kiureghian, A., Lin, H., Hwang, S., 1987.Second-Order Reliability Approximations.Journal of Engineering Mechanics, 113(8):1208-1225. https://doi.org/10.1061/(asce)0733-9399(1987)113:8(1208) [8] Dou, H.Q., Han, T.C., Gong, X.N., et al., 2016.Reliability Analysis of Slope Stability Considering Variability of Soil Saturated Hydraulic Conductivity under Rainfall Infiltration.Rock and Soil Mechanics, 37(4):1144-1152 (in Chinese with English abstract). http://www.refdoc.fr/Detailnotice?cpsidt=16568454 [9] Ge, Y.F., Tang, H.M., Li, W., et al., 2016.Evaluation for Deposit Areas of Rock Avalanche Based on Features of Rock Mass Structure.Earth Science, 41(9):1583-1592 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.117 [10] Griffiths, D.V., Fenton, G.A., 2004.Probabilistic Slope Stability Analysis by Finite Elements.Journal of Geotechnical and Geoenvironmental Engineering, 130(5):507-518. https://doi.org/10.1061/(asce)1090-0241(2004)130:5(507) [11] Griffiths, D.V., Huang, J.S., Fenton, G.A., 2009.Influence of Spatial Variability on Slope Reliability Using 2-D Random Fields.Journal of Geotechnical and Geoenvironmental Engineering, 135(10):1367-1378. https://doi.org/10.1061/(asce)gt.1943-5606.0000099 [12] Hu, X.L., Sun, M.J., Tang, H.M., et al., 2014.Creep Tests of Gravel-Soil of Majiagou Landslide in Three Gorges Reservoir Area.Soil and Rock Mechanics, 35(11):3163-3169, 3190 (in Chinese with English abstract). doi: 10.1007/s12665-016-6002-x.pdf [13] Hu, X.R., Yu, M.H., Tang, C.A., 2002.Heterogeneity of Rocks and Soils and Estimations of Rock Mechanics Parameters by Conditional Simulation.Chinese Journal of Rock Mechanics and Engineering, 21(1):13-17 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSLX200405012.htm [14] Ji, J., Low, B.K., 2012.Stratified Response Surfaces for System Probabilistic Evaluation of Slopes.Journal of Geotechnical and Geoenvironmental Engineering, 138(11):1398-1406. https://doi.org/10.1061/(asce)gt.1943-5606.0000711 [15] Jian, W.X, Yang, J., 2013.Formation Mechanism of No.1 Part Slide of Huangtupo Landslide in the Three Gorges Reservoir Area.Earth Science, 38(3):625-631 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2013.063 [16] Jiang, S.H., Feng, Xiao, B., Li, D.Q., et al., 2013.Reliability Analysis of Slope Using Non-Intrusive Stochastic Finite Element Method.Rock and Soil Mechanics, 34(8):2347-2354 (in Chinese with English abstract). https://www.researchgate.net/profile/Shui_Hua_Jiang/publication/278301327_Slope_reliability_analysis_using_a_non-intrusive_stochastic_finite_element_method/links/557ea27408aeea18b777d650.pdf?inViewer=true&pdfJsDownload=true&disableCoverPage=true&origin=publication_detail [17] Jiang, S.H., Li, D.Q., Zhang, L.M., et al., 2014.Slope Reliability Analysis Considering Spatially Variable Shear Strength Parameters Using a Non-Intrusive Stochastic Finite Element Method.Engineering Geology, 168:120-128. https://doi.org/10.1016/j.enggeo.2013.11.006 [18] Kasama, K., Whittle, A.J., 2015.Effect of Spatial Variability on the Slope Stability Using Random Field Numerical Limit Analyses.Georisk:Assessment and Management of Risk for Engineered Systems and Geohazards, 10(1):42-54. https://doi.org/10.1080/17499518.2015.1077973 [19] Leong, E.C., Rahardjo, H., 1997.Permeability Functions for Unsaturated Soils.Journal of Geotechnical and Geoenvironmental Engineering, 123(12):1118-1126. https://doi.org/10.1061/(asce)1090-0241(1997)123:12(1118) [20] Li, D.Q., Jiang, S.H., Zhou, C.B., et al., 2013.Reliability Analysis of Slopes Considering Spatial Variability of Soil Parameters Using Non-Intrusive Stochastic Finite Element Method.Chinese Journal of Geotechnical Engineering, 35(8):1413-1422 (in Chinese with English abstract). https://www.researchgate.net/publication/286991721_Reliability_analysis_of_slopes_considering_spatial_variability_of_soil_parameters_using_non-intrusive_stochastic_finite_element_method [21] Li, X.Y., Zhang, L.M., Gao, L., et al., 2017.Simplified Slope Reliability Analysis Considering Spatial Soil Variability.Engineering Geology, 216:90-97. https://doi.org/10.1016/j.enggeo.2016.11.013 [22] Liu, A.L., Wang, P.F., Ding, Y.Y., 2012.An Introduction to Geostatistics.Science Press, Beijing (in Chinese). [23] Liu, L.L., Cheng, Y.M., Zhang, S.H., 2017.Conditional Random Field Reliability Analysis of a Cohesion-Frictional Slope.Computer and Geotechnics, 82:173-186. https://doi.org/10.1016/j.compgeo.2016.10.014 [24] Liu, S., Hu, X.Y., Liu, T.Y., 2014.Characteristics and Application of Variogram for Gravity and Magnetic Fields.Earth Sciences, 39(11):1625-1634 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2014.156 [25] Low, B.K., Lacasse, S., Nadim, F., 2007.Slope Reliability Analysis Accounting for Spatial Variation.Georisk, 1(4):177-189. https://doi.org/10.1080/17499510701772089 [26] Qi, X.H., Li, D.Q., Zhou, C.B., et al., 2013.Stochastic Analysis Method of Critical Slip Surfaces in Soil Slopes Considering Spatial Variability.Chinese Journal of Geotechnical Engineering, 35(4):745-753 (in Chinese with English abstract). [27] Qin, Q., Lin, D.J., Mei, G., 2006.Structure Reliability Random Finite Element Method.Tsinghua University Press, Beijing (in Chinese). [28] Rahardjo, H., Lim, T.T, Chang, M.F., et al., 1995.Shear-Strength Characteristics of a Residual Soil.Canadian Geotechnical Journal, 32(1):60-77. https://doi.org/10.1139/t95-005 [29] Rahardjo, H., Satyanaga, A., Leong, E.C., et al., 2012.Variability of Residual Soil Properties.Engineering Geology, 141-142:124-140. https://doi.org/10.1016/j.enggeo.2012.05.009 [30] Remy, N., Boucher, A., Wu, J.B., 2009.Applied Geostatistics with SGeMS.Cambridge University Press, Cambridge. [31] Santoso, A.M., Phoon, K.K., Quek, S.T., 2011.Effects of Soil Spatial Variability on Rainfall-Induced Landslides.Computer and Structures, 89(11-12):893-900. https://doi.org/10.1016/j.compstruc.2011.02.016 [32] Srivastava, A., Babu, G.L.S., Haldar, S., 2010.Influence of Spatial Variability of Permeability Property on Steady State Seepage Flow and Slope Stability Analysis.Engineering Geology, 110(3-4):93-101. https://doi.org/10.1016/j.enggeo.2009.11.006 [33] Tami, D., Rahardjo, H., Leong, E.C., 2004.Effects of Hysteresis on Steady-State Infiltration in Unsaturated Slopes.Journal of Geotechnical and Geoenvironmental Engineering, 130(9):956-967. https://doi.org/10.1061/(asce)1090-0241(2004)130:9(956) [34] Tan, X.H., Wang, J.G., Hu, X.J., et al., 2009.Fuzzy Random Finite Element Reliability Analysis of Slope Stability.Chinese Journal of Geotechnical Engineering, 31(7):991-996 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YTGC200907004.htm [35] Tang, Y., Yin, K.L., Wang, Y., et al., 2017.The Landslide Rain Infiltration Based on the Improved Mein-Larson Model.Earth Science, 42(4):634-640 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.050 [36] Vanapalli, S.K., Fredlund, D.G., Pufahl, D.E., et al., 1996.Model for the Prediction of Shear Strength with Respect to Soil Suction.Canadian Geotechnical Journal, 33(3):379-392. https://doi.org/10.1139/t96-060 [37] Vanmarcke, E.H., 1984.Random Fields:Analysis and Synthesis.MIT Press, Cambridge. [38] Wang, J. E., Xiang, W., Wang, S., 2015. Study on Morphological Characteristics of Coarse Particles in Sliding Zones of Huangtupo Landslide in Three Gorges Reservoir Area, China. In: Wu, W., ed., Recent Advances in Modeling Landslides and Debris Flows. Springer, Berlin. [39] Wang, Y., Cao, Z.J., Au, S.K., 2011.Practical Reliability Analysis of Slope Stability by Advanced Monte Carlo Simulations in a Spreadsheet.Canadian Geotechnical Journal, 48(1):162-172. https://doi.org/10.1139/t10-044 [40] Zhang, J., Huang, H.W., 2016.Risk Assessment of Slope Failure Considering Multiple Slip Surfaces.Computers and Geotechnics, 74:188-195. https://doi.org/10.1016/j.compgeo.2016.01.011 [41] Zhang, J., Huang, H.W., Phoon, K.K., 2013.Application of the Kriging-Based Response Surface Method to the System Reliability of Soil Slopes.Journal of Geotechnical and Geoenvironmental Engineering, 139(4):651-655. https://doi.org/10.1061/(asce)gt.1943-5606.0000801 [42] Zhang, L.L., Zhang, J., Zhang, L.M., et al., 2011.Stability Analysis of Rainfall-Induced Slope Failure:A Review.Geotechnical Engineering, 164(5):299-316. https://doi.org/10.1680/geng.2011.164.5.299 [43] Zhang, Z., Liu, S.C., Ju, S.H., 1996.The Optimum Estimation Model and the Principle of Spatial Variability Analysis of Rock and Soil Parameters.Chinese Journal of Geotechnical Engineering, 18(4):40-47 (in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S1537511006002790 [44] Zhu, H., Zhang, L.M., 2013.Characterizing Geotechnical Anisotropic Spatial Variations Using Random Field Theory.Canadian Geotechnical Journal, 50(7):723-734. https://doi.org/10.1139/cgj-2012-0345 [45] Zhu, H., Zhang, L.M., Zhang, L.L., et al., 2013.Two-Dimensional Probabilistic Infiltration Analysis with a Spatially Varying Permeability Function.Computers and Geotechnics, 48:249-259. https://doi.org/10.1016/j.compgeo.2012.07.010 [46] 豆红强, 韩同春, 龚晓南, 等, 2016.降雨条件下考虑饱和渗透系数变异性的边坡可靠度分析.岩土力学, 37(4):1144-1152. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16930.shtml [47] 葛云峰, 唐辉明, 李伟, 等, 2016.基于岩体结构特征的高速远程滑坡致灾范围评价.地球科学, 41(9):1583-1592. https://doi.org/10.3799/dqkx.2016.117 [48] 胡小荣, 俞茂宏, 唐春安, 2002.岩土体的非均质性及力学参数的条件模拟赋值.岩石力学与工程学报, 21(1):13-17. https://www.wenkuxiazai.com/doc/2a32e7c72cc58bd63186bd5b.html [49] 胡新丽, 孙淼军, 唐辉明, 等, 2014.三峡库区马家沟滑坡滑体粗粒土蠕变试验研究.岩土力学, 35(11):3163-3169, 3190. http://www.oalib.com/paper/1553284 [50] 简文星, 杨金, 2013.三峡库区黄土坡滑坡Ⅰ号崩滑体成因.地球科学, 38(3):625-631. https://doi.org/10.3799/dqkx.2013.063 [51] 蒋水华, 冯晓波, 李典庆, 等, 2013.边坡可靠度分析的非侵入式随机有限元法.岩土力学, 34(8):2347-2354. https://mall.cnki.net/qikan-YTGC201308008.html [52] 李典庆, 蒋水华, 周创兵, 等, 2013.考虑参数空间变异性的边坡可靠度分析非侵入式随机有限元法.岩石力学与工程学报, 35(8):1413-1422. https://mall.cnki.net/qikan-YTGC201308008.html [53] 刘爱利, 王培法, 丁园圆, 2012.地统计学概论.北京:科学出版社. [54] 刘双, 胡祥云, 刘天佑, 2014.重磁场的变差函数特征与应用.地球科学, 39(11):1625-1634. https://doi.org/10.3799/dqkx.2014.156 [55] 祁小辉, 李典庆, 周创兵, 等, 2013.考虑土体空间变异性的边坡最危险滑动面随机分析方法.岩土工程学报, 35(4):745-753. http://www.doc88.com/p-8919042769262.html [56] 秦权, 林道锦, 梅刚, 2006.结构可靠度随机有限元.北京:清华大学出版社. [57] 谭晓慧, 王建国, 胡晓军, 等, 2009.边坡稳定的模糊随机有限元可靠度分析.岩土工程学报, 31(7):991-996. http://www.cnki.com.cn/Article/CJFDTotal-YTGC200907004.htm [58] 唐扬, 殷坤龙, 汪洋, 等, 2017.斜坡降雨入渗的改进Mein-Larson模型.地球科学, 42(4):634-640. https://doi.org/10.3799/dqkx.2017.050 [59] 张征, 刘淑春, 鞠硕华, 1996.岩土参数空间变异性分析原理与最优估计模型.岩土工程学报, 18(4):40-47. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ytgc604.005&dbname=CJFD&dbcode=CJFQ