Tectonic Setting of Guandi Iron Deposit and Archean Crustal Growth of Helong Massif in NE China: Evidence from Petrogeochemistry, Zircon U-Pb Geochronology and Hf Isotope
-
摘要: 延边地区官地铁矿床地处华北克拉通北缘与兴蒙造山带东段接合带附近的和龙地块北部,是东北地区发现和开发较早的典型BIF型铁矿床之一.该矿床的主矿体呈层状、似层状、透镜状赋存于鞍山群甲山组上段.为确定该矿床的形成与变质时代以及构造背景,重点对含矿岩系中的斜长片麻岩、角闪斜长片麻岩和斜长角闪岩进行岩石地球化学、锆石U-Pb年代学以及Hf同位素研究.原岩恢复表明,斜长片麻岩的原岩为流纹英安质-英安质火山碎屑岩,角闪斜长片麻岩的原岩为安山岩,斜长角闪岩的原岩为玄武岩.LA-ICP-MS锆石U-Pb年代学研究发现,官地地区在新太古代末-古元古代初期发生了岩浆作用(2 508~2 483 Ma)和变质事件(2 472~2 459 Ma),且该期岩浆-变质事件与铁矿的形成有着密切的联系.斜长角闪岩的原岩-玄武岩形成于弧后盆地环境,反映了官地铁矿形成时的构造环境;角闪斜长片麻岩中锆石的εHf(t)值介于-5.0~+4.2,二阶段Hf模式年龄(tDM2)为3 182~2 889 Ma,表明岩浆源区以中太古代古老地壳物质的熔融为主.通过与国内外典型BIF型铁矿床的对比研究认为,官地铁矿属Algoma型BIF,与新太古代晚期华北克拉通大规模BIF成矿事件密切相关;官地地区在新太古代初期(2.8~2.7 Ga)可能存在地壳增生事件;和龙地块亲华北克拉通的构造属性,为索伦-西拉木伦-长春缝合带的东延问题研究提供了新的证据.Abstract: The Guandi iron deposit has been discovered and developed for several years and has been considered as a typical BIF-type iron deposit in Yanbian area, Northeast China. This deposit is located at the north part of the Helong massif, at the joint of the North China craton and the Xing'an-Mongolia orogenic belt. The stratiform and lenticular iron orebodies are dominantly hosted within the metamorphic rocks of Jiashan Formation, Anshan Group. In order to determine the formation age, metamorphic age and tectonic setting of the Guandi deposit, in this paper, the geochemistry, LA-ICP-MS zircon U-Pb dating and zircon Hf isotope for the ore-hosting plagiogneiss, amphibole plagiogneiss and amphibolite were conducted. The results indicate that the protolith of the plagiogneiss is rhyodacite and dacite pyroclastic rock, the protolith of the amphibole plagiogneiss is andesite, the protolith of the amphibolite is basalt. The LA-ICP-MS zircon U-Pb dating data imply that the Guandi area experienced the late Neoarchean to early Paleoproterozoic magmatic event (ca. 2 508~2 483 Ma) and metamorphic event (ca. 2 472~2 459 Ma), both of which have closely genetic relationship with the iron formation of the Guandi iron deposit. Geochemical characteristics of the ore-hosting amphibolite indicate that they formed in the back-arc basin setting, which is also interpreted as the tectonic setting of the Guandi iron deposit. The εHf(t) values of zircon grains from amphibole plagiogneiss range from -5.0 to +4.2, and the corresponding two-stage Hf model ages (tDM2) are from 3 182 Ma to 2 889 Ma, both of which indicate that the initial magma was mainly derived from the partial melting of the Mesoarchean crust. On the basis of comparison with several representative banded iron formations (BIFs) at home and abroad, it can be concluded that the Guandi iron deposit belongs to the Algoma-type BIFs, and was caused by the late Neoarchean large-scale BIF metallogenic event, which were widely developed in the North China craton. The Guandi area took place a crustal growth event at the early Neoarchean (2.8-2.7 Ga). Moreover, this paper proposes that the Helong massif has affinities to the North China Craton, which provides new evidence for the eastward termination of the Solonker-Xar Moron-Changchun suture in the Yanbian area.
-
Key words:
- Hf isotope /
- zircon U-Pb dating /
- crustal growth /
- Guandi iron deposit /
- Helong massif /
- geochemistry
-
图 1 延边地区大地构造位置图(a)及区域地质图(b)
a.据金炳成(2012)修改;b.据Wu et al.(2011)修改
Fig. 1. Tectonic location of NE China (a) and geological sketch map of Yanbian Area (b)
图 4 官地铁矿区含矿岩石微量元素原始地幔标准化蛛网图(a)和稀土元素球粒陨石标准化配分图(b)
原始地幔标准化值与球粒陨石标准化值分别据Sun and McDonough(1989)与Taylor and Mclennan(1985)
Fig. 4. Primitive-mantle-normalized trace element patterns (a) and chondrite-normalized REE patterns (b) of the ore-hosting rocks from Guandi iron deposit
图 7 官地铁矿角闪斜长片麻岩锆石εHf(t)-207Pb/206Pb年龄图解(a)和tDM2-207Pb/206Pb年龄图解(b)
鞍山地区BIF型铁矿床的年龄数据来自代堰锫等(2013a;2013b)
Fig. 7. Diagrams of εHf(t)-207Pb/206Pb (Ma) (a) and tDM2-207Pb/206Pb (Ma) (b) for the analyzed zircon grains from the amphibole plagiogneiss of Guandi iron deposit
图 10 华北克拉通(a)、佳木斯-兴凯(b)、官地铁矿区(c)锆石年龄频谱图
三者纵坐标一致;华北克拉通年龄数据源自Cope et al.(2005),Yang et al.(2006),Li et al.(2009),胡国辉等(2012);佳木斯-兴凯年龄数据源自周建波等(2012);官地铁矿区年龄数据源自商青青等(2017)和本文
Fig. 10. Relative probability distribution of the zircon ages from the North China Craton (a), Jiamusi-Xingkai block (b), and Guandi iron deposit (c)
表 1 官地铁矿含矿岩石主量元素(%)和微量元素(10-6)分析结果
Table 1. Major (%) and trace element (10-6) contents of the ore-hosting rocks from Guandi iron deposit
样品号 斜长片麻岩 角闪斜长片麻岩 斜长角闪岩 15GD-11-1 15GD-11-2 15GD-11-3 15GD-11-4 15GD-11-5 15GD-12-1 15GD-12-2 15GD-12-3 15GD-12-4 15GD-12-5 15GD-14-1 15GD-14-2 15GD-14-3 15GD-14-4 SiO2 76.29 77.13 76.31 76.9 74.05 62.98 63.3 62.49 62.42 63.91 53.07 52.72 54.97 54.81 TiO2 0.11 0.09 0.25 0.13 0.28 0.57 0.55 0.60 0.58 0.57 0.84 0.90 0.88 1.00 Al2O3 11.78 11.84 11.39 11.46 11.44 13.73 13.41 13.76 13.58 13.59 13.65 13.62 13.40 13.70 TFe2O3 1.64 1.68 2.66 1.80 3.21 4.96 4.82 5.07 5.26 4.47 11.90 12.39 10.96 10.96 MnO 0.05 0.05 0.06 0.06 0.06 0.08 0.08 0.08 0.08 0.08 0.21 0.20 0.18 0.18 MgO 0.51 0.54 0.58 0.54 0.62 2.94 2.84 2.97 3.01 2.38 6.20 6.44 5.52 5.33 CaO 1.81 1.24 2.26 1.62 2.39 3.70 3.79 3.71 3.66 3.76 8.59 8.16 8.55 8.15 Na2O 4.63 4.47 3.46 4.26 3.58 5.57 5.68 5.74 5.76 6.01 2.05 1.80 2.20 2.41 K2O 1.25 1.37 1.34 1.42 1.78 0.54 0.52 0.52 0.74 0.61 0.49 0.57 0.38 0.34 P2O5 0.01 0.01 0.05 0.01 0.05 0.21 0.21 0.24 0.21 0.20 0.07 0.08 0.14 0.14 LOl 1.36 1.05 1.08 1.26 1.93 3.73 3.81 3.82 3.68 3.45 1.51 1.70 1.46 1.63 Total 99.44 99.47 99.44 99.46 99.39 99.01 99.01 99.00 98.98 99.03 98.58 98.58 98.64 98.65 DF 1.82 1.12 0.01 1.06 0.76 3.20 3.48 3.49 3.52 4.43 - - -1.90 -1.62 Li 1.56 0.98 2.73 1.32 4.38 6.46 7.21 6.52 7.19 5.31 14.06 18.71 14.29 16.68 P 156.10 133.60 389.40 140.20 447.40 1 206.00 1 348.00 1 401.00 1 312.00 1 248.00 484.40 542.40 952.80 943.00 K 15 804.00 15 182.00 15 004.00 16 502.00 22 560.00 5 862.00 6 496.00 5 764.00 8 836.00 7 226.00 5 538.00 6 660.00 4 474.00 3 970.00 Sc 3.17 1.95 4.35 3.43 6.07 11.16 11.45 10.52 14.95 9.78 42.74 46.86 43.94 38.92 Ti 895.60 680.40 1 882.00 973.40 2 286.00 3 970.00 4 376.00 4 298.00 4 426.00 4 354.00 5 734.00 6 478.00 6 316.00 7 114.00 V 20.70 18.90 34.10 19.90 45.00 99.50 108.10 105.80 128.30 100.70 344.20 369.00 337.00 326.60 Cr 30.78 26.66 27.34 33.92 32.74 129.40 146.20 136.50 161.40 122.60 316.80 356.00 354.40 283.20 Mn 534.60 427.80 501.60 572.00 633.40 665.40 777.20 693.40 720.00 711.00 1 851.00 1 863.00 1 763.00 1 669.00 Co 2.65 2.27 3.12 2.90 5.24 12.90 13.39 10.53 13.90 20.10 43.14 50.84 43.08 41.76 Ni 12.30 12.26 11.43 13.20 17.05 43.76 52.02 50.42 55.04 43.94 100.10 116.30 109.30 119.30 Cu 4.15 5.37 6.24 4.67 8.88 36.46 53.20 48.26 42.18 50.24 23.20 27.48 36.58 49.40 Zn 14.26 23.00 25.46 18.98 20.26 41.78 47.66 46.20 46.82 35.30 105.90 107.50 103.00 96.94 Ga 17.91 15.26 16.36 16.68 19.73 19.48 22.50 21.32 22.10 20.58 21.40 22.62 22.36 21.98 Rb 28.46 27.34 22.18 29.68 34.20 8.80 9.25 8.37 12.38 10.19 10.15 11.51 7.21 6.71 Sr 198.20 132.10 336.20 161.50 238.40 444.00 515.60 476.40 461.60 493.20 387.00 375.60 429.80 438.00 Y 4.12 3.06 5.31 3.89 9.08 13.14 13.88 13.39 15.91 12.46 29.36 32.46 28.00 27.42 Zr 95.98 64.58 93.31 107.80 126.6 98.75 101.90 174.60 124.30 183.80 80.36 51.42 64.36 58.28 Nb 0.70 0.54 1.38 0.70 2.25 4.69 5.52 5.35 4.55 5.80 4.78 4.73 5.70 7.54 Cs 0.22 0.16 0.18 0.22 0.37 0.31 0.29 0.24 0.41 0.30 0.36 0.31 0.21 0.23 Ba 659.20 608.40 757.80 693.60 1 102.00 286.40 326.20 296.20 386.80 352.80 210.00 284.80 199.90 164.80 La 16.22 15.90 38.32 14.46 57.52 23.32 28.02 27.06 26.32 26.36 12.83 12.86 14.90 13.54 Ce 21.46 20.54 59.40 19.26 84.74 45.86 58.06 55.48 57.98 50.94 30.62 29.74 35.34 31.44 Pr 1.71 1.60 4.75 1.53 7.18 5.41 6.15 5.91 6.26 5.58 4.13 3.87 4.63 4.04 Nd 5.15 4.71 16.02 4.58 24.42 22.64 25.30 24.12 26.76 22.64 18.89 17.20 20.94 18.00 Sm 0.64 0.53 2.12 0.56 3.38 4.28 4.64 4.37 5.27 4.06 4.77 4.35 5.00 4.39 Eu 1.02 0.90 1.34 0.92 1.57 1.29 1.44 1.37 1.52 1.33 1.32 1.33 1.40 1.30 Gd 0.60 0.47 1.88 0.52 2.93 3.61 3.90 3.67 4.51 3.43 5.15 4.91 5.16 4.80 Tb 0.08 0.06 0.20 0.07 0.32 0.45 0.47 0.45 0.56 0.42 0.80 0.80 0.77 0.74 Dy 0.56 0.43 1.02 0.54 1.73 2.46 2.60 2.48 3.10 2.30 5.13 5.36 4.86 4.74 Ho 0.13 0.10 0.19 0.13 0.32 0.46 0.48 0.46 0.57 0.43 1.02 1.12 0.97 0.94 Er 0.46 0.33 0.53 0.46 0.91 1.30 1.38 1.34 1.58 1.24 3.06 3.45 2.90 2.81 Tm 0.07 0.05 0.07 0.07 0.12 0.17 0.18 0.18 0.21 0.17 0.42 0.49 0.41 0.39 Yb 0.53 0.38 0.48 0.53 0.82 1.11 1.19 1.18 1.32 1.09 2.82 3.31 2.75 2.59 Lu 0.09 0.06 0.08 0.08 0.13 0.16 0.17 0.17 0.19 0.16 0.40 0.47 0.40 0.38 Hf 2.24 1.59 2.13 2.53 2.91 2.15 2.30 3.84 2.91 3.96 2.10 1.39 1.67 1.54 Ta 0.03 0.05 0.08 0.04 0.11 0.25 0.33 0.32 0.27 0.30 0.30 0.35 0.50 0.86 Pb 22.14 8.21 12.25 28.78 16.51 11.52 8.40 8.40 14.58 7.24 14.38 13.68 22.26 18.38 Th 0.26 0.13 0.49 0.34 1.25 0.15 0.17 0.18 0.07 0.09 1.12 1.07 1.38 1.49 U 0.23 0.16 0.12 0.19 0.23 0.08 0.08 0.09 0.08 0.06 0.34 0.21 0.47 0.55 ΣREE 48.71 46.07 126.40 43.72 186.10 112.50 134.00 128.30 136.10 120.10 91.36 89.25 100.40 90.11 LREE 46.19 44.19 121.9 41.31 178.80 102.80 123.60 118.30 124.10 110.90 72.55 69.34 82.21 72.72 HREE 2.53 1.88 4.44 2.41 7.29 9.71 10.38 9.93 12.02 9.23 18.81 19.91 18.22 17.40 LREE/HREE 18.30 23.50 27.50 17.20 24.50 10.60 11.90 11.90 10.30 12.00 3.86 3.48 4.51 4.18 LaN/YbN 21.80 30.30 56.80 19.50 50.30 15.10 16.90 16.40 14.40 17.30 3.26 2.79 3.89 3.75 δEu 4.97 5.38 2.01 5.12 1.49 0.98 1.01 1.02 0.93 1.06 0.81 0.87 0.83 0.86 δCe 0.81 0.80 0.92 0.82 0.87 0.97 1.04 1.03 1.07 0.98 1.03 1.02 1.04 1.03 x1 - - - - - - - - - - 4.20 4.98 4.72 4.74 x2 - - - - - - - -- - - 4.24 4.67 4.28 4.02 注:DF=10.44-0.21*SiO2-0.32* Fe2O3(total Fe)-0.98*MgO+0.55*CaO+1.46*Na2O+0.54*K2O,引自Shaw(1972);δCe=2CeN/(LaN+PrN),δEu=2EuN/(SmN+GdN),球粒陨石标准化数据引自Taylor and Mclennan(1985);x1=-2.69*lg(Cr)-3.18*lg(V)-1.25*lg(Ni)+10.57*lg(Co)+7.73*lg(Sc)+7.54*lg(Sr)-1.95*lg(Ba)-1.99*lg(Zr)-19.58,x2=3.89*lg(Co)+3.99*lg(Sc)-8.63,引自Shaw and Kudo(1965). 表 2 官地铁矿区含矿岩石LA-ICP-MS锆石U-Pb定年分析结果(单位:Ma)
Table 2. LA-ICP-MS zircon U-Pb dating data of the ore-hosting rocks from Guandi iron deposit
测点号 Th(10-6) U(10-6) Th/U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 斜长片麻岩 15GD-11-01 69.75 36.27 1.92 0.161 95 0.002 15 10.434 54 0.150 98 0.467 29 0.005 93 2 476 11 15GD-11-02 21.53 26.27 0.82 0.158 60 0.002 21 10.066 36 0.151 53 0.460 30 0.005 91 2 441 11 15GD-11-03 57.61 41.13 1.40 0.160 17 0.002 15 10.240 38 0.149 66 0.463 68 0.005 89 2 457 11 15GD-11-05 92.60 34.64 2.67 0.164 06 0.002 08 10.221 60 0.142 96 0.451 85 0.005 66 2 498 11 15GD-11-06 63.36 30.86 2.05 0.163 02 0.002 25 10.072 72 0.150 60 0.448 11 0.005 74 2 487 11 15GD-11-07 69.52 62.13 1.12 0.160 79 0.001 90 10.302 68 0.136 01 0.464 69 0.005 71 2 464 10 15GD-11-08 38.61 47.46 0.81 0.160 32 0.001 91 10.275 88 0.136 98 0.464 84 0.005 73 2 459 10 15GD-11-09 187.67 102.16 1.84 0.157 81 0.001 70 9.523 42 0.117 18 0.437 66 0.005 27 2 432 9 15GD-11-10 52.26 41.37 1.26 0.157 62 0.001 95 9.944 85 0.136 24 0.457 59 0.005 68 2 430 10 15GD-11-11 26.81 25.34 1.06 0.172 44 0.002 35 11.517 67 0.170 80 0.484 42 0.006 22 2 581 11 15GD-11-12 30.95 29.01 1.07 0.159 20 0.002 00 10.444 83 0.145 35 0.475 83 0.005 94 2 447 11 15GD-11-13 17.47 18.99 0.92 0.159 23 0.004 45 10.030 06 0.241 05 0.456 87 0.006 51 2 447 48 15GD-11-14 8.16 14.52 0.56 0.162 69 0.002 49 10.558 18 0.172 75 0.470 67 0.006 24 2 484 13 15GD-11-15 62.99 56.31 1.12 0.166 15 0.002 01 10.861 23 0.146 50 0.474 10 0.005 87 2 519 10 15GD-11-16 26.02 32.37 0.80 0.163 24 0.002 16 10.514 93 0.152 11 0.467 16 0.005 92 2 489 11 15GD-11-17 102.88 46.44 2.22 0.164 54 0.001 91 10.317 53 0.134 77 0.454 77 0.005 57 2 503 10 15GD-11-18 79.79 35.34 2.26 0.158 90 0.002 00 10.009 77 0.139 12 0.456 88 0.005 70 2 444 10 15GD-11-19 56.61 63.11 0.90 0.166 79 0.001 91 10.939 86 0.141 67 0.475 70 0.005 82 2 526 10 15GD-11-20 24.86 29.78 0.83 0.165 13 0.002 35 10.801 27 0.166 17 0.474 40 0.006 14 2 509 12 15GD-11-21 235.93 224.37 1.05 0.155 78 0.001 64 10.083 73 0.122 59 0.469 45 0.005 63 2 410 9 15GD-11-22 43.41 23.97 1.81 0.170 56 0.002 70 12.094 84 0.204 07 0.514 29 0.006 96 2 563 13 15GD-11-23 39.12 52.40 0.75 0.161 76 0.002 00 10.273 70 0.140 97 0.460 61 0.005 72 2 474 10 15GD-11-24 120.55 64.93 1.86 0.166 17 0.002 03 10.908 22 0.148 39 0.476 09 0.005 91 2 519 10 15GD-11-25 7.24 25.38 0.29 0.161 39 0.002 62 10.399 11 0.178 85 0.467 31 0.006 31 2 470 13 15GD-11-26 66.58 42.60 1.56 0.162 60 0.002 25 10.175 65 0.153 15 0.453 88 0.005 81 2 483 11 15GD-11-28 160.39 74.02 2.17 0.164 08 0.002 16 10.557 27 0.152 37 0.466 63 0.005 90 2 498 11 15GD-11-29 31.02 44.91 0.69 0.161 50 0.002 17 10.198 09 0.149 64 0.457 96 0.005 81 2 471 11 15GD-11-31 10.02 9.03 1.11 0.167 94 0.003 15 10.610 12 0.207 25 0.458 18 0.006 56 2 537 16 15GD-11-32 486.99 125.90 3.87 0.163 93 0.001 78 10.486 15 0.130 92 0.463 91 0.005 60 2 497 9 15GD-11-33 101.73 40.32 2.52 0.164 63 0.002 10 10.172 63 0.143 59 0.448 12 0.005 61 2 504 11 15GD-11-34 414.55 77.16 5.37 0.165 06 0.001 86 10.215 36 0.131 17 0.448 83 0.005 46 2 508 10 15GD-11-35 12.53 21.90 0.57 0.155 00 0.004 74 9.405 45 0.248 36 0.440 10 0.006 77 2 402 53 15GD-11-36 104.66 324.81 0.32 0.162 52 0.001 66 10.026 84 0.119 58 0.447 44 0.005 33 2 482 9 15GD-11-37 28.84 32.33 0.89 0.164 13 0.002 35 10.244 21 0.158 53 0.452 65 0.005 85 2 499 12 15GD-11-38 80.37 88.12 0.91 0.165 11 0.001 95 10.821 48 0.143 72 0.475 33 0.005 84 2 509 10 15GD-11-39 26.00 23.61 1.10 0.161 53 0.002 59 10.260 06 0.174 93 0.460 66 0.006 18 2 472 13 15GD-11-40 329.46 97.24 3.39 0.164 83 0.001 87 10.642 14 0.137 49 0.468 24 0.005 70 2 506 10 15GD-11-41 91.77 35.27 2.60 0.165 45 0.002 21 10.840 32 0.159 03 0.475 17 0.006 03 2 512 11 15GD-11-42 12.44 27.50 0.45 0.168 95 0.002 52 10.814 31 0.173 74 0.464 22 0.006 10 2 547 12 15GD-11-43 6.70 10.41 0.64 0.165 11 0.003 67 10.813 57 0.246 79 0.474 99 0.007 36 2 509 19 15GD-11-44 343.16 97.29 3.53 0.162 15 0.001 84 10.279 53 0.132 65 0.459 77 0.005 59 2 478 10 15GD-11-45 197.30 65.70 3.00 0.167 40 0.001 92 10.858 95 0.141 49 0.470 45 0.005 74 2 532 10 15GD-11-46 163.45 584.06 0.28 0.155 61 0.001 97 9.355 51 0.131 52 0.436 01 0.005 43 2 409 11 15GD-11-47 58.01 54.61 1.06 0.166 54 0.001 98 10.482 95 0.140 54 0.456 49 0.005 62 2 523 10 15GD-11-48 89.01 286.98 0.31 0.158 70 0.001 67 10.108 49 0.123 75 0.461 93 0.005 53 2 442 9 15GD-11-49 246.53 40.34 6.11 0.162 93 0.002 17 10.284 03 0.150 78 0.457 77 0.005 79 2 486 11 角闪斜长片麻岩 15GD-12-01 4.92 40.06 0.12 0.157 53 0.002 60 9.844 84 0.168 03 0.453 22 0.005 97 2 429 13 15GD-12-02 3.25 25.11 0.13 0.170 50 0.002 39 11.281 76 0.170 65 0.479 88 0.006 07 2 563 11 15GD-12-03 4.85 34.15 0.14 0.168 53 0.002 31 11.058 77 0.164 28 0.475 88 0.005 98 2 543 11 15GD-12-04 1.32 9.53 0.14 0.177 09 0.003 01 12.251 48 0.218 65 0.501 72 0.006 85 2 626 14 15GD-12-05 5.41 46.44 0.12 0.162 86 0.002 15 10.265 13 0.147 28 0.457 12 0.005 65 2 486 11 15GD-12-06 2.01 16.42 0.12 0.163 01 0.002 66 10.557 46 0.181 66 0.469 70 0.006 24 2 487 13 15GD-12-07 3.24 20.90 0.16 0.146 75 0.003 44 8.536 61 0.203 28 0.421 87 0.006 44 2 308 21 15GD-12-08 1.62 13.14 0.12 0.164 14 0.003 39 10.474 48 0.222 55 0.462 81 0.006 81 2 499 18 15GD-12-10 3.10 16.74 0.19 0.169 91 0.003 21 11.395 12 0.223 29 0.486 37 0.006 92 2 557 16 15GD-12-11 5.64 21.77 0.26 0.161 29 0.002 35 10.263 09 0.159 80 0.461 49 0.005 88 2 469 12 15GD-12-12 4.45 25.26 0.18 0.163 47 0.003 28 10.628 38 0.220 23 0.471 54 0.006 86 2 492 17 15GD-12-13 1.05 8.33 0.13 0.163 36 0.003 64 10.539 16 0.240 04 0.467 90 0.007 15 2 491 19 15GD-12-14 4.49 39.66 0.11 0.159 93 0.002 48 9.979 19 0.164 15 0.452 52 0.005 89 2 455 13 15GD-12-16 8.92 65.69 0.14 0.167 93 0.001 99 11.099 66 0.145 92 0.479 36 0.005 77 2 537 10 15GD-12-17 3.50 26.91 0.13 0.167 33 0.002 77 10.963 87 0.190 86 0.475 18 0.006 37 2 531 14 15GD-12-19 3.70 14.41 0.26 0.162 84 0.003 17 10.254 85 0.206 28 0.456 71 0.006 52 2 485 17 15GD-12-21 3.87 25.09 0.15 0.170 23 0.003 03 11.220 21 0.208 17 0.478 02 0.006 62 2 560 15 15GD-12-22 4.29 38.80 0.11 0.158 95 0.003 33 9.540 79 0.158 01 0.435 32 0.005 57 2 445 36 15GD-12-24 292.79 442.17 0.66 0.164 65 0.003 47 10.520 42 0.178 69 0.463 41 0.005 78 2 504 36 15GD-12-25 1.13 9.65 0.12 0.163 78 0.003 57 10.501 75 0.234 57 0.465 02 0.007 03 2 495 19 15GD-12-26 262.11 458.12 0.57 0.154 56 0.001 65 9.369 00 0.113 47 0.439 61 0.005 16 2 397 9 15GD-12-27 5.41 44.61 0.12 0.168 50 0.002 46 11.206 36 0.174 87 0.482 31 0.006 18 2 543 12 15GD-12-28 15.37 40.53 0.38 0.157 55 0.002 09 9.918 89 0.142 86 0.456 59 0.005 65 2 430 11 15GD-12-29 2.59 19.05 0.14 0.156 00 0.003 37 9.518 47 0.210 37 0.442 49 0.006 59 2 413 19 15GD-12-30 2.22 15.58 0.14 0.170 99 0.003 64 11.431 25 0.249 77 0.484 84 0.007 34 2 567 18 15GD-12-31 3.53 24.38 0.14 0.183 61 0.003 19 13.096 08 0.238 23 0.517 28 0.007 20 2 686 14 15GD-12-32 219.98 416.34 0.53 0.159 33 0.001 68 9.911 59 0.118 53 0.451 15 0.005 28 2 449 9 15GD-12-33 1.84 7.90 0.23 0.150 38 0.005 44 8.636 43 0.273 42 0.416 53 0.007 27 2 350 63 15GD-12-34 324.59 488.12 0.66 0.155 53 0.003 35 9.324 34 0.163 47 0.434 82 0.005 42 2 408 37 15GD-12-35 3.46 21.29 0.16 0.170 94 0.002 53 11.532 05 0.181 94 0.489 27 0.006 31 2 567 12 斜长角闪岩 15GD-14-01 148.55 672.02 0.22 0.146 38 0.003 30 8.517 77 0.154 61 0.422 04 0.005 63 2 304 40 15GD-14-02 156.65 531.76 0.29 0.150 99 0.001 66 8.988 37 0.116 93 0.431 75 0.005 33 2 357 10 15GD-14-03 51.30 179.35 0.29 0.168 66 0.001 91 11.120 31 0.147 14 0.478 20 0.005 94 2 544 10 15GD-14-04 107.33 1 038.10 0.10 0.157 10 0.001 62 9.916 39 0.122 88 0.457 82 0.005 57 2 425 10 15GD-14-05 127.27 719.64 0.18 0.156 80 0.002 80 9.433 64 0.123 91 0.436 35 0.005 27 2 421 31 15GD-14-06 52.40 489.37 0.11 0.169 04 0.001 79 11.249 73 0.141 35 0.482 69 0.005 88 2 548 10 15GD-14-07 56.57 293.72 0.19 0.161 76 0.001 78 10.444 09 0.134 97 0.468 31 0.005 74 2 474 10 15GD-14-08 96.34 893.00 0.11 0.158 43 0.001 62 10.025 57 0.122 56 0.459 00 0.005 54 2 439 9 15GD-14-09 57.34 189.33 0.30 0.161 57 0.001 72 10.406 79 0.130 78 0.467 19 0.005 68 2 472 10 15GD-14-10 48.53 532.95 0.09 0.169 63 0.001 89 11.323 88 0.146 75 0.484 19 0.005 93 2 554 10 15GD-14-11 47.04 206.79 0.23 0.161 32 0.001 94 10.357 09 0.141 68 0.465 69 0.005 78 2 470 10 15GD-14-12 222.19 1 163.60 0.19 0.155 13 0.001 57 9.650 07 0.116 63 0.451 20 0.005 41 2 403 9 15GD-14-13 74.44 139.75 0.53 0.167 52 0.002 10 11.213 30 0.157 87 0.485 53 0.006 09 2 533 11 15GD-14-14 71.93 366.19 0.20 0.163 64 0.001 72 10.523 72 0.130 07 0.466 47 0.005 61 2 494 9 15GD-14-15 70.33 246.46 0.29 0.160 70 0.001 79 10.246 67 0.131 71 0.462 51 0.005 62 2 463 10 15GD-14-16 40.36 252.51 0.16 0.159 45 0.001 69 10.134 21 0.125 26 0.461 00 0.005 53 2 450 9 15GD-14-18 57.90 417.17 0.14 0.167 47 0.001 74 11.144 16 0.135 56 0.482 66 0.005 76 2 533 9 15GD-14-19 54.30 491.90 0.11 0.168 20 0.001 78 11.121 99 0.136 67 0.479 61 0.005 74 2 540 9 15GD-14-20 76.35 1 087.90 0.07 0.156 08 0.001 58 9.796 96 0.116 72 0.455 26 0.005 39 2 414 9 15GD-14-21 70.78 619.43 0.11 0.167 11 0.001 73 11.005 91 0.132 69 0.477 66 0.005 66 2 529 9 15GD-14-22 139.04 844.98 0.16 0.169 01 0.001 91 11.258 77 0.144 46 0.483 14 0.005 83 2 548 10 15GD-14-23 99.10 1 441.7 0.07 0.151 40 0.001 53 9.183 68 0.108 25 0.439 93 0.005 17 2 362 9 15GD-14-24 443.02 167.54 2.64 0.141 72 0.001 59 8.147 87 0.103 89 0.416 97 0.004 99 2 248 10 15GD-14-25 72.60 857.48 0.08 0.164 25 0.001 69 10.550 51 0.125 78 0.465 85 0.005 49 2 500 9 15GD-14-26 161.49 1 217.20 0.13 0.155 15 0.001 56 9.681 57 0.113 35 0.452 55 0.005 29 2 403 9 15GD-14-30 86.97 332.84 0.26 0.158 32 0.001 64 9.968 53 0.118 78 0.456 57 0.005 35 2 438 9 表 3 官地铁矿区角闪斜长片麻岩锆石Hf同位素分析结果
Table 3. Zircon Hf isotopic compositions of amphibole plagiogneiss from Guandi iron deposit
样品号 207Pb/206Pb(Ma) 176Yb/177Hf ±2σ 176Lu/177Hf ±2σ 176Hf/177Hf ±2σ εHf(t) tDM1(Ma) tDM2(Ma) 15GD-12-1 2 429 0.010 233 0.000 045 0.000 274 0.000 001 0.281 204 0.000 021 -1.5 2 803 3 037 15GD-12-3 2 543 0.007 452 0.000 070 0.000 183 0.000 001 0.281 165 0.000 020 -0.1 2 848 3 040 15GD-12-4 2 626 0.009 396 0.000 037 0.000 239 0 0.281 188 0.000 020 2.5 2 822 2 945 15GD-12-5 2 486 0.011 648 0.000 134 0.000 289 0.000 003 0.281 178 0.000 020 -1.2 2 839 3 060 15GD-12-12 2 492 0.012 597 0.000 151 0.000 309 0.000 002 0.281 169 0.000 021 -1.4 2 853 3 078 15GD-12-15 2 339 0.008 907 0.000 065 0.000 236 0.000 002 0.281 161 0.000 017 -5.0 2 858 3 182 15GD-12-19 2 485 0.006 871 0.000 036 0.000 168 0.000 001 0.281 178 0.000 020 -1.0 2 830 3 047 15GD-12-20 2 488 0.013 247 0.000 106 0.000 392 0.000 004 0.281 192 0.000 018 -0.8 2 827 3 038 15GD-12-21 2 560 0.017 999 0.000 082 0.000 466 0.000 001 0.281 182 0.000 019 0.4 2 846 3 022 15GD-12-23 2 420 0.009 092 0.000 048 0.000 239 0 0.281 176 0.000 018 -2.6 2 837 3 099 15GD-12-25 2 495 0.021 315 0.000 477 0.000 616 0.000 011 0.281 215 0.000 019 -0.2 2 812 3 006 15GD-12-27 2 543 0.007 283 0.000 046 0.000 189 0.000 001 0.281 190 0.000 020 0.8 2 815 2 987 15GD-12-29 2 413 0.008 842 0.000 173 0.000 223 0.000 004 0.281 191 0.000 020 -2.3 2 817 3 070 15GD-12-31 2 686 0.009 913 0.000 014 0.000 262 0.000 002 0.281 198 0.000 021 4.2 2 811 2 889 15GD-12-33 2 350 0.021 463 0.000 445 0.000 626 0.000 015 0.281 219 0.000 019 -3.3 2 808 3 087 15GD-12-34 2 408 0.008 522 0.000 045 0.000 218 0.000 001 0.281 153 0.000 018 -3.7 2 866 3 154 注:相关计算公式和标准值参见侯可军等(2007). 表 4 官地铁矿与国内外BIF型铁矿对比
Table 4. Comparison among Guandi iron deposit and BIF-type iron deposits at home and abroad
矿区类别 官地铁矿 弓长岭铁矿 西鞍山铁矿 袁家村铁矿 茂山铁矿 含矿变
质岩系地层单位 鞍山群甲山组 鞍山群茨沟组 鞍山群樱桃园组 吕梁群袁家村组 茂山群 形成时代 新太古代末~2 500 Ma 新太古代~2 548 Ma 新太古代~2 540 Ma 古太古代2.3~2.1 Ga 新太古代<2 500 Ma 含矿岩石 斜长角闪岩、角闪长英片麻岩、长英片麻岩、变粒岩(浅粒岩) 斜长角闪岩、黑云变粒岩、云母石英片岩、石英岩、浅粒岩 绿泥千枚岩、绢云千枚岩、二云变粒岩、碳质千枚岩、石英片岩 绿泥片岩、绢云绿泥片岩、滑石镁铁闪石片岩、变质石英砂岩 角闪岩 原岩类型 基性-中酸性火山岩-火山碎屑岩 基性-中酸性火山岩及碎屑沉积岩 粉砂岩-泥岩-硅铁质沉积建造 富铝的粘土碎屑和碳酸盐软泥 拉斑质玄武岩-安山岩-英安岩 变质程度 广泛角闪岩相,局部绿片岩相 广泛角闪岩相,局部绿片岩相 绿片岩相 广泛绿片岩相,局部低角闪岩相 广泛低角闪岩相,局部高角闪岩相 控矿构造 北西向
单斜构造弓长岭背斜 - 复向斜构造 - 矿体特征 层状、似层、
状透镜状层状 层状、似层状 层状 层状 矿石类型 磁铁石英岩 磁铁石英岩 磁铁石英岩和假象赤铁石英岩 磁铁石英岩 磁铁石英岩 矿石矿物 磁铁矿为主,
钛铁矿、赤铁矿磁铁矿为主,赤铁矿、假象赤铁矿 磁铁矿、假象赤铁赤铁矿、赤铁矿 磁铁矿为主,近地表见赤铁矿、镜铁矿、菱铁矿 磁铁矿和少量赤铁矿 矿石组构 矿石结构 变晶结构为主 变晶结构为主 变晶结构为主 变晶结构为主 变晶结构为主 矿石组构 矿石构造 条带状构造为主,块状构造 条带状构造、块状构造 条带状、条纹状构造、块状构造 条带状构造 条带状构造 成因类型 火山沉积
变质型火山沉积变质型,相当于Algoma型 Algoma型向Superior型过渡型 Superior型 Algoma型 构造背景 弧后盆地 弧后盆地环境 浅海大陆架环境 大陆架浅水环境 岛弧或活动大陆边缘环境 资料来源 本文 李志红等(2012);李延河等(2014) 李志红等(2008);崔培龙(2014) 王长乐等(2014;2015) 吴琼(2017) -
[1] Andersen, T., Griffin, W.L., Pearson, N.J., 2002.Crustal Evolution in the SW Part of the Baltic Shield:The Hf Isotope Evidence.Journal of Petrology, 43(9):1725-1747.doi: 10.1093/petrology/43.9.1725 [2] BGMRJP (Bureau of Geology and Mineral Resources of Jilin Province), 1988.Regional Geology of Jilin Province.Geological Publishing House, Beijing (in Chinese). [3] Biczok J., Hollings, P., Klipfel, P., et al., 2012.Geochronology of the North Caribou Greenstone Belt, Superior Province Canada:Implications for Tectonic History and Gold Mineralization at the Musselwhite Mine.Precambrian Research, 192-195:209-230.doi: 10.1016/j.precamres.2011.10.012 [4] Cao, Z.Q., Zhai, W.J., Jiang, X.F., et al., 2016.About 2.5 Ga Tectono-Metamorphic Event in Southern Margin of North China Craton and Its Significance.Earth Science, 41(4):570-585 (in Chinese with English abstract). [5] Chen, B., Jahn, B.M., Tian, W., 2009.Evolution of the Solonker Suture Zone:Constraints from Zircon U-Pb Ages, Hf Isotopic Ratios and Whole-Rock Nd-Sr Isotope Compositions of Subduction-and Collision-Related Magmas and Forearc Sediments.Journal of Asian Earth Sciences, 34(3):245-257.doi: 10.1016/j.jseaes.2008.05.007 [6] Chen, C., Ren, Y.S., Zhao, H.L., et al., 2014.Permian Age of the Wudaogou Group in Eastern Yanbian:Detrital Zircon U-Pb Constraints on the Closure of the Palaeo-Asian Ocean in Northeast China.International Geology Review, 56(14):1754-1768.doi: 10.1080/00206814.2014.956348 [7] Cope, T., Ritts, B.D., Darby, B.J., et al., 2005.Late Paleozoic Sedimentation on the Northern Margin of the North China Block:Implications for Regional Tectonics and Climate Change.International Geology Review, 47(3):270-296.doi: 10.2747/0020-6814.47.3.270 [8] Cui, P.L., 2014.Metallogenic Tectonic Setting, Metallogenic and Prospecting Models for Precambrian Iron-Formation in the Anshan-Benxi Area(Dissertation).Jilin University, Changchun (in Chinese with English abstract). [9] Dai, Y.P., Zhang, L.C., Zhu, M.T., et al., 2013a.Chentaigou BIF-Type Iron Deposit, Anshan Area Associated with Archean Crustal Growth:Constraints from Zircon U-Pb Dating and Hf Isotope.Acta Petrologica Sinica, 29(7):2537-2550(in Chinese with English abstract). doi: 10.1007/978-981-10-1064-4_4 [10] Dai, Y.P., Zhang, L.C., Zhu, M.T., et al., 2013b.Mineralization, Crustal Growth and Genesis of Rich Ore of Archean BIFs in the Anshan Area.Acta Mineralogica Sinica, (S2):386-387 (in Chinese). [11] Fretzdorff, S., Livermore, R.A., Devey, C.W., et al., 2002.Petrogenesis of the Back-Arc East Scotia Ridge, South Atlantic Ocean.Journal of Petrology, 43(8):1435-1467.doi: 10.1093/petrology/43.8.1435 [12] Gill, R., 2010.Igneous Rocks and Processes:A Practical Guide.Wiley-Blackwell, Chichester. [13] Gross, G.A., 1980.A Classification of Iron Formations Based on Depositional Envionments.Canadian Mineralogist, 18(2):215-222. http://www.scirp.org/(S(351jmbntvnsjt1aadkposzje))/reference/ReferencesPapers.aspx?ReferenceID=1522360 [14] Gross, G.A., 1983.Tectonic Systems and the Deposition of Iron-Formation.Precambrian Research, 20(2-4):171-187.doi: 10.1016/0301-9268(83)90072-4 [15] Han, J., 2013.The Final Collision of the Xar Moron River-Changchun Suture:Evidence from the Zircon U-Pb Dating of the Linxi Formation, Inner Mongolia (Dissertation).Jilin University, Changchun (in Chinese with English abstract). [16] Hoskin, P.W.O., Black, L.P., 2000.Metamorphic Zircon Formation by Solid-State Recrystallization of Protolith Igneous Zircon.Journal of Metamorphic Geology, 18(4):423-439.doi: 10.1046/j.1525-1314.2000.00266.x [17] Hoskin, P.W.O., Schaltegger, U., 2003.The Composition of Zircon and Igneous and Metamorphic Petrogenesis.Reviews in Mineralogy and Geochemistry, 53(1):27-62.doi: 10.2113/0530027 [18] Hou, K.J., Li, Y.H., Tian, Y.R., 2009.In Situ U-Pb Zircon Dating Using Laser Ablation-Multi Ion Counting-ICP-MS.Mineral Deposits, 28(4):481-492(in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical_kcdz200904010.aspx [19] Hou, K.J., Li, Y.H., Zou, T.R., et al., 2007.Laser Ablation-MC-ICP-MS Technique for Hf Isotope Microanalysis of Zircon and Its Geological Applications.Acta Petrologica Sinica, 23(10):2595-2604(in Chinese with English abstract). http://www.oalib.com/paper/1472292 [20] Hu, G.H., Zhao, T.P., Zhou, Y.Y., et al., 2012.Depositional Age and Provenance of the Wufoshan Group in the Southern Margin of the North China Craton:Evidence from Detrital Zircon U-Pb Ages and Hf Isotopic Compositions.Geochimica, 41(4):326-342 (in Chinese with English abstract). [21] Huston, D.L., Logan, G.A., 2004.Barite, BIFs and Bugs:Evidence for the Evolution of the Earth's Early Hydrosphere.Earth and Planetary Science Letters, 220(1-2):41-55.doi: 10.1016/S0012-821X(04)00034-2 [22] Jia, D.C., Hu, R.Z., Lu, Y., et al., 2004.Collision Belt between the Khanka Block and the North China Block in the Yanbian Region, Northeast China.Journal of Asian Earth Sciences, 23(2):211-219.doi: 10.1016/S1367-9120(03)00123-8 [23] Jiang, N., Guo, J.H., Zhai, M.G., et al., 2010.~2.7Ga Crust Growth in the North China Craton.Precambrian Research, 179(1-4):37-49.doi: 10.1016/j.precamres.2010.02.010 [24] Jin, B.C., 2012.Characteristics of Paleozoic Sedimentary from East China-Korean Peninsula and Its Tectonic Evolution (Dissertation).Jilin University, Changchun (in Chinese with English abstract). [25] Kröner, A., Cui, W.Y., Wang, S.Q., et al., 1998.Single Zircon Ages from High-Grade Rocks of the Jianping Complex, Liaoning Province, NE China.Journal Asian Earth Science, 16(5-6):519-532.doi: 10.1016/S0743-9547(98)00033-6 [26] Li, B.L., Sun, Y.G., Chen, G.J., et al., 2016.Zircon U-Pb Geochronology, Geochemistry and Hf Isotopic Composition and Its Geological Implication of the Fine-Grained Syenogranite in Dong'an Goldfield from the Lesser Xing'an Moutains.Earth Science, 41(1):1-16 (in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S1342937X16304750 [27] Li, C.H., Song, Q.H., Ma, J., 2011.Typical Iron Deposit of Helong City, Jilin Province.Jilin Geology, 30(4):40-43(in Chinese with English abstract). [28] Li, H.Y., Xu, Y.G., Huang, X.L., et al., 2009.Activation of Northern Margin of the North China Craton in Late Paleozoic:Evidence from U-Pb Dating and Hf Isotopes of Detrital Zircons from the Upper Carboniferous Taiyuan Formation in the Ningwu-Jingle Basin.Chinese Science Bulletin, 54(4):677-686.doi: 10.1007/s11434-008-0444-9 [29] Li, X.G., Wang, Z.G., Pan, S.J., et al., 2010.Geological Features of Guandi BIFs Iron Deposit of Helong City, Jilin Province.Jilin Geology, 29(2):67-70(in Chinese). [30] Li, Y.H., Zhang, Z.J., Hou, K.J., et al., 2014.The Genesis of Gongchangling High-Grade-Iron Ores, Anshan-Benxi Area, Liaoning Province, NE China:Evidence from Fe-Si-O-S Isotopes.Acta Geologica Sinica, 88(12):2351-2372 (in Chinese with English abstract). doi: 10.1007/s12303-017-0042-4 [31] Li, Z.H., Zhu, X.K., Tang, S.H., 2008.Characters of Fe Isotopes and Rare Earth Elements of Banded Iron Formations from Anshan-Benxi Area:Implications for Fe Source.Acta Petrologica et Mineralogica, 27(4):285-290(in Chinese with English abstract). doi: 10.1007/978-981-10-1064-4_5 [32] Li, Z.H., Zhu, X.K., Tang, S.H., 2012.Fe Isotope Compositions of Banded Iron Formation from Anshan-Benxi Area:Constraints on the Formation Mechanism and Archean Ocean Environment.Acta Petrologica Sinica, 28(11):3545-3558(in Chinese with English abstract). http://www.oalib.com/paper/1475726 [33] Li, Z.S., 2016.Geochemical Characteristics and Geochronology Study of the Neo-Archean Metamorphic Plutonic Intrusive of the Toudaoliu Rive Area in the Huadian of Jilin Province (Dissertation).Jilin University, Changchun (in Chinese with English abstract). [34] Lu, X.Q., Xue, S.Y., Wang, D.Z., 2014.Geological Features, Mineralization Type and Forming Environment of Helong Archaean Iron Deposit in Jilin Province.Jilin Geology, 33(1):68-72(in Chinese with English abstract). [35] Ludwig, K.R., 2003.User's Manual for Isoplot 3.00:A Geochronological, Toolkit for Microsoft Excel.No.4 Berkeley Geochronology Center Special Publication, Berkeley. [36] Pearce, J.A., Cann, J.R., 1973.Tectonic Setting of Basic Volcanic Rocks Determined Using Trace Element Analyses.Earth and Planetary Science Letters, 19(2):290-300.doi: 10.1016/0012-821X(73)90129-5 [37] Pearce, J.A., Norry, M.J., 1979.Petrogenetic Implications of Ti, Zr, Y and Nb Variations in Volcanic Rocks.Contributions to Mineralogy and Petrology, 69(1):33-47.doi: 10.1007/BF00375192 [38] Shang, Q.Q., Ren, Y.S., Chen, C., et al., 2017.Formation Age and Tectonic Significance of Guandi Iron Deposit in Yanbian Area, Jilin Province.Mineral Deposits, 36(2):364-378 (in Chinese with English abstract). doi: 10.1007/s12583-016-0934-1 [39] Shaw, D.W., 1972.The Origin of the Apsley Gneiss, Ontario.Canadian Journal of Earth Sciences, 9(1):18-35.doi: 10.1139/e72-002 [40] Shaw, D.M., Kudo, A.M., 1965.A Test of the Discriminant Function in the Amphibolite Problem.Mineralogical Magazine, 34(268):423-435.doi: 10.1180/minmag.1965.034.268.38 [41] Shen, B.F., Luo, H., 1994.The Metallogenetic Characteristics of Gold Deposits of the Archean Greenstone Belts in North China Platform.Journal of Geology & Mineral Resource of North China, 9(1):87-96 (in Chinese with English abstract). doi: 10.1360/02yd0418 [42] Shen, B.F., Zhai, A.M., Yang, C.L., et al., 2005.Temporal-Spatial Distribution and Evolutional Characters of Precambrian Iron Deposits in China.Geological Survey and Research, 28(4):196-206(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-QHWJ200504002.htm [43] Shen, Q.H., Geng, Y.S., Song, B., et al., 2005.New Information from the Surface Outcrops and Deep Crust of Archean Rocks of the North China and Yangtze Blocks, and Qinling-Dabie Orogenic Belt.Acta Geologica Sinica, 79(5):616-627(in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical_dizhixb200505006.aspx [44] Shen, Q.H., Geng, Y.S., Song, H.X., 2016.Constituents and Evolution of the Metamorphic Basement of the North China Craton.Acta Geoscientica Sinica, 37(4):387-406 (in Chinese with English abstract). http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20090804 [45] Simonen, A., 1953.Stratigraphy and Sedimentation of the Svecofennidic, Early Archean Supracrustal Rocks in Southwestern Finland.Bulletin of the Geological Society of Finland, 160:1-64. http://www.oalib.com/references/19157902 [46] Su, M.X., Zhao, W.T., Zhang, H.C., et al., 2014.Geophysical Characteristics of the Suture Zone between North China and Siberian Plates.Geophysical and Geochemical Exploration, 38(5):949-955 (in Chinese with English abstract). [47] Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345.doi: 10.1144/GSL.SP.1989.042.01.19 [48] Sun, Y.W., Li, M.S., Ge, W.C., et al., 2013.Eastward Termination of the Solonker-Xar Moron River Suture Determined by Detrital Zircon U-Pb Isotopic Dating and Permian Floristics.Journal of Asian Earth Sciences, 75(5):243-250.doi: 10.1016/j.jseaes.2013.07.018 [49] Tarney, J., 1976.Geochemistry of Archaean High-Grade Gneisses, with Implications as to Origin and Evolution of the Precambrian Crust.Wiley, London. [50] Taylor, B., Martinez, F., 2003.Back-Arc Basin Basalt Systematics.Earth and Planetary Science Letters, 210(3-4):481-497.doi: 10.1016/S0012-821X(03)00167-5 [51] Taylor, S.R., McLennan, S.M., 1985.The Continental Crust:Its Composition and Evolution.Blackwell Scientific Publications, Oxford. [52] The 603 Team of Jilin Nonferrous Metal Geological Exploration Bureau, 2013.The Production Exploration Summary of Guandi Iron Deposit in Helong of Jilin Province.The 603 Team of Jilin Nonferrous Metal Geological Exploration Bureau, Yanji (in Chinese). [53] Thurston, P.C., Kamber, B.S., Whitehouse, M., 2012.Archean Cherts in Banded Iron Formation:Insight into Neoarchean Ocean Chemistry and Depositional Processes.Precambrian Research, 214-215:227-257.doi: 10.1016/j.precamres.2012.04.004 [54] Walker, K.R., Joplin, G.A., Lovering, J.F., et al., 1959.Metamorphic and Metasomatic Convergence of Basic Igneous Rocks and Lime-Magnesia Sediments of the Precambrian of North-Western Queensland.Journal of the Geological Society of Australia, 6(2):149-177.doi: 10.1080/00167615908728504 [55] Wan, Y.S., Dong, C.Y., Xie, H.Q., et al., 2012.Formation Ages of Early Precambrian BIFs in the North China Craton:SHRIMP Zircon U-Pb Dating.Acta Geologica Sinica, 86(9):1447-1478(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201209010.htm [56] Wang, C.L., Zhang, L.C., Lan, C.Y., et al.2014.Rare Rarth Element and Yttrium Compositions of the Paleoproterozoic Yuanjiacun BIF in the Lüliang Area and Their Implications for the Great Oxidation Event (GOE).Science China:Earth Sciences, 44(11):2389-2405 (in Chinese). doi: 10.1007/978-981-10-1064-4_13 [57] Wang, C.L., Zhang, L.C., Lan, C.Y., et al., 2015.Analysis of Sedimentary Facies and Depositional Environment of the Yuanjiacun Banded Iron Formation in the Lüliang Area, Shanxi Province.Acta Petrologica Sinica, 31(6):1671-1693 (in Chinese with English abstract). doi: 10.1007/978-981-10-1064-4_13 [58] Wang, R.M., He, G.P., Chen, Z.Z., et al., 1987.Graphical Method for Protolith Reconstruction of Metamorphic Rocks.Geological Publishing House, Beijing (in Chinese). [59] Wiedenbeck, M., Alle, P., Corfu, F., et al., 1995.Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace-Element and REE Analyses.Geostandards Newsletter, 19(1):1-23.doi: 10.1111/j.1751-908X.1995.tb00147.x [60] Winchester, J.A., Floyd, P.A., 1977.Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements.Chemical Geology, 20:325-343.doi: 10.1016/0009-2541(77)90057-2 [61] Wu, F.Y., Sun, D.Y., Ge, W.C., et al., 2011.Geochronology of the Phanerozoic Granitoids in Northeastern China.Journal of Asian Earth Sciences, 41(1):1-30.doi: 10.1016/j.jseaes.2010.11.014 [62] Wu, F.Y., Zhao, G.C., Wilde, S.A., et al., 2005.Nd Isotopic Constraints on Crustal Formation in the North China Craton.Journal of Asian Earth Sciences, 24(5):523-545.doi: 10.1016/j.jseaes.2003.10.011 [63] Wu, Q., 2017.Study on the Geological Characteristics and Enrichment Regularities of Mineralization of Guandi Fe Deposit in Helong, Jilin Province (Dissertation).Jilin University, Changchun (in Chinese with English abstract). [64] Wu, Y.B., Zheng, Y.F., 2004.Zircon Genetic Mineralogy Research and Its Constrains to U-Pb Age Interpretation.Chinese Science Bulletin, 49(16):1589-1604 (in Chinese). [65] Yang, F.D., Duan, J.X., Yu, C., et al., 2009.Ore-Forming Geological Conditions of Precambrian Metamorphic Iron Deposits, Jilin Province.Jilin Geology, 28(4):12-16(in Chinese). [66] Yang, J., Wang, J.R., Zhang, Q., et al., 2016a.Global IAB Data Excavation:The Performance in Basalt Discrimination Diagrams and Preliminary Interpretation.Geological Bulletin of China, 35(12):1937-1949 (in Chinese with English abstract). http://www.doc88.com/p-0912894668271.html [67] Yang, J., Wang, J.R., Zhang, Q., et al., 2016b.Back-Arc Basin Basalt (BABB) Data Mining:Comparison with MORB and IAB.Advances in Earth Science, 31(1):66-77 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical_dqkxjz201601006.aspx [68] Yang, J.H., Wu, F.Y., Shao, J.A., et al., 2006.Constraints on the Timing of Uplift of the Yanshan Fold and Thrust Belt, North China.Earth and Planetary Science Letters, 246(3-4):336-352.doi: 10.1016/j.epsl.2006.04.029 [69] Zhai, M.G., 2010.Tectonic Evolution and Metallogenesis of North China Craton.Mineral Deposits, 29(1):24-36(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KCDZ201001005.htm [70] Zhai, M.G., 2012.Evolution of the North China Craton and Early Plate Tectonics.Acta Geologica Sinica, 86(9):1335-1349(in Chinese with English abstract). [71] Zhai, M.G., Santosh, M., 2011.The Early Precambrian Odyssey of the North China Craton:A Synoptic Overview.Gondwana Research, 20(1):6-25.doi: 10.1016/j.gr.2011.02.005 [72] Zhai, M.G., Xiao, W.J., Kusky, T., et al., 2007.Tectonic Evolution of China and Adjacent Crustal Fragments.Gondwana Research, 12(1-2):1-3.doi: 10.1016/j.gr.2006.11.010 [73] Zhang, J.F., 1997.A Preliminary Discussion on an Application of the Sequence Stratigraphy in the Regional Geological Surveying(1:50 000)-Taking Hunjiang Area as an Example.Jilin Geolgy, 16(2):31-32+34-38 (in Chinese with English abstract). [74] Zhang, L.C., Dai, Y.P., Wang, C.L., et al., 2013.Archean Crust Growth and BIF-Iron Deposit in the North China Craton.Acta Mineralogica Sinica, (S2):419-420 (in Chinese). [75] Zhang, L.C., Zhai, M.G., Wan, Y.S., et al., 2012.Study of the Precambrian BIF-Iron Deposits in the North China Craton:Progresses and Questions.Acta Petrologica Sinica, 28(11):3431-3445(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201211002.htm [76] Zhang, L.C., Zhang, X.J., Cui, M.L., et al., 2011.Formation Age and Tectonic Environment of BIF-Iron Deposit in the North China Craton.Acta Mineralogica Sinica, (S1):666-667 (in Chinese). [77] Zhang, Y.B., Wu, F.Y., Wilde, S.A., et al., 2004.Zircon U-Pb Ages and Tectonic Implications of 'Early Paleozoic' Granitoids at Yanbian, Jilin Province, Northeast China.The Island Arc, 13(4):484-505.doi: 10.1111/j.1440-1738.2004.00442.x [78] Zhao, G.C., Wilde, S.A., Cawood, P.A., et al., 2001.Achean Blocks and Their Boundaries in the North China Craton:Lithological, Geochemical, Structural and P-T Path Constraints and Tectonic Evolution.Precambrian Rsearch, 107(1-2):45-73.doi: 10.1016/S0301-9268(00)00154-6 [79] Zhou, J.B., Zeng, W.S., Cao, J.L., et al., 2012.The Tectonic Framework and Evolution of the NE China:From~500 Ma to~180 Ma.Journal of Jilin University (Earth Science Edition), 42(5):1298-1316 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-CCDZ201205005.htm [80] 曹正琦, 翟文建, 蒋幸福, 等, 2016.华北克拉通南缘约2.5Ga构造变质事件及意义.地球科学, 41(4):570-585. http://earth-science.net/WebPage/Article.aspx?id=3275 [81] 崔培龙, 2014. 鞍山-本溪地区铁建造型铁矿成矿构造环境与成矿、找矿模式研究(博士学位论文). 长春: 吉林大学. http://cdmd.cnki.com.cn/Article/CDMD-10183-1014267860.htm [82] 代堰锫, 张连昌, 朱明田, 等, 2013a.鞍山陈台沟BIF铁矿与太古代地壳增生:锆石U-Pb年龄与Hf同位素约束.岩石学报, 29(7):2537-2550. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ysxb201307020&dbname=CJFD&dbcode=CJFQ [83] 代堰锫, 张连昌, 朱明田, 等, 2013b.鞍本地区太古代BIF成矿作用、地壳增生及富矿成因.矿物学报, 33(S2):386-387. http://www.cnki.com.cn/Article/CJFDTotal-KWXB2013S2217.htm [84] 韩杰, 2013. 西拉木伦-长春缝合线的形成时代——来自林西地区林西组碎屑锆石年龄的制约(硕士学位论文). 长春: 吉林大学. http://cdmd.cnki.com.cn/Article/CDMD-10183-1013194623.htm [85] 侯可军, 李延河, 田有荣, 2009.LA-MC-ICP-MS锆石微区原位U-Pb定年技术.矿床地质, 28(4):481-492. http://mall.cnki.net/magazine/Article/KCDZ200904009.htm [86] 侯可军, 李延河, 邹天人, 等, 2007.LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用.岩石学报, 23(10):2595-2604. doi: 10.3969/j.issn.1000-0569.2007.10.025 [87] 胡国辉, 赵太平, 周艳艳, 等, 2012.华北克拉通南缘五佛山群沉积时代和物源区分析:碎屑锆石U-Pb年龄和Hf同位素证据.地球化学, 41(4):326-342. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201204003.htm [88] 吉林省地质矿产局, 1988.吉林省区域地质志.北京:地质出版社. [89] 吉林省有色金属地质勘查局603队, 2013. 吉林省和龙市官地铁矿生产勘探工作总结. 延吉: 吉林省有色金属地质勘查局603队. [90] 金炳成, 2012. 中国东部-朝鲜半岛古生代沉积特征及构造演化(博士学位论文). 长春: 吉林大学. http://cdmd.cnki.com.cn/Article/CDMD-10183-1012362772.htm [91] 李碧乐, 孙永刚, 陈广俊, 等, 2016.小兴安岭东安金矿区细粒正长花岗岩U-Pb年龄、岩石地球化学、Hf同位素组成及地质意义.地球科学, 41(1):1-16. doi: 10.11764/j.issn.1672-1926.2016.01.0001 [92] 李晨辉, 松权衡, 马晶, 2011.和龙市官地铁矿典型矿床研究.吉林地质, 30(4):40-43. http://www.cqvip.com/QK/96381X/201104/41036148.html [93] 李兴国, 汪志刚, 潘四江, 等, 2010.吉林省和龙市官地BIFs铁矿床地质特征.吉林地质, 29(2):67-70. http://d.wanfangdata.com.cn/Periodical/jldz201002017 [94] 李延河, 张增杰, 侯可军, 等, 2014.辽宁鞍本地区沉积变质型富铁矿的成因:Fe、Si、O、S同位素证据.地质学报, 88(12):2351-2372. http://www.oalib.com/paper/4875224 [95] 李志红, 朱祥坤, 唐索寒, 2008.鞍山-本溪地区条带状铁建造的铁同位素与稀土元素特征及其对成矿物质来源的指示.岩石矿物学杂志, 27(4):285-290. http://d.wanfangdata.com.cn/Periodical/yskwxzz200804004 [96] 李志红, 朱祥坤, 唐索寒, 2012.鞍山-本溪地区条带状铁矿的Fe同位素特征及其对成矿机理和地球早期海洋环境的制约.岩石学报, 28(11):3545-3558. http://d.wanfangdata.com.cn/Periodical/ysxb98201211009 [97] 李忠水, 2016. 吉林省桦甸市头道溜河一带变质深成侵入岩地球化学特征及年代学研究(硕士学位论文). 长春: 吉林大学. http://cdmd.cnki.com.cn/Article/CDMD-10183-1016089629.htm [98] 卢秀全, 薛世远, 王堆珍, 2014.吉林和龙太古代铁矿床地质特征、矿化类型及形成环境.吉林地质, (1):68-72. http://d.wanfangdata.com.cn/Periodical/jldz201401017 [99] 商青青, 任云生, 陈聪, 等, 2017.延边地区官地铁矿床形成时代及其构造意义.矿床地质, 36(2):364-378. http://www.cnki.com.cn/Journal/A-A5-KCDZ-2017-02.htm [100] 沈保丰, 骆辉, 1994.华北陆台太古宙绿岩带金矿的成矿特征.华北地质矿产杂志, 33(1):87-96. http://www.wenkuxiazai.com/doc/f1f95177cfc789eb162dc852.html [101] 沈保丰, 翟安民, 杨春亮, 等, 2005.中国前寒武纪铁矿床时空分布和演化特征.地质调查与研究, 28(4):196-206. http://www.docin.com/p-503731976.html [102] 沈其韩, 耿元生, 宋彪, 等, 2005.华北和扬子陆块及秦岭-大别造山带地表和深部太古宙基底的新信息.地质学报, 79(5):616-627. http://d.wanfangdata.com.cn/Periodical/dizhixb200505006 [103] 沈其韩, 耿元生, 宋会侠, 2016.华北克拉通的组成及其变质演化.地球学报, 37(4):387-406. http://www.cqvip.com/QK/98325A/201604/669708099.html [104] 苏美霞, 赵文涛, 张慧聪, 等, 2014.华北板块与西伯利亚板块缝合带之地球物理特征.物探与化探, 38(5):949-955. doi: 10.11720/wtyht.2014.5.15 [105] 万渝生, 董春艳, 颉颃强, 等, 2012.华北克拉通早前寒武纪条带状铁建造形成时代——SHRIMP锆石U-Pb定年.地质学报, 86(9):1447-1478. http://d.wanfangdata.com.cn/Periodical/dizhixb201209008 [106] 王长乐, 张连昌, 兰彩云, 等, 2014.山西吕梁古元古代袁家村铁矿BIF稀土元素地球化学及其对大氧化事件的指示.中国科学:地球科学, 44(11):2389-2405. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-DZDQ201501005063.htm [107] 王长乐, 张连昌, 兰彩云, 等, 2015.山西吕梁袁家村条带状铁建造沉积相与沉积环境分析.岩石学报, 31(6):1671-1693. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ysxb201506013&dbname=CJFD&dbcode=CJFQ [108] 王仁民, 贺高品, 陈珍珍, 等, 1987.变质岩原岩图解判别法.北京:地质出版社. [109] 吴琼, 2017. 吉林和龙官地铁矿矿床地质特征及矿化富集规律(硕士学位论文). 长春: 吉林大学. http://cdmd.cnki.com.cn/Article/CDMD-10183-1017156286.htm [110] 吴元保, 郑永飞, 2004.锆石成因矿物学研究及其对U-Pb年龄解释的制约.科学通报, 49(16):1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002 [111] 杨复顶, 段建祥, 于城, 等, 2009.吉林省前寒武纪变质铁矿成矿地质条件浅析.吉林地质, 28(4):12-16. http://d.wanfangdata.com.cn/Periodical/jldz200904003 [112] 杨婧, 王金荣, 张旗, 等, 2016a.全球岛弧玄武岩数据挖掘-在玄武岩判别图上的表现及初步解释.地质通报, 35(12):1937-1949. http://d.wanfangdata.com.cn/Periodical/zgqydz201612001 [113] 杨婧, 王金荣, 张旗, 等, 2016b.弧后盆地玄武岩(BABB)数据挖掘:与MORB及IAB的对比.地球科学进展, 31(1):66-77. http://www.adearth.ac.cn/CN/abstract/abstract11474.shtml [114] 翟明国, 2010.华北克拉通的形成演化与成矿作用.矿床地质, 29(1):24-36. http://www.doc88.com/p-084374723035.html [115] 翟明国, 2012.华北克拉通的形成以及早期板块构造.地质学报, 86(9):1335-1349. http://d.wanfangdata.com.cn/Periodical/dizhixb201209002 [116] 张炯飞, 1997.延边地区渤海地块与兴凯地块之间古缝合带的初步研究.吉林地质, 16(2):31-32+34-38. http://www.cnki.com.cn/Article/CJFDTOTAL-JLDZ702.005.htm [117] 张连昌, 代堰锫, 王长乐, 等, 2013.华北克拉通太古代地壳增生与BIF铁矿.矿物学报, 33(S2):419-420. http://www.cqvip.com/QK/95783X/2013S2/1005565636.html [118] 张连昌, 翟明国, 万渝生, 等, 2012.华北克拉通前寒武纪BIF铁矿研究:进展与问题.岩石学报, 28(11):3431-3445. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ysxb201211002&dbname=CJFD&dbcode=CJFQ [119] 张连昌, 张晓静, 崔敏利, 等, 2011.华北克拉通BIF铁矿形成时代与构造环境.矿物学报, 31(S1):666-667. http://www.cqvip.com/QK/95783X/2011S1/1003573517.html [120] 周建波, 曾维顺, 曹嘉麟, 等, 2012.中国东北地区的构造格局与演化:从500 Ma到180 Ma.吉林大学学报(地球科学版), 42(5):1298-1316. http://www.cqvip.com/QK/91256B/201205/43710834.html