Gas Generation Evolution and Potential Analysis of Carboniferous-Permian Coal-Measured Source Rocks in Dongpu Depression
-
摘要: 东濮凹陷石炭-二叠系煤系烃源岩的生烃演化时空差异性尚存在争议,烃源岩热演化生烃史的定量化研究仍有待进一步深入.利用热模拟实验和盆地模拟技术对烃源岩热演化生烃史进行了系统定量评价.煤系暗色泥岩、煤和碳质泥岩具有相似的生气模式,以Ro为0.5%、1.2%、2.2%、3.15%作为界限,将煤系烃源岩生气作用统一划分为5个阶段,其中主生气期门限Ro为2.2%,对应深度约为5 500 m;东濮凹陷石炭-二叠系源岩经历海西-印支期、喜山早期和喜山晚期三期成熟演化过程,其中古近纪沙一-东营期和新近纪明化镇中期-现今是主要生烃期,烃源岩演化普遍进入成熟-过成熟阶段;三期演化对应生烃贡献比例分别为9.28%、62.07%、28.64%,主力生烃范围集中在洼陷带及中央隆起带中部一带,煤生气贡献量最大、占68%.Abstract: The space-time difference of hydrocarbon generation and evolution of Carboniferous-Permian coal-measured source rocks in Dongpu depression has always been a dispute. In addition, the quantitative study of hydrocarbon generation history of source rocks remains to be further studied. In this study, the thermal evolution history of source rock was quantitatively evaluated by thermal simulation and basin simulation. It shows that similar gas generation model could be applied to coal-measured mudstone, coal and carbonaceous mudstone with Ro value of 0.5%, 1.2%, 2.2%, and 3.15%. Gas generation phase of source rocks could be divided into five stages. The Carboniferous-Permian source rocks in study area have experienced mature evolution periodically and the whole process of hydrocarbon generation occurring to the source rocks could be divided into three periods, which are the Hercynian-Indosinian epoch, the Early Himalayan epoch and the Late Himalaya epoch. However, the main gas generation periods are distributed from Late Paleogene Shahejie to Dongying period and Neogene Minghuazhen period to the present and thermal evolution of the source rock also entered into the mature-overmature stage meanwhile. The cumulative gas generation intensity was strongest in the Early Himalaya epoch, followed by the Late Himalayan epoch and the Hercynian-Indosinian epoch and the amount of gas generation during the three periods was 9.28%, 62.07%, 28.64% respectively. The main hydrocarbon generation areas are concentrated in the sag zone and in the middle of the central uplift zone, and the gas generation contribution of coal is the largest, accounting for 68% of the total.
-
表 1 热模拟实验样品基本地化特征
Table 1. Basic geochemical characteristics of the samples for thermal simulation experiment
样品号 岩性 地层 Ro(%) TOC(%) S1(mg/g) S2(mg/g) Tmax(℃) HI(mg/g) 类型 庆古1井 煤 C2t 0.96 70.94 7.84 86.8 491 155.56 Ⅲ 庆古2井 碳质泥岩 C2t 0.89 11.61 0.76 5.09 472 65.51 Ⅲ 毛4井 暗色泥岩 C2t 0.77 2.21 0.4 1.03 456 41.70 Ⅲ -
[1] Alexander, R., Berwick, L., Pierce, K., 2011.Single Carbon Surface Reactions of 1-Octadecene and 2, 3, 6-Trimethylphenol on Activated Carbon:Implications for Methane Formation in Sediments.Organic Geochemistry, 42(5):540-547. https://doi.org/10.1016/j.orggeochem.2011.03.005 [2] Burnham, A.K., Sweeney, J.J., 1989.A Chemical Kinetic Model of Vitrinite Maturation and Reflectance.Geochimica et Cosmochimica Acta, 53(10):2649-2656. https://doi.org/10.1016/0016-7037(89)90136-1 [3] Darouich, T.A., Behar, F., Largeau, C., 2006.Pressure Effect on the Thermal Cracking of the Light Aromatic Fraction of Safaniya Crude Oil-Implications for Deep Prospects.Organic Geochemistry, 37(9):1155-1169. https://doi.org/10.1016/j.orggeochem.2006.04.004 [4] Dieckmann, V., 2005.Modelling Petroleum Formation from Heterogeneous Source Rocks:The Influence of Frequency Factors on Activation Energy Distribution and Geological Prediction.Marine and Petroleum Geology, 22(3):375-390. https://doi.org/10.1016/j.marpetgeo.2004.11.002 [5] Guo, X.W., He, S., Hou, Y.G., 2010.Numerical Simulation of Petroleum Generation, Migration and Accumulation of the Es3 Formation in Banqiao Depression.Earth Science, 35(1):115-124 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2010.012 [6] Hakimi, M.H., Abdulah, W.H., Shalaby, M.R., 2010.Organic Geochemistry, Burial History and Hydrocarbon Generation Modelling of the Upper Jurassic Madbi Formation, Masila Basin, Yemen.Journal of Petroleum Geology, 33(4):299-318. https://doi.org/10.1111/j.1747-5457.2010.00481.x [7] He, F., Liu, F., Zheng, X., 2010.Study on Hydrocarbon Generation History and Space-Time Distribution Variation of Secondary Hydrocarbon Generation in Upper Palaeozoic Formation of Dongpu Depression.Fault-Block Oil and Gas Field, 17(3):296-299(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-TRQG200611007.htm [8] Hill, R.J., Zhang, E., Katz, B.J., et al., 2007.Modeling of Gas Generation from the Barnett Shale, Fort Worth Basin, Texas.AAPG Bulletin, 91(4):501-521. https://doi.org/10.1306/12060606063 [9] Hu, W.Q., Zhao, J.Z., Li, J., et al., 2015.Characteristics of Source Rocks and Its Controls on the Formation and Distribution of Gas from Upper Paleozoic in Southwest Ordos Basin.Natural Gas Geoscience, 26(6):1068-1075 (in Chinese with English abstract). [10] Jiang, Y.L., Li, Z.L., Tan, Y.M., et al., 2008.Research on History of Gas Migration and Accumulation in Fault Basin:Taking Wen 23 Gas Field of Dongpu Depression as an Example.Acta Petrolei Sinica, 29(5):633-638 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB200805002.htm [11] Jiang, Z.L., Du, H.L., Li, Y.J., et al., 2015.Simulation of Gas Generation from the Paleogene Enping Formation in the Baiyun Sag in the Deepwater Area of the Pearl River Mouth Basin, the South China Sea.Energy & Fuels, 29(2):577-586. https://doi.org/10.1021/ef502284p [12] Jiang, Y.L., Fang, L., Liu, J.D., et al., 2016.Hydrocarbon Charge History of the Paleogene Reservoir in the Northern Dongpu Depression, Bohai Bay Basin, China.Petroleum Science, 13(4):625-641. https://doi.org/10.1007/s12182-016-0130-5 [13] Jiao, D.Q., Wang, D.R., Wu, X.L., 2006.Patterns of Natural Gas Accumulation and Enrichment in Dongpu Depression.Oil & Gas Geology, 27(6):794-803 (in Chinese with English abstract). [14] Li, E.T., Pan, C.C., Yu, S., et al., 2013.Hydrocarbon Generation from Coal, Extracted Coal and Bitumen Rich Coal in Confined Pyrolysis Experiments.Organic Geochemistry, 64:58-75. https://doi.org/10.1016/j.orggeochem.2013.09.004 [15] Li, S.F., Wang, S.L., Bi, J.X., et al., 2016.Characteristics of Xujiahe Formation Source Rock and Process of Hydrocarbon-Generation Evolution in Puguang Area.Earth Science, 41(5):843-852 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.071 [16] Liu, J.L., Jiang, Z.X., Liu, K.Y., et al., 2016.Fluid Inclusion Characteristics and Hydrocarbon Accumulation Process of Yangtake Area, Kuqa Foreland Basin.Earth Science, 41(7):1188-1197 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.096 [17] Liu, L., 2007. Thermal Evolution and Secondary Hydrocarbon Generation History of Upper Palaeozoic in Dongpu Depression and Its Adjacent Depression (Dissertation). Northwest University, Xi'an (in Chinese with English abstract). [18] Liu, L., Ren, Z.L., 2007.Thermal Evolution of Dongpu Sag.Petroleum Exploration and Development, 34(4):419-423, 444(in Chinese with English abstract). https://www.researchgate.net/publication/290568713_Thermal_evolution_of_Dongpu_Sag [19] Lu, X.S., Jiang, Y.L., Chang, Z.H., et al., 2007.Calculation of the Erosion Thickness of Dongying Formation in Dongpu Depression and Its Significance.Geological Science and Technology Information, 26(2):8-12 (in Chinese with English abstract). [20] Mani, D., Patil, D.J., Kalpana, M.S., et al., 2011.Evaluation of Hydrocarbon Prospects Using Surface Geochemical Data with Constraints from Geological and Geophysical Observations:Saurashtra Basin, India.Journal of Petroleum Geology, 35(1):67-83. https://doi.org/10.1111/j.1747-5457.2012.00519.x [21] Marcano, G., Anka, Z., Primio, R.D., 2013.Major Controlling Factors on Hydrocarbon Generation and Leakage in South Atlantic Conjugate Margins:A Comparative Study of Colorado, Orange, Campos and Lower Congo Basins.Tectonophysics, 604:172-190. https://doi.org/10.1016/j.tecto.2013.02.004 [22] Mi, J.K., Zhang, S.C., Hu, G.Y., et al., 2010.Geochemistry of Coal-Measure Source Rocks and Natural Gases in Deep Formations in Songliao Basin, NE China.International Journal of Coal Geology, 84(3-4):276-285. https://doi.org/10.1016/j.coal.2010.09.009 [23] Pan, C.C., Jiang, L.L., Liu, J.Z., et al., 2012.The Effects of Pyrobitumen on Oil Cracking in Confined Pyrolysis Experiments.Organic Geochemistry, 45:29-47. https://doi.org/10.1016/j.orggeochem.2012.01.008 [24] Su, H., Qu, L.P., Zhang, J.C., et al., 2006.Tectonic Evolution and Extensional Pattern of Rifted Basin:A Case Study of Dongpu Depression.Oil & Gas Geology, 27(1):70-77 (in Chinese with English abstract). [25] Sweeney, J.J., Burnham, A.K., 1990.Evaluation of a Simple Model of Vitrinite Reflectance Based on Chemical Kinetics (1).AAPG Bulletin, 74(10):1559-1570. https://doi.org/10.1306/0c9b251f-1710-11d7-8645000102c1865d [26] Tissot, B.P., Welte, D.H., 1978.Petroleum Formation and Occurrence.Springer-Verlag, Berlin. https://doi.org/10.1007/978-3-642-96446-6 [27] Uguna, C.N., Carr, A.D., Snape, C.E., et al., 2015.High Pressure Water Pyrolysis of Coal to Evaluate the Role of Pressure on Hydrocarbon Generation and Source Rock Maturation at High Maturities under Geological Conditions.Organic Geochemistry, 78:44-51. https://doi.org/10.1016/j.orggeochem.2014.10.013 [28] Wang, B., Zhao, Y.Q., Luo, Y., et al., 2010.Thermal Evolution and Hydrocarbon Generation in the Caohu Sag of the Tarim Basin-Based on IES Basin Simulation Technology.Petroleum Geology & Experiment, 32(6):605-609 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJDL201408009.htm [29] Wang, M., Lu, S..F., Wang, W.G., et al., 2017.Gas Migration and Accumulation Modelling in Volcanic Reservoirs, Xujiaweizi Fault Depression, Songliao Basin.Earth Science, 42(3):397-409 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.030 [30] Wang, T.B., Zhang, Y.X., Dong, L., et al., 2016.Geotectonic Setting of Coal-Bearing Basins being Transformed into Coal-and Gas-(Oil-) Bearing Basins.Earth Science, 41(2):265-278 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.020 [31] Xiao, X.M., Liu, D.H., Fu, J.M., 1996.The Evaluation of Coal-Measure Source Rocks of Coal-Bearing Basins in China and Their Hydrocarbon-Generating Models.Acta Sedimentologica Sinica, 14(S1):10-17 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB6S1.001.htm [32] Zhu, Y.M., Wang, X.H., Zhang, C., et al., 2007.Hydrocarbon-Generation Evolution of the Permo-Carboniferous Coal Measure in Dongpu Depression.Acta Petrolei Sinica, 28(6):27-31(in Chinese with English abstract). doi: 10.1007/s12583-010-0007-2 [33] 郭小文, 何生, 侯宇光, 2010.板桥凹陷沙三段油气生成、运移和聚集数值模拟.地球科学, 35(1):115-124. https://doi.org/10.3799/dqkx.2010.012 [34] 何锋, 刘锋, 郑旭, 2010.东濮凹陷上古生界生烃史及二次生烃时空差异性研究.断块油气田, 17(3):296-299. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dkyt201003014&dbname=CJFD&dbcode=CJFQ [35] 胡维强, 赵靖舟, 李军, 等, 2015.鄂尔多斯盆地西南部上古生界烃源岩特征及其对天然气藏形成与分布的控制作用.天然气地球科学, 26(6):1068-1075. http://www.oalib.com/paper/5025186 [36] 蒋有录, 李宗亮, 谈玉明, 等, 2008.断陷盆地天然气运聚成藏史研究—以东濮凹陷文23气田为例.石油学报, 29(5):633-638. doi: 10.7623/syxb200805001 [37] 焦大庆, 王德仁, 武晓玲, 2006.东濮凹陷天然气成藏及富集规律.石油与天然气地质, 27(6):794-803. doi: 10.11743/ogg20060610 [38] 李松峰, 王生朗, 毕建霞, 等, 2016.普光地区须家河组烃源岩特征及成烃演化过程.地球科学, 41(5):843-852. https://doi.org/10.3799/dqkx.2016.071 [39] 刘建良, 姜振学, 刘可禹, 等, 2016.库车前陆盆地羊塔克地区流体包裹体特征及油气成藏过程.地球科学, 41(7):1188-1197. https://doi.org/10.3799/dqkx.2016.096 [40] 刘丽, 2007. 东濮凹陷及邻区凹陷上古生界热演化史与二次生烃史研究(博士学位论文). 西北大学, 西安. [41] 刘丽, 任战利, 2007.东濮凹陷热演化史研究.石油勘探与开发, 34(4):419-423, 444. https://www.wenkuxiazai.com/doc/564b4eac7375a417866f8ffa.html [42] 鲁雪松, 蒋有录, 常振恒, 等, 2007.东濮凹陷东营组地层剥蚀厚度估算及其意义.地质科技情报, 26(2):8-12. http://www.wenkuxiazai.com/doc/5c74a2dbce2f0066f533227c.html [43] 苏惠, 曲丽萍, 张金川, 等, 2006.裂陷盆地构造演化及盆地伸展模式—以东濮凹陷为例.石油与天然气地质, 27(1):70-77. doi: 10.11743/ogg20060112 [44] 王斌, 赵永强, 罗宇, 等, 2010.塔里木盆地草湖凹陷热演化与生烃史—基于IES软件盆地模拟技术.石油实验地质, 32(6):605-609. doi: 10.11781/sysydz201006605 [45] 王民, 卢双舫, 王文广, 等, 2017.火山岩储层天然气运聚成藏模拟:以徐家围子断陷深层为.地球科学, 42(3):397-409. https://doi.org/10.3799/dqkx.2017.030 [46] 王庭斌, 张亚雄, 董立, 等, 2016.含煤盆地转化为含煤-含气(油)盆地的构造地质环境.地球科学, 41(2):265-278. https://doi.org/10.3799/dqkx.2016.020 [47] 肖贤明, 刘德汉, 傅家谟, 1996.我国聚煤盆地煤系烃源岩生烃评价与成烃模式.沉积学报, 14(S1):10-17. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=cjxb6s1.001&dbname=CJFD&dbcode=CJFQ [48] 朱炎铭, 王晓辉, 张聪, 等, 2007.东濮凹陷石炭-二叠系煤系烃源岩的生烃演化.石油学报, 28(6):27-31. doi: 10.7623/syxb200706006