• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    准噶尔盆地南缘芦草沟组页岩的沉积过程及有机质富集机理

    张逊 庄新国 涂其军 徐仕琪 张娅

    张逊, 庄新国, 涂其军, 徐仕琪, 张娅, 2018. 准噶尔盆地南缘芦草沟组页岩的沉积过程及有机质富集机理. 地球科学, 43(2): 538-550. doi: 10.3799/dqkx.2017.603
    引用本文: 张逊, 庄新国, 涂其军, 徐仕琪, 张娅, 2018. 准噶尔盆地南缘芦草沟组页岩的沉积过程及有机质富集机理. 地球科学, 43(2): 538-550. doi: 10.3799/dqkx.2017.603
    Zhang Xun, Zhuang Xinguo, Tu Qijun, Xu Shiqi, Zhang Ya, 2018. Depositional Process and Mechanism of Organic Matter Accumulation of Lucaogou Shale in Southern Junggar Basin, Northwest China. Earth Science, 43(2): 538-550. doi: 10.3799/dqkx.2017.603
    Citation: Zhang Xun, Zhuang Xinguo, Tu Qijun, Xu Shiqi, Zhang Ya, 2018. Depositional Process and Mechanism of Organic Matter Accumulation of Lucaogou Shale in Southern Junggar Basin, Northwest China. Earth Science, 43(2): 538-550. doi: 10.3799/dqkx.2017.603

    准噶尔盆地南缘芦草沟组页岩的沉积过程及有机质富集机理

    doi: 10.3799/dqkx.2017.603
    基金项目: 

    国家重点基础研究发展计划("973"计划)项目 SQ2013CB021013

    国家自然科学基金项目 41372166

    国家"十三五"科技重大专项《中国典型盆地陆相页岩油勘探开发选区与目标评价》子课题四《济阳坳陷页岩油勘探开发目标评价》 2017ZX05049004

    详细信息
      作者简介:

      张逊(1987-), 男, 博士研究生, 主要从事非常规油气资源沉积地球化学研究

      通讯作者:

      庄新国

    • 中图分类号: P618.13

    Depositional Process and Mechanism of Organic Matter Accumulation of Lucaogou Shale in Southern Junggar Basin, Northwest China

    • 摘要: 准噶尔盆地南缘二叠系芦草沟组页岩是重要的烃源岩和非常规油气资源储层,具有重大页岩油气勘探潜力.然而对准南芦草沟组页岩的沉积过程、古气候控制湖泊水文条件以及页岩中有机质的富集机理的研究相对较少.通过系统的野外地质调查和样品分析测试,主要利用沉积学定性分析和地球化学定量表征相结合的方法对芦草沟组页岩进行了综合研究.结果表明,研究区芦草沟组页岩主要沉积于盐度分层的半深湖-深湖环境;古气候在研究区湖盆流域具有独特的分带性,博格达东北部的古气候较温暖和潮湿,而博格达以西的古气候则相对干旱;博格达东北部较湿润的古气候引起该地区较充足的降雨,促进了湖水的盐度分层,同时降雨促进河流携带大量富营养元素的淡水注入湖泊引起了表层水体生产力升高,导致博格达东北部芦草沟组页岩相对于博格达西部地区具有更高的TOC含量;表层水体的古生产力与较稳定的贫氧-厌氧环境是研究区芦草沟组页岩有机质富集的主控因素.

       

    • 图  1  准噶尔盆地南缘构造地质简图(a)及研究区地层柱状图(b)

      Fig.  1.  Geological sketch map of southern Junggar basin (a) and stratigraphic column of the study area (b)

      图  2  准噶尔盆地南缘露头剖面取样位置及TOC含量

      Fig.  2.  Sample location and TOC content of each section in southern Junggar basin

      图  3  芦草沟组页岩的沉积特征

      a.芦草沟组灰黑色页岩页理发育;b.水平且连续的纹层状构造;c.页岩中发生液化变形的粉砂质纹层;d.透镜状粉砂质条带;e.鱼鳞化石;f.残余鱼化石;g.介形类化石;h.植物碎片;i.氩离子抛光环境扫描电镜(FE-SEM)显示直径小于5 μm的莓球状黄铁矿及其周围发育较多的有机质

      Fig.  3.  Sedimentary characteristics of the Lucaogou shale

      图  4  宋家沟剖面、杨家庄剖面及芦草沟剖面芦草沟组页岩沉积时期水体环境和TOC含量

      Fig.  4.  The water environment and TOC content during depositional of Lucaogou shale in Songjiagou, Yangjiazhuang and Lucaogou sections

      图  5  研究区芦草沟组页岩的沉积过程及沉积模式

      AA′剖面位置见图 1

      Fig.  5.  Depositional process and depositional model of the Lucaogou shale in the study area

      图  6  博格达西部和东北部芦草沟组页岩TOC含量分别与Cu/Al、Ni/Al、V/(V+Ni)和V/Cr的关系

      Fig.  6.  The correlations between TOC content and Cu/Al, Ni/Al, V/(V+Ni) and V/Cr values of the Lucaogou shale in western Bogeda and northeastern Bogda respectively

      表  1  缺氧环境和富氧环境元素地球化学判识指标

      Table  1.   Geochemical identification criteria of anoxic and oxic depositional environment

      判别指标 缺氧环境 富氧环境
      厌氧 贫氧
      V/(V+Ni) >0.54 0.46~0.54 <0.46
      V/Cr >4.25 2.00~4.25 <2.00
      注:据Hatch and Leventhal(1992)Jones and Manning(1994).
      下载: 导出CSV

      表  2  研究区芦草沟组页岩沉积时湖水的古盐度、古生产力大小、氧化还原条件以及CIA

      Table  2.   Paleosalinity, paleoproductivity, redox and CIA values of Lucaogou shale in the study area

      剖面 样品号 TOC(%) B/Ga Cu/Al Ni/Al V/(V+Ni) V/Cr CIA
      宋家沟剖面 S-20 2.1 5.24 4.21 3.65 0.65 2.20 45.20
      S-19 2.5 4.95 4.34 3.45 0.75 2.10 46.00
      S-18 3.2 6.21 5.01 4.34 0.79 2.80 48.80
      S-17 3.8 9.41 5.79 4.79 0.80 2.63 46.80
      S-16 4.0 6.38 6.56 5.43 0.82 3.00 56.21
      S-15 5.0 3.45 6.44 5.87 0.68 3.40 55.23
      S-14 5.6 1.95 7.58 7.53 0.62 1.87 59.23
      S-13 5.5 2.14 6.38 4.91 0.80 2.47 54.85
      S-12 4.9 5.64 6.20 5.87 0.70 2.07 63.89
      S-11 4.4 8.91 5.07 6.01 0.69 2.15 62.11
      S-10 3.9 7.43 5.90 4.54 0.75 2.21 49.21
      S-9 2.6 5.56 6.46 4.21 0.67 2.90 58.38
      S-8 3.8 6.89 6.01 5.01 0.77 2.80 50.98
      S-7 5.2 9.52 7.57 6.66 0.69 2.59 68.79
      S-6 5.9 8.80 7.74 5.46 0.74 2.23 69.96
      S-5 5.3 7.21 6.78 5.56 0.80 2.30 59.70
      S-4 4.4 6.23 5.23 6.12 0.72 2.70 57.80
      S-3 4.9 6.88 6.23 4.11 0.68 3.00 50.89
      S-2 5.4 7.13 7.36 4.89 0.69 2.40 47.67
      S-1 5.2 7.89 7.45 4.67 0.70 2.80 46.21
      杨家庄剖面 Y-24 4.9 7.46 7.68 5.55 0.79 3.77 62.02
      Y-23 5.3 8.13 8.23 5.45 0.78 3.45 73.89
      Y-22 5.5 9.98 11.88 8.90 0.83 3.52 80.53
      Y-21 5.8 8.67 7.46 7.21 0.76 2.67 76.53
      Y-20 6.0 10.29 14.04 7.96 0.87 3.83 59.02
      Y-19 6.4 9.75 10.56 7.56 0.80 2.56 79.53
      Y-18 7.3 8.45 15.21 10.56 0.92 2.72 85.45
      Y-17 7.6 7.05 19.96 11.33 0.78 4.46 66.16
      Y-16 6.5 9.78 9.98 9.21 0.90 3.21 78.53
      Y-15 5.3 8.21 7.46 5.12 0.85 4.23 78.53
      Y-14 4.7 7.82 8.76 4.68 0.92 3.67 85.45
      Y-13 4.6 7.40 9.58 8.52 0.74 4.11 77.52
      Y-12 4.6 7.34 9.51 8.41 0.69 2.92 80.55
      Y-11 4.3 7.79 7.53 5.94 0.79 2.59 80.44
      Y-10 5.2 8.95 8.21 8.21 0.83 2.87 75.89
      Y-9 5.8 8.88 7.46 7.34 0.82 3.12 73.23
      Y-8 6.8 9.34 13.98 9.89 0.84 3.56 82.53
      Y-7 5.8 7.95 9.78 8.56 0.81 3.58 72.67
      Y-6 5.3 7.36 7.21 6.76 0.78 2.88 71.02
      Y-5 4.3 8.72 6.49 4.77 0.82 2.58 77.89
      Y-4 4.7 8.78 9.44 6.42 0.74 2.95 73.90
      Y-3 5.6 9.89 8.11 7.21 0.83 3.45 71.53
      Y-2 6.4 8.95 9.13 7.17 0.81 2.40 76.53
      Y-1 4.8 8.96 8.53 6.24 0.79 3.23 74.53
      芦草沟剖面 L-25 4.5 9.88 7.85 4.88 0.72 2.89 76.34
      L-24 5.0 10.35 9.34 8.02 0.85 3.55 72.67
      L-23 5.3 9.45 8.78 6.45 0.73 2.67 66.34
      L-22 5.9 7.15 7.56 7.45 0.78 2.47 80.33
      L-21 5.6 7.31 9.59 4.99 0.81 2.84 74.57
      L-20 6.0 8.67 11.04 8.89 0.79 3.43 68.53
      L-19 6.5 8.88 9.67 9.89 0.79 4.34 73.89
      L-18 6.9 7.46 12.78 7.10 0.82 2.68 81.21
      L-17 7.2 7.46 10.22 8.44 0.84 3.64 78.44
      L-16 7.5 8.72 11.34 9.56 0.73 3.23 83.67
      L-15 7.8 8.78 15.23 12.45 0.86 3.88 81.89
      L-14 7.2 6.89 11.81 8.41 0.76 3.36 67.56
      L-13 7.0 8.33 9.66 9.98 0.74 3.34 82.55
      L-12 6.3 7.52 9.89 6.56 0.85 2.96 79.45
      L-11 6.6 7.14 10.67 8.21 0.82 3.33 79.33
      L-10 6.5 5.58 12.39 7.09 0.75 2.92 56.11
      L-9 7.0 7.45 13.66 10.95 0.73 2.97 73.22
      L-8 7.3 9.74 12.81 10.23 0.88 3.11 76.34
      L-7 7.6 8.51 10.43 10.89 0.81 2.45 85.77
      L-6 6.8 7.42 9.12 9.24 0.73 3.01 80.65
      L-5 6.2 6.65 10.31 7.31 0.69 2.31 77.85
      L-4 5.8 7.45 7.88 9.22 0.82 2.66 73.74
      L-3 4.6 8.95 5.97 5.76 0.70 2.87 70.55
      L-2 6.8 7.34 8.55 8.66 0.73 3.34 78.66
      L-1 7.3 6.07 15.80 7.97 0.71 2.89 68.74
      下载: 导出CSV

      表  3  博格达以西和东北部芦草沟组页岩沉积时期湖水的古水文条件、TOC含量和CIA对比

      Table  3.   Ancient hydrological conditions, TOC content and CIA values comparison during depositional of Lucaogou shale between western and northeastern Bogda

      剖面位置 古盐度 氧化还原条件 古生产力 TOC(%) CIA
      B/Ga V/(V+Ni) V/Cr Cu/Al Ni/Al
      博格达山东北部 5.58~10.35
      (8.27)
      0.69~0.92
      (0.79)
      2.31~4.46
      (3.17)
      5.97~19.96
      (10.17)
      4.68~12.45
      (7.91)
      4.3~7.8
      (6.0)
      56.11~85.77
      (75.56)
      博格达山西部 1.95~9.52
      (6.39)
      0.62~0.82
      (0.73)
      1.87~3.40
      (2.53)
      4.21~7.74
      (6.22)
      3.45~6.66
      (5.15)
      2.1~5.9
      (4.4)
      45.2~69.96
      (54.90)
      注:表中数据范围为最小值至最大值,括号内为平均值.
      下载: 导出CSV
    • [1] Bohacs, K.M., Carroll, A.R., Neal, J.E., 2000.Lake-Basin Type, Source Potential, and Hydrocarbon Character:An Integrated Sequence-Stratigraphic-Geochemical Framework.In:Kordesch, E.H.G., Kelts, K.R., eds., Lake Basins through Space and Time.American Association of Petroleum Geologists, Tulsa.
      [2] Carroll, A.R., Bohacs, K.M., 2001.Lake-Type Controls on Petroleum Source Rock Potential in Nonmarine Basins.AAPG Bulletin, 85(6):1033-1053. https://doi.org/10.1306/8626ca5f-173b-11d7-8645000102c1865d
      [3] Chen, H., Xie, X.N., Hu, C.Y., et al., 2012.Geochemical Characteristics of Late Permian Sediments in the Dalong Formation of the Shangsi Section, Northwest Sichuan Basin in South China:Implications for Organic Carbon-Rich Siliceous Rocks Formation.Journal of Geochemical Exploration, 112:35-53. https://doi.org/10.1016/j.gexplo.2011.06.011
      [4] Chen, Z.Y., Chen, Z.L., Zhang, W.G., 1997., Quaternary Stratigraphy and Trace-Element Indices of the Yangtze Delta, Eastern China, with Special Reference to Marine Transgressions.Quaternary Research, 47(2):181-191. https://doi.org/10.1006/qres.1996.1878
      [5] Demaison, G.J., Moore, G.T., 1980.Anoxic Environments and Oil Source Bed Genesis.Organic Geochemistry, 2(1):9-31. https://doi.org/10.1016/0146-6380(80)90017-0
      [6] Fedo, C.M., Nesbitt, H.W., Young, G.M., 1995.Unraveling the Effects of Potassium Metasomatism in Sedimentary Rocks and Paleosols, with Implications for Paleoweathering Conditions and Provenance.Geology, 23(10):921.https://doi.org/10.1130/0091-7613(1995)023<0921:uteopm>2.3.co;2 doi: 10.1130/0091-7613(1995)023<0921:uteopm>2.3.co;2
      [7] Fu, X.G., Wang, J., Chen, W.B., et al., 2015.Elemental Geochemistry of the Early Jurassic Black Shales in the Qiangtang Basin, Eastern Tethys:Constraints for Palaeoenvironment Conditions.Geological Journal, 51(3):443-454. https://doi.org/10.1002/gj.2642
      [8] Gao, Z.L., Kang, Y.S., Liu, R.H., et al., 2011.Geological Features and Developmental Controlling Factors of Lucaogou Oil Shale in the Southern Margin of Junngar Basin.Xinjiang Geology, 29(2):189-193(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XJDI201102015.htm
      [9] Gao, Y., Wang, Y.L., He, D.X., et al., 2013.Shale Gas Potential and Organic Geochemical Characteristics of Oil Shale in the Southeast of Junggar Basin.Natural Gas Geoscience, 24(6):1196-1204(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-TDKX201306014.htm
      [10] Hatch, J.R., Leventhal, J.S., 1992.Relationship between Inferred Redox Potential of the Depositional Environment and Geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, U.S.A..Chemical Geology, 99(1-3):65-82. https://doi.org/10.1016/0009-2541(92)90031-y
      [11] Jiang, H.C., Guo, G.X., Cai, X.M., et al., 2016.Geochemical Evidence of Windblown Origin of the Late Cenozoic Lacustrine Sediments in Beijing and Implications for Weathering and Climate Change.Palaeogeography, Palaeoclimatology, Palaeoecology, 446:32-43. https://doi.org/10.1016/j.palaeo.2016.01.017
      [12] Jiang, Z.X., Chen, D.Z., Qiu, L.W., et al., 2007.Source-Controlled Carbonates in a Small Eocene Half-Graben Lake Basin (Shulu Sag) in Central Hebei Province, North China.Sedimentology, 54(2):265-292. https://doi.org/10.1111/j.1365-3091.2006.00834.x
      [13] Jones, B., Manning, D.A.C., 1994.Comparison of Geochemical Indices Used for the Interpretation of Palaeoredox Conditions in Ancient Mudstones.Chemical Geology, 111(1-4):111-129. https://doi.org/10.1016/0009-2541(94)90085-x
      [14] Könitzer, S.F., Davies, S.J., Stephenson, M.H., et al., 2014.Depositional Controls on Mudstone Lithofacies in a Basinal Setting:Implications for the Delivery of Sedimentary Organic Matter.Journal of Sedimentary Research, 84(3):198-214. https://doi.org/10.2110/jsr.2014.18
      [15] Li, J.J., Tang, D.Z., Xu, H., et al., 2009.Sedimentary Characteristics of the Upper Permian Lucaogou Formation in Dahuangshan Southern Margin of Junggar.Journal of Xi'an University of Science and Technology, 29(1):68-72 (in Chinese with English abstract). https://doi.org/10.3969/j.issn.1672-9315.2009.01.015
      [16] Loftus, G.W.F., Greensmith, J.T., 1988.The Lacustrine Burdiehouse Limestone Formation-A Key to the Deposition of the Dinantian Oil Shales of Scotland.Geological Society, London, Special Publications, 40(1):219-234. https://doi.org/10.1144/gsl.sp.1988.040.01.19
      [17] Ma, P.F., Wang, L.C., Wang, C.S., et al., 2015.Organic-Matter Accumulation of the Lacustrine Lunpola Oil Shale, Central Tibetan Plateau:Controlled by the Paleoclimate, Provenance, and Drainage System.International Journal of Coal Geology, 147-148:58-70. https://doi.org/10.1016/j.coal.2015.06.011
      [18] Ma, Y.Q., Du, X.B., Liu, H.M., et al., 2017.Characteristics, Depositional Processes, and Evolution of Shale Lithofaceis of the Upper Submember of Es 4 in the Dongying Depression.Earth Science, 42(7), 1195-1208 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.097
      [19] Ma, Y.Q., Fan, M.J., Lu, Y.C., et al., 2016a.Geochemistry and Sedimentology of the Lower Silurian Longmaxi Mudstone in Southwestern China:Implications for Depositional Controls on Organic Matter Accumulation.Marine and Petroleum Geology, 75:291-309. https://doi.org/10.1016/j.marpetgeo.2016.04.024
      [20] Ma, Y.Q., Fan, M.J., Lu, Y.C., et al., 2016b.Climate-Driven Paleolimnological Change Controls Lacustrine Mudstone Depositional Process and Organic Matter Accumulation:Constraints from Lithofacies and Geochemical Studies in the Zhanhua Depression, Eastern China.International Journal of Coal Geology, 167:103-118. https://doi.org/10.1016/j.coal.2016.09.014
      [21] Ma, Y.Q., Fan, M.J., Lu, Y.C., et al., 2017.Middle Eocene Paleohydrology of the Dongying Depression in Eastern China from Sedimentological and Geochemical Signatures of Lacustrine Mudstone.Palaeogeography, Palaeoclimatology, Palaeoecology, 479:16-33. https://doi.org/10.1016/j.palaeo.2017.04.011
      [22] Ma, Y.Q., Lu, Y.C., Liu, S.P., et al., 2015.Characteristics of Tight Sandstones and Forming Mechanism of Relative High-Quality Reservoir in Chang 3 Member of Yanchang Formation in Xunyi Area, Ordos Basin.Journal of Central South University (Science and Technology), 46(8):3013-3024 (in Chinese with English abstract).
      [23] McHenry, L.J., 2009.Element Mobility during Zeolitic and Argillic Alteration of Volcanic Ash in a Closed-Basin Lacustrine Environment:Case Study of Olduvai Gorge, Tanzania.Chemical Geology, 265(3-4):540-552. https://doi.org/10.1016/j.chemgeo.2009.05.019
      [24] Minyuk, P.S., Brigham-Grette, J., Melles, M., et al., 2007.Inorganic Geochemistry of El'gygytgyn Lake Sediments (Northeastern Russia) as an Indicator of Paleoclimatic Change for the Last 250 kyr.Journal of Paleolimnology, 37:123-133. https://doi.org/10.1007/s10933-006-9027-4
      [25] Mort, H.P., Adatte, T., Föllmi, K.B., et al., 2007.Phosphorus and the Roles of Productivity and Nutrient Recycling during Oceanic Anoxic Event 2.Geology, 35(6):483-486. https://doi.org/10.1130/g23475a.1
      [26] Nesbitt, H.W., Young, G.M., 1982.Early Proterozoic Climates and Plate Motions Inferred from Major Element Chemistry of Lutites.Nature, 299:715-717. https://doi.org/10.1038/299715a0
      [27] Nesbitt, H.W., Young, G.M., 1989.Formation and Diagenesis of Weathering Profiles.The Journal of Geology, 97(2):129-147. https://doi.org/10.1086/629290
      [28] Pietras, J.T., Carroll, A.R., 2006.High-Resolution Stratigraphy of an Underfilled Lake Basin:Wilkins Peak Member, Eocene Green River Formation, Wyoming, U.S.A..Journal of Sedimentary Research, 76(11):1197-1214. https://doi.org/10.2110/jsr.2006.096
      [29] Selvaraj, K., Chen, T.A., 2006.Moderate Chemical Weathering of Subtropical Taiwan:Constraints from Solid-Phase Geochemistry of Sediments and Sedimentary Rocks.The Journal of Geology, 114(1):101-116. https://doi.org/10.1086/498102
      [30] Shen, C.B., Mei, L.F., Liu, L., et al., 2005.Characteristics of Fission Track Age of Bogedashan in Xinjiang and Its Structural Significance.Journal of Oil and Gas Technology (Journal of Jianghan Petroleum Institute), 27(2):273-276 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JHSX2005S2000.htm
      [31] Smith, M.E., Carroll, A.R., Mueller, E.R., 2008.Elevated Weathering Rates in the Rocky Mountains during the Early Eocene Climatic Optimum.Nature Geoscience, 1(6):370-374. https://doi.org/10.1038/ngeo205
      [32] Smith, M.E., Carroll, A.R., Scott, J.J., et al., 2014.Early Eocene Carbon Isotope Excursions and Landscape Destabilization at Eccentricity Minima:Green River Formation of Wyoming.Earth and Planetary Science Letters, 403:393-406. https://doi.org/10.1016/j.epsl.2014.06.024
      [33] Sun, M.D., Yu, B.S., Xia, W., et al., 2014.Depositional Setting and Enrichment Mechanism of Organic Matter of the Lower Silurian Black Shale Series in the Southeast of Chongqing:A Case Study from Lujiao Outcrop Section.Journal of Northeast Petroleum University, 38(5):51-60(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQSY201405008.htm
      [34] Sun, P.C., Sachsenhofer, R., Liu, Z.J., et al., 2013.Organic Matter Accumulation in the Oil Shale-and Coal-Bearing Huadian Basin (Eocene; NE China).International Journal of Coal Geology, 105:1-15. https://doi.org/10.1016/j.coal.2012.11.009
      [35] Talbot, M.R., 1988.The Origins of Lacustrine Oil Source Rocks:Evidence from the Lakes of Tropical Africa.Geological Society, London, Special Publications, 40(1):29-43. https://doi.org/10.1144/GSL.SP.1988.040.01.04
      [36] Talbot, M.R., Allen, P.A., 1996.Lakes.In:Reading, H.G., ed., Sedimentary Environments:Processes, Facies and Stratigraphy.Blackwell Scientific Publications, Oxford, 83-123.
      [37] Tribovillard, N., Algeo, T.J., Lyons, T., et al., 2006.Trace Metals as Paleoredox and Paleoproductivity Proxies:An Update.Chemical Geology, 232(1-2):12-32. https://doi.org/10.1016/j.chemgeo.2006.02.012
      [38] Wang, D.D., Li, Z.X., Lü, D.W., et al., 2016.Coal and Oil Shale Paragenetic Assemblage and Sequence Stratigraphic Features in Continental Faulted Basin.Earth Science, 41(3):508-522 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.042
      [39] Wang, D.Y., Xu, H., Li, J.J., et al., 2008.Mineralization Model of Oil Shale Controlled by Facies in Lucaogou Formation of Permian, Dahuangshan, Zhunnan.Petroleum Geology and Recovery Efficiency, 15(2):53-55 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YQCS200802019.htm
      [40] Wang, X.W., Wang, X.W., Ma, Y.S., 2007.The Tectonic Evolution of Bogda Mountain, Xinjiang, Northwest China and Its Relationship to Oil and Gas Accumulation.Geoscience, 21(1):116-124(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-XDDZ200701014.htm
      [41] Wang, Z.H., Ding, B.C., Yan, J.F., et al., 2016.Depositional Characteristics and Petroleum Exploration Significance of Lucaogou Formation in South Junggar Basin.Journal of Xi'an Shiyou University (Natural Science Edition), 31(2):25-32 (in Chinese with English abstract).
      [42] Wang, Z.W., Fu, X.G., Feng, X.L., et al., 2015.Geochemical Features of the Black Shales from the Wuyu Basin, Southern Tibet:Implications for Palaeoenvironment and Palaeoclimate.Geological Journal, 52(2):282-297. https://doi.org/10.1002/gj.2756
      [43] Yue, S.F., Wang, H., Yan, D.T., et al., 2016.The Sedimentary Characteristics and Evolution Law of Trassic, Luoyi District.Earth Science, 41(10):1683-1695 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.506
      [44] Zeng, Z.W., Yang, X.H., Zhu, H.T., et al., 2017.Development Characteristics and Significance of Large Delta of Upper Enping Formation, Baiyun Sag.Earth Science, 42(1):78-92(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.006
      [45] Zhang, L.Y., Li, J.Y., Li, Z., et al., 2015.Development Characteristic and Formation Mechanism of Intra-Organic Reservoir Space in Lacustrine Shales.Earth Science, 40(11):1824-1833(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2015.163
      [46] Zhang, X.B., 1993.Study on the Origin of the Dolostone Intercalcated in the Black Shales in Middle Permian Lucaogou Formation Eastern Part of Southern Margin of Junggar Basin.Acta Sedimentologica Sinica, 11(2):133-140 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB199302017.htm
      [47] Zhao, X.F., Zhao, Y.S., Deng, Q.Y., et al., 1994.Preliminary Study of the Sequence Stratigraphy of Upper Permian Lucaogou and Hongyanchi Formations on the Southern Edge of Junggar Basin.Journal of Chengdu Institute of Technology, 21(3):112-120 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CDLG403.014.htm
      [48] Zhu, H.T., Li, S., Liu, H.R, et al., 2016.The Types and Implication of Migrated Sequence Stratigraphic Architecture in Continetal Lacustrine Rift Basin:An Example from the Paleogene Wenchang Formation of Zhu I Depression, Pearl River Mouth Basin.Earth Science, 41(3):361-372(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.028
      [49] 高智梁, 康永尚, 刘人和, 等, 2011.准噶尔盆地南缘芦草沟组油页岩地质特征及主控因素.新疆地质, 29(2):189-193. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=xjdi201102015&dbname=CJFD&dbcode=CJFQ
      [50] 高苑, 王永莉, 何大祥, 等, 2013.准噶尔盆地东南缘油页岩有机地球化学特征及含气潜力.天然气地球科学, 24(6):1196-1204. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=tdkx201306014&dbname=CJFD&dbcode=CJFQ
      [51] 李婧婧, 汤达祯, 许浩, 等, 2009.准噶尔盆地南缘大黄山矿区二叠系芦草沟组油页岩沉积特征.西安科技大学学报, 29(1):68-72. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=xkxb200901017&dbname=CJFD&dbcode=CJFQ
      [52] 马义权, 陆永潮, 刘树平, 等, 2015.鄂南延长组长3段致密储层特征及相对优质储层形成机理.中南大学学报(自然科学版), 46(8):3013-3024. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zngd201508034&dbname=CJFD&dbcode=CJFQ
      [53] 马义权, 杜学斌, 刘惠民, 等, 2017.东营凹陷沙四上亚段陆相页岩岩相特征、成因及演化.地球科学, 42(7):1195-1208. https://doi.org/10.3799/dqkx.2017.097
      [54] 沈传波, 梅廉夫, 刘麟, 等, 2005.新疆博格达山裂变径迹年龄特征及其构造意义.石油天然气学报(江汉石油学院学报), 27(2):273-276. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jhsx2005s2000&dbname=CJFD&dbcode=CJFQ
      [55] 孙梦迪, 于炳松, 夏威, 等, 2014.渝东南地区下志留统底部黑色岩系沉积环境及有机质富集机制——以鹿角剖面为例.东北石油大学学报, 38(5):51-60. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dqsy201405008&dbname=CJFD&dbcode=CJFQ
      [56] 王东东, 李增学, 吕大炜, 等, 2016.陆相断陷盆地煤与油页岩共生组合及其层序地层特征.地球科学, 41(3):508-522. https://doi.org/10.3799/dqkx.2016.042
      [57] 王东营, 许浩, 李婧婧, 等, 2008.准南大黄山二叠系芦草沟组油页岩相控成矿模式.油气地质与采收率, 15(2):53-55. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=yqcs200802019&dbname=CJFD&dbcode=CJFQ
      [58] 汪新伟, 汪新文, 马永生, 2007.新疆博格达山的构造演化及其与油气的关系.现代地质, 21(1):116-124. https://doi.org/10.3969/j.issn.1000-8527.2007.01.015
      [59] 王正和, 丁邦春, 闫剑飞, 等, 2016.准南芦草沟组沉积特征及油气勘探前景.西安石油大学学报(自然科学版), 31(2):25-32. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=xasy201602004&dbname=CJFD&dbcode=CJFQ
      [60] 岳绍飞, 王华, 严德天, 等, 2016.洛伊地区三叠系沉积体系特征及演化规律.地球科学, 41(10):1683-1695. https://doi.org/10.3799/dqkx.2016.506
      [61] 曾智伟, 杨香华, 朱红涛, 等, 2017.白云凹陷恩平组沉积晚期大型三角洲发育特征及其意义.地球科学, 42(1):78-92. https://doi.org/10.3799/dqkx.2017.006
      [62] 张林晔, 李钜源, 李政, 等, 2015.湖相页岩有机储集空间发育特点与成因机制.地球科学, 40 (11):1824-1833. https://doi.org/10.3799/dqkx.2015.163
      [63] 张晓宝, 1993.准噶尔盆地南缘东部中二叠流芦草沟组黑色页岩中白云岩夹层的成因探讨.沉积学报, 11(2):133-140. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=cjxb199302017&dbname=CJFD&dbcode=CJFQ
      [64] 赵霞飞, 赵永胜, 邓启予, 等, 1994.准噶尔盆地南缘上二叠统芦草沟组和红雁池组层序地层学初析.成都理工学院学报, 21(3):112-120. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=cdlg403.014&dbname=CJFD&dbcode=CJFQ
      [65] 朱红涛, 李森, 刘浩冉, 等, 2016.陆相断陷湖盆迁移型层序构型及意义:以珠Ⅰ坳陷古近系文昌组为例.地球科学, 41(3):361-372. https://doi.org/10.3799/dqkx.2016.028
    • 加载中
    图(6) / 表(3)
    计量
    • 文章访问数:  3279
    • HTML全文浏览量:  1189
    • PDF下载量:  34
    • 被引次数: 0
    出版历程
    • 收稿日期:  2017-09-26
    • 刊出日期:  2018-02-15

    目录

      /

      返回文章
      返回