Petrogenesis of Tiangongshan Indosinian Granites in Longyan Area, Southwest Fujian
-
摘要: 天宫山花岗岩体成因的研究对闽西南地区岩浆演化及动力学过程有重要意义.天宫山岩体岩性主要为正长花岗岩.前人于天宫山岩体中利用K-Ar法测得年龄值为146~149 Ma,天宫山正长花岗岩中测得锆石LA-ICP-MS U-Pb年龄为233±2.0 Ma、230±2.8 Ma,为晚三叠世,属印支期.该岩体富硅,富碱,σ=1.21~2.55,A/CNK=0.97~1.73,属钙碱性系列,准铝质到过铝质范畴.岩石ΣREE较高,LREE相对富集,贫Al2O3和Sr,富Y和Yb,发育有明显的显微文象结构,具有较强的铕负异常,中等铈负异常到弱正异常;亏损大离子亲石元素,富集高场强元素.Ga/Al值高,具有A型花岗岩特征.w(P2O5)平均值为0.02%,低于高分异S型花岗岩;w(Na2O)平均值为2.93%,高于高分异S型花岗岩;全铁含量w(TFeO)平均值为1.15%,高于高分异I型花岗岩.锆石饱和温度平均值为729.8℃.εHf(t)全部为负值(-5.29~-10.69),表明其物质起源可能主要为古元古代下地壳物质.参与成岩作用的岩浆来源于地壳物质的部分熔融,为同碰撞环境下形成的壳源型铝质A型花岗岩.在印支期碰撞-挤压为主的造山运动背景下,岩体在高温环境中经历了古元古代下地壳物质的初步熔融,经印支期运动伸展,部分地幔物质参与了经底侵作用.Abstract: The research of petrogenesis about Tiangongshan Indosinian granites have great significance on the magmatic evolution and dynamic process in Southwest Fujian. The Tiangongshan pluton is dominated by syenogranite. Previous studies obtained the K-Ar age of 146-149 Ma from its granites, while U-Pb zircon analyses yielded consistent age of 233±2.0 Ma and 230±2.8 Ma by LA-ICP-MS in our study, indicating that the pluton was formed in Late Triassic and Indosinian tectonic movement. The granites are characterized by high silicon and alkali (σ=1.21-2.55, A/CNK=0.97-1.73), belonging to quasi aluminum to peraluminous calc-alkaline series. The granites have high ΣREE and relative accumulation of LREE, and are deficient in Al2O3 and Sr, and rich in Y and Yb, showing obvious micrographic texture with relatively high negative Eu anomaly and moderately negative to weak positive Ce anomaly; the granites are depleted in LILE and enriched in HFSE.The Tiangongshan pluton has the characteristics of A-type granite with high Ga/Al value. Its w (P2O5) averages on 0.02%, lower than that of highly fractionated S-type granite, w (Na2O) on average of 2.93%, higher than that of highly fractionated S-type granite, and w (TFeO) on average of 1.15%, higher than that of highly fractionated I-type granite.The average saturation temperature of zircon is 729.8℃.The εHf(t) all is negative (-5.29 to -10.69), suggesting possible material sources from the lower crustal material of Paleoproterozoic. The magma of the diagenetic stage, derived from partial melting of the crustal material, is crust-derived aluminous A-type granite formed in the syn-collisional settings. Through the stage of Indosinian collisional-compressional orogeny, the Paleoproterozoic lower crustal material of the pluton initially melted. Stretched by Indosinian tectonic movements, part of the mantle material was involved in the underplating.
-
Key words:
- Tiangongshan granite /
- Indosinian /
- U-Pb age of zircon /
- rock formation cause /
- Lu-Hf isotope /
- geochemistry
-
图 3 岩浆岩系统全碱-硅(TAS)分类图解
据Middlemost(1994).Ir.Irvine分界线,上方为碱性,下方为亚碱性
Fig. 3. Total alkali silica (TAS) classification of magmatic rock system
图 4 岩体K2O-SiO2图解(a)及A/CNK-A/NK图解(b)
a.实线据Peccerillo and Taylor(1976); 虚线据Middlemost(1985).b.底图据Middlemost(1994)
Fig. 4. K2O-SiO2 diagram (a) and A/CNK-A/NK diagram (b) of the granites
图 5 岩体球粒陨石标准化稀土元素配分图(a)及原始地幔标准化微量元素蛛网图(b)
蛛网标准化数值据Sun and McDonough(1989)
Fig. 5. Chondrite-normalized REE distribution patterns (a) and primitive mantle-normalized trace element diagram (b) of the granites
图 8 天宫山岩体锆石稀土元素球粒陨石标准化分布型式图
标准化数值据Sun and McDonough(1989)
Fig. 8. Zircon chondrite standard curves of REE abundance patterns of the Tiangongshan pluton
图 11 天宫山岩体成因类型判别图解
Fig. 11. Genetic types of discrimination diagram of the Tiangongshan pluton
表 1 岩体主量元素组成(%)
Table 1. Major element compositions of the granites (%)
样号 TGS-1 TGS-2 TGS-3 TGS-4 TGS-5 TGS-6 TGS-7 SiO2 76.16 76.20 75.01 78.20 75.64 75.85 76.20 TiO2 0.11 0.11 0.06 0.14 0.12 0.12 0.08 Al2O3 12.77 12.97 12.76 11.93 12.30 11.84 12.12 Fe2O3 1.23 0.54 0.49 0.44 0.54 0.38 0.41 FeO 0.27 0.36 0.58 0.57 0.81 1.22 0.92 MnO 0.07 0.01 0.05 0.03 0.03 0.04 0.03 MgO 0.21 0.08 0.05 0.27 0.20 0.19 0.15 CaO 0.22 0.12 0.72 0.22 0.86 0.56 0.81 Na2O 0.24 1.27 3.83 4.61 3.36 3.79 3.38 K2O 6.09 5.37 5.20 2.05 4.82 4.74 4.63 P2O5 0.02 0.01 0.01 0.02 0.02 0.02 0.02 LOI 2.14 2.47 0.74 1.06 0.86 0.94 0.73 Total 99.53 99.52 99.50 99.54 99.56 99.69 99.48 Na2O+K2O 6.33 6.64 9.03 6.66 8.18 8.53 8.01 K2O/Na2O 25.38 4.23 1.36 0.44 1.43 1.25 1.37 σ 1.21 1.33 2.55 1.26 2.05 2.21 1.93 A/CNK 1.73 1.60 0.97 1.17 1.00 0.96 1.01 A/NK 1.840 1.620 1.070 1.220 1.144 1.040 1.150 注:TGS-1~TGS-4数据为本文实测,TGS-5~TGS-7测试数据来源于1:25万龙岩市幅区域地质调查报告(福建省地质调查研究院,2005). 表 2 岩体微量元素组成(10-6)
Table 2. Trace element compositions of the granites (10-6)
样号 TGS-1 TGS-2 TGS-3 TGS-4 TGS-5 TGS-6 TGS-7 Rb 585.00 425.00 547.00 153.00 — — — Sr 20.50 16.10 12.30 66.50 — — — Nb 49.30 50.60 59.10 22.80 20.00 30.00 32.00 Mo 17.10 1.10 0.45 1.08 14.00 5.00 2.00 Cd 0.16 0.04 0.05 0.05 — — — Sn 27.60 9.92 14.80 5.24 38.00 22.00 18.00 Cs 13.50 9.01 11.30 4.97 — — — Ba 110.00 128.00 16.80 96.10 100.00 120.00 113.00 Ta 6.47 5.86 10.10 2.83 — — — W 5.74 3.47 4.33 1.19 — — — Tl 3.46 2.11 2.62 0.81 — — — Pb 73.50 49.20 59.80 60.70 44.00 43.00 58.00 Bi 2.10 0.29 0.19 1.48 — — — Th 56.20 92.10 74.80 42.90 — — — U 7.66 10.20 16.60 14.20 — — — Sc 4.22 3.46 3.21 3.22 — — — V 7.03 1.53 0.91 10.60 8.00 6.00 9.00 Cr 5.44 3.98 4.80 5.02 5.00 5.00 5.00 Co 1.22 1.28 0.39 1.08 — — — Ni 2.40 3.96 1.66 2.90 — — — Cu 3.53 2.86 2.58 26.40 2.00 3.00 4.00 Zn 31.70 56.90 39.70 22.00 24.00 22.00 28.00 Ga 23.30 21.70 23.30 15.50 — — — Zr 107.00 157.00 99.10 87.50 56.00 78.00 80.00 Hf 3.90 5.90 4.80 3.60 — — — F 941.00 959.00 3 879.00 850.00 800.00 840.00 3340.00 As 12.90 0.64 0.48 0.57 — — — Sb 0.23 0.13 0.13 0.09 — — — Ag 0.15 0.02 0.01 0.88 — — — 注:TGS-1~TGS-4数据为本文实测,TGS-5~TGS-7测试数据来源于1:25万龙岩市幅区域地质调查报告(福建省地质调查研究院,2005),“—”表示未测. 表 3 岩体稀土元素组成(10-6)
Table 3. Rare earth element compositions of the granites (10-6)
样号 TGS-1 TGS-2 TGS-3 TGS-4 TGS-5 TGS-6 TGS-7 La 60.60 231.00 38.50 45.90 37.52 61.39 46.05 Ce 62.50 114.00 79.20 79.60 63.50 105.83 50.47 Pr 18.50 72.90 10.40 7.09 6.67 13.34 8.00 Nd 65.10 252.00 37.00 21.30 29.49 55.72 31.55 Sm 16.20 60.10 12.10 3.56 4.14 9.14 4.14 Eu 0.34 1.40 0.16 0.50 0.59 0.56 0.55 Gd 12.80 29.60 13.70 2.69 2.08 5.64 1.87 Tb 1.99 4.11 2.75 0.40 0.71 1.28 0.61 Dy 11.80 20.30 18.40 2.25 2.06 5.14 1.74 Ho 2.38 3.28 4.12 0.47 0.65 1.15 0.51 Er 7.22 9.00 12.30 1.72 1.96 3.87 1.61 Tm 1.02 1.26 1.93 0.28 0.33 0.57 0.28 Yb 7.18 8.25 13.00 2.18 2.11 3.78 2.04 Lu 0.91 1.13 1.92 0.33 0.47 0.74 0.46 Y 55.10 80.50 130.00 14.60 13.23 24.57 10.39 ΣREE 317.94 705.33 223.78 218.47 152.28 268.15 149.88 LREE 272.64 628.40 155.66 208.15 141.91 245.98 140.76 HREE 45.30 76.93 68.12 10.32 10.37 22.17 9.12 LREE/HREE 6.02 8.17 2.29 20.17 13.68 11.10 15.43 LaN/YbN 10.99 11.13 0.93 31.62 12.76 11.65 16.19 δEu 0.07 0.09 0.04 0.47 0.55 0.22 0.52 δCe 0.31 0.28 1.44 0.54 0.91 0.87 0.59 注:TGS-1~TGS-4数据为本文实测,TGS-5~TGS-7测试数据来源于1:25万龙岩市幅区域地质调查报告(福建省地质调查研究院,2005). 表 4 岩体锆石LA-ICP-MS U-Pb测试结果
Table 4. Zircon LA-ICP-MS U-Pb data of the granites
测点号 含量(10-6) Th/U 同位素比值 年龄(Ma) Th U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 207Pb/235U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ T1-1 727 862 0.84 0.051 8 0.001 1 0.262 0 0.006 6 0.036 3 0.000 5 0.010 8 0.000 3 276.0 45.4 236.2 5.3 230.1 3.0 217.3 5.3 T1-3 162 192 0.84 0.052 3 0.002 1 0.268 3 0.011 0 0.037 3 0.000 6 0.010 4 0.000 3 298.2 88.0 241.4 8.8 236.3 3.6 208.7 6.8 T1-4 577 941 0.61 0.051 0 0.001 3 0.260 5 0.006 6 0.036 8 0.000 5 0.011 3 0.000 3 242.7 57.4 235.1 5.3 233.3 3.2 227.6 6.1 T1-5 368 318 1.16 0.055 7 0.002 4 0.278 7 0.011 8 0.036 3 0.000 7 0.009 6 0.000 4 442.6 128.7 249.6 9.3 230.0 4.1 194.1 7.8 T1-8 160 199 0.81 0.048 6 0.002 0 0.244 6 0.010 2 0.036 8 0.000 7 0.010 9 0.000 5 127.9 93.5 222.2 8.3 232.7 4.2 219.6 9.8 T1-9 218 287 0.76 0.048 6 0.001 9 0.244 6 0.009 7 0.036 3 0.000 6 0.010 4 0.000 4 127.9 90.7 222.1 8.0 230.1 3.9 209.1 8.2 T1-10 117 125 0.93 0.047 3 0.002 9 0.237 7 0.014 3 0.037 1 0.000 8 0.011 1 0.000 5 64.9 146.3 216.6 11.7 235.1 4.9 222.9 10.0 T1-11 602 844 0.71 0.049 6 0.001 3 0.255 5 0.006 5 0.037 1 0.000 5 0.011 3 0.000 3 176.0 59.2 231.0 5.3 235.1 3.1 227.7 7.0 T1-12 250 321 0.78 0.049 2 0.001 7 0.245 4 0.008 5 0.036 4 0.000 6 0.011 1 0.000 4 166.8 83.3 222.8 6.9 230.6 3.7 223.1 8.1 T1-13 223 211 1.06 0.045 3 0.002 1 0.222 0 0.010 3 0.035 7 0.000 6 0.011 0 0.000 4 — — 203.6 8.5 225.9 4.0 220.6 8.4 T1-14 96 133 0.72 0.069 3 0.006 3 0.371 6 0.037 5 0.037 5 0.001 0 0.013 6 0.001 0 905.6 187.0 320.9 27.8 237.5 6.0 272.8 20.3 T1-15 204 211 0.97 0.055 7 0.002 6 0.281 1 0.013 0 0.036 9 0.000 7 0.012 0 0.000 5 442.6 99.1 251.5 10.3 233.8 4.4 241.5 10.4 T1-17 78 90 0.86 0.067 6 0.004 6 0.319 3 0.023 4 0.036 8 0.001 0 0.011 5 0.000 6 857.4 141.5 281.4 18.0 233.2 6.1 231.0 12.0 T1-18 129 154 0.83 0.054 3 0.003 6 0.271 5 0.017 7 0.036 8 0.000 9 0.012 7 0.000 6 383.4 148.1 243.9 14.2 233.2 5.3 255.2 12.7 T1-19 140 163 0.86 0.049 5 0.002 9 0.251 4 0.014 0 0.037 5 0.000 9 0.012 0 0.000 5 172.3 135.2 227.7 11.4 237.6 5.4 240.4 10.5 T1-20 286 460 0.62 0.050 7 0.001 9 0.262 1 0.010 0 0.037 3 0.000 7 0.011 5 0.000 5 233.4 54.6 236.4 8.1 236.0 4.6 230.7 9.6 T3-2 314 509 0.62 0.049 6 0.001 6 0.255 4 0.008 3 0.037 5 0.000 6 0.013 4 0.000 4 176.0 77.8 230.9 6.7 237.2 3.5 268.4 8.1 T3-3 105 134 0.78 0.047 9 0.002 5 0.229 0 0.011 7 0.035 3 0.000 7 0.012 2 0.000 5 100.1 112.9 209.4 9.7 223.6 4.1 244.2 10.0 T3-4 157 197 0.80 0.051 7 0.002 3 0.259 3 0.010 3 0.037 2 0.000 6 0.014 4 0.000 5 272.3 101.8 234.1 8.3 235.4 4.0 289.3 10.5 T3-5 158 173 0.91 0.052 6 0.002 8 0.258 9 0.012 7 0.036 4 0.000 6 0.014 6 0.000 5 309.3 122.2 233.8 10.2 230.4 3.9 292.4 10.5 T3-6 239 288 0.83 0.051 6 0.002 0 0.262 9 0.010 2 0.037 0 0.000 6 0.015 7 0.000 6 333.4 95.4 237.0 8.2 234.4 3.7 314.8 11.4 T3-7 274 348 0.79 0.054 7 0.002 1 0.254 5 0.008 5 0.034 2 0.000 5 0.014 7 0.000 6 398.2 80.5 230.2 6.9 216.6 3.3 294.9 11.1 T3-8 425 646 0.66 0.052 0 0.001 9 0.247 5 0.008 6 0.034 4 0.000 6 0.015 9 0.000 6 287.1 78.7 224.5 7.0 217.8 3.5 318.6 12.4 T3-9 185 188 0.98 0.050 5 0.002 6 0.249 0 0.011 4 0.037 0 0.000 7 0.018 2 0.000 8 216.7 122.2 225.8 9.3 234.2 4.2 365.0 15.6 T3-10 432 710 0.61 0.050 8 0.001 5 0.254 0 0.007 5 0.036 3 0.000 6 0.016 2 0.000 6 227.8 66.7 229.8 6.1 230.1 3.4 324.6 12.4 T3-11 168 147 1.14 0.059 1 0.003 2 0.281 5 0.015 6 0.035 4 0.000 8 0.015 7 0.000 7 572.3 116.7 251.8 12.3 224.4 4.8 315.7 13.5 T3-12 443 537 0.83 0.053 0 0.001 8 0.269 3 0.010 3 0.036 3 0.000 7 0.015 4 0.000 6 331.5 77.8 242.1 8.3 229.6 4.4 308.5 11.2 T3-13 106 84 1.26 0.055 2 0.003 4 0.263 9 0.014 5 0.036 6 0.000 9 0.014 3 0.000 6 420.4 140.7 237.8 11.6 232.0 5.5 286.7 11.4 T3-14 155 153 1.01 0.052 9 0.002 6 0.259 1 0.014 3 0.036 3 0.000 8 0.013 7 0.000 6 324.1 109.2 233.9 11.5 230.0 5.1 275.4 12.0 T3-15 167 217 0.77 0.053 9 0.002 1 0.274 7 0.010 6 0.037 0 0.000 7 0.013 5 0.000 5 364.9 87.0 246.5 8.5 234.3 4.4 272.0 10.3 T3-16 132 127 1.04 0.061 9 0.003 2 0.309 2 0.015 5 0.037 3 0.000 8 0.012 3 0.000 5 733.3 104.6 273.5 12.0 236.3 4.9 247.5 9.2 T3-17 336 422 0.79 0.049 4 0.001 6 0.253 4 0.008 5 0.037 0 0.000 6 0.011 4 0.000 3 168.6 71.3 229.3 6.9 234.0 3.8 229.6 6.7 T3-19 228 305 0.75 0.054 7 0.002 3 0.273 7 0.011 7 0.036 9 0.000 7 0.011 2 0.000 4 398.2 99.1 245.7 9.3 233.8 4.5 224.9 7.4 T3-20 151 190 0.80 0.056 5 0.002 3 0.280 3 0.012 1 0.036 1 0.000 7 0.011 7 0.000 4 472.3 86.1 250.9 9.6 228.7 4.5 234.4 8.6 T3-21 175 183 0.96 0.051 8 0.002 5 0.258 1 0.011 6 0.036 9 0.000 7 0.011 7 0.000 4 276.0 109.2 233.1 9.3 233.8 4.1 235.2 8.1 T3-22 170 190 0.90 0.053 9 0.002 8 0.259 4 0.012 8 0.035 4 0.000 6 0.011 6 0.000 3 368.6 112.0 234.2 10.3 224.4 3.9 233.2 6.6 T3-24 169 143 1.18 0.055 1 0.002 8 0.273 5 0.014 5 0.036 2 0.000 7 0.011 5 0.000 3 416.7 114.8 245.5 11.6 229.3 4.4 231.4 6.9 T3-25 202 251 0.80 0.051 4 0.002 2 0.260 0 0.011 0 0.037 0 0.000 7 0.011 6 0.000 4 261.2 96.3 234.7 8.8 234.4 4.2 233.1 7.8 注:数据为本文实测,测试单位为中国冶金地质总局山东局测试中心;“—”表示未测出. 表 6 岩体Lu-Hf同位素分析结果
Table 6. Zircon Lu-Hf isotopic compositions of the granites
测点编号 t(Ma) 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf 2σ 176Hf/177Hf εHf(t) TDM1(Ga) TDM2(Ga) fLu-Hf T1-1 230 0.021 047 0.000 677 0.282 406 0.000 019 0.282 403 -8.39 1.19 1.77 -0.98 T1-2 222 0.017 015 0.000 563 0.282 422 0.000 024 0.282 419 -8.01 1.16 1.74 -0.98 T1-3 236 0.017 513 0.000 569 0.282 406 0.000 020 0.282 404 -8.25 1.18 1.77 -0.98 T1-4 233 0.016 979 0.000 560 0.282 416 0.000 020 0.282 414 -7.94 1.17 1.75 -0.98 T1-5 230 0.029 125 0.000 925 0.282 400 0.000 018 0.282 396 -8.66 1.20 1.79 -0.97 T1-6 222 0.022 929 0.000 753 0.282 431 0.000 021 0.282 428 -7.69 1.15 1.72 -0.98 T1-7 213 0.014 228 0.000 466 0.282 425 0.000 021 0.282 423 -8.07 1.15 1.74 -0.99 T1-8 233 0.040 871 0.001 196 0.282 420 0.000 025 0.282 415 -7.91 1.18 1.74 -0.96 T1-9 230 0.021 081 0.000 684 0.282 416 0.000 023 0.282 413 -8.04 1.17 1.75 -0.98 T1-10 235 0.062 914 0.002 099 0.282 392 0.000 028 0.282 383 -9.01 1.25 1.81 -0.94 T1-11 235 0.017 466 0.000 578 0.282 417 0.000 021 0.282 414 -7.90 1.17 1.74 -0.98 T1-12 231 0.019 854 0.000 668 0.282 366 0.000 026 0.282 363 -9.80 1.24 1.86 -0.98 T1-13 226 0.032 511 0.001 085 0.282 423 0.000 023 0.282 418 -7.96 1.18 1.74 -0.97 T1-14 238 0.022 421 0.000 772 0.282 454 0.000 029 0.282 451 -6.54 1.12 1.66 -0.98 T1-15 234 0.011 114 0.000 381 0.282 412 0.000 030 0.282 411 -8.05 1.17 1.75 -0.99 T1-16 225 0.018 516 0.000 620 0.282 497 0.000 022 0.282 494 -5.29 1.06 1.57 -0.98 T1-17 233 0.035 832 0.001 140 0.282 412 0.000 033 0.282 407 -8.18 1.19 1.76 -0.97 T1-18 233 0.019 791 0.000 668 0.282 425 0.000 028 0.282 422 -7.68 1.16 1.73 -0.98 T1-19 238 0.019 598 0.000 653 0.282 445 0.000 024 0.282 442 -6.85 1.13 1.68 -0.98 T1-20 236 0.042 546 0.001 394 0.282 341 0.000 025 0.282 335 -10.69 1.30 1.92 -0.96 注:本文实测测试单位:南京大学内生金属矿床成矿机制国家重点实验室. 表 5 天宫山岩体锆石Ti含量地质温度计计算结果
Table 5. Calculation results of zircon Ti content geological thermometer of the Tiangongshan pluton
点号 t(℃) 点号 t(℃) 点号 t(℃) 点号 t(℃) T1-01 572.3 T1-14 739.0 T3-01 717.3 T3-14 776.6 T1-02 765.9 T1-15 725.0 T3-02 692.8 T3-15 768.0 T1-03 761.6 T1-16 833.8 T3-03 736.9 T3-16 770.1 T1-04 680.1 T1-17 713.4 T3-04 763.7 T3-17 692.8 T1-05 689.1 T1-18 637.4 T3-05 739.0 T3-18 741.0 T1-06 732.9 T1-19 698.3 T3-06 729.0 T3-19 751.2 T1-07 713.4 T1-20 713.4 T3-07 741.0 T3-20 700.2 T1-08 774.4 T3-08 536.0 T3-21 761.6 T1-09 768.0 T3-09 751.2 T3-22 772.3 T1-10 753.3 T3-10 702.1 T3-23 723.1 T1-11 705.8 T3-11 763.7 T3-24 780.9 T1-12 725.0 T3-12 732.9 T3-25 749.1 T1-13 755.3 T3-13 789.8 -
[1] Amelin, Y., Lee, D.C., Halliday, A.N., et al., 1999.Nature of the Earth's Earliest Crust from Hafnium Isotopes in Single Detrital Zircons.Nature, 399(6733):252-255. doi: 10.1038/20426 [2] Anderson, T., 2002.Correction of Common Lead in U-Pb Zircon Ages that do not Report 204Pb.Chemical Geology, 192:59-79. doi: 10.1016/S0009-2541(02)00195-X [3] Belousova, E.A., Griffin, W.L., O'Reilly, S.Y., 2005.Zircon Crystal Morphology, Trace Element Signatures and Hf Isotope Composition as a Tool for Petrogenetic Modelling:Examples from Eastern Australian Granitoids.Journal of Petrology, 47(2):329-353. https://doi.org/10.1093/petrology/egi077 [4] Belousova, E., Griffin, W., O'Reilly, S.Y., et al., 2002.Igneous Zircon:Trace Element Composition as an Indicator of Source Rock Type.Contributions to Mineralogy and Petrology, 143(5):602-622. https://doi.org/10.1007/s00410-002-0364-7 [5] Chappell, B.W., White, A.J.R., 1974.Two Contrasting Granite Types.Pacific Geol., 8:173-174. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ027419645/ [6] Chen, P.R., Kong, X.G., Wang, Y.X., et al., 1999.Rb-Sr Isotopic Dating and Significance of Early Yanshanian Bimodal Volcanic-Inrusive Complex from South Jiangxi Province.Geological Journal of China Universities, 5(4):378-383 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-GXDX199904002.htm [7] Chen, Y.C., Wang, D.H., Xu, Z.G., et al., 2014.Outline of Regional Metallogeny of Ore Deposits Associated with the Mesozoic Magmatism in South China.Geotectonica et Metallogenia, 38(2):219-229 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx201402002 [8] Collins, W.J., Beams, S.D., White, A.J.R., et al., 1982.Nature and Origin of A-Type Granites with Particular Reference to Southeastern Australia.Contributions to Mineralogy and Petrology, 80(2):189-200. https://doi.org/10.1007/bf00374895 [9] Deng, J.F., Feng, Y.F., Di, Y.J., et al., 2016.The Intrusive Spatial Temporal Evolutional Framework in the Southeast China.Geological Review, 62(1):3-16 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201601002 [10] Deng, X.G., Chen, Z.G., Li, X.H., et al., 2004.SHRIMP U-Pb Zircon Dating of the Darongshan-Shiwandashan Granitoid Belt in Southeastern Guangxi, China.Geological Review, 50(4):426-432 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/OA000005441 [11] Eby, G.N., 1990.The A-Type Granitoids:A Review of Their Occurrence and Chemical Characteristics and Speculations on Their Petrogenesis.Lithos, 26(1-2):115-134. https://doi.org/10.1016/0024-4937(90)90043-z [12] Eby, G.N., 1992.Chemical Subdivision of the A-Type Granitoids:Petrogenetic and Tectonic Implications.Geology, 20(7):641.https://doi.org/10.1130/0091-7613(1992)020<0641:csotat>2.3.co;2 doi: 10.1130/0091-7613(1992)020<0641:csotat>2.3.co;2 [13] Ferry, J.M., Watson, E.B., 2007.New Thermodynamic Models and Revised Calibrations for the Ti-in-Zircon and Zr-in-Rutile Thermometers.Contributions to Mineralogy and Petrology, 154(4):429-437. https://doi.org/10.1007/s00410-007-0201-0 [14] Frost, C.D., Ronald Frost, B., 1997.Reduced Rapakivi-Type Granites:The Tholeiite Connection.Geology, 25(7):647.https://doi.org/10.1130/0091-7613(1997)025<0647:rrtgtt>2.3.co;2 doi: 10.1130/0091-7613(1997)025<0647:rrtgtt>2.3.co;2 [15] Gilder, S.A., Gill, J., Coe, R.S., et al., 1996.Isotopic and Paleomagnetic Constraints on the Mesozoic Tectonic Evolution of South China.Journal of Geophysical Research(Solid Earth), 101(B7):16137-16154. https://doi.org/10.1029/96jb00662 [16] Griffin, W.L., Wang, X., Jackson, S.E., et al., 2002.Zircon Chemistry and Magma Mixing, SE China:In-Situ Analysis of Hf Isotopes, Tonglu and Pingtan Igneous Complexes.Lithos, 61(3-4):237-269. https://doi.org/10.1016/s0024-4937(02)00082-8 [17] Guo, C.L., Zheng, J.H., Lou, F.S., et al., 2012.Petrography, Genetic Types and Geological Dynamical Settings of the Indosinian Granitoids in South China.Geotectonica et Metallogenia, 36(3):457-472 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx201203020 [18] Hoskin, P.W.O., 2003.The Composition of Zircon and Igneous and Metamorphic Petrogenesis.Reviews in Mineralogy and Geochemistry, 53(1):27-62. https://doi.org/10.2113/0530027 [19] Jian, P., Cheng, Y.Q., Liu, D.Y., 2001.Petrographical Study of Metamorphic Zircon:Basic Roles in Interpretation of U-Pb Age of High Grade Metamorphic Rocks.Earth Science Frontiers, 8(3):183-191 (in Chinese with English abstract). [20] Kang, C.X., Zhou, Y., Fan, F.P., et al., 2017.Geochemical Characteristic, Zircon U-Pb Ages, and Lu-Hf Isotopic Compositions of the Yongfu Pluton in Longyan, Fujian Province.Geotectonica et Metallogenia, 41(5):960-973 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx201705012 [21] Kemp, A.I.S., Wormald, R.J., Whitehouse, M.J., et al., 2005.Hf Isotopes in Zircon Reveal Contrasting Sources and Crystallization Histories for Alkaline to Peralkaline Granites of Temora, Southeastern Australia.Geology, 33(10):797. https://doi.org/10.1130/g21706.1 [22] King, P.L., White, A.J.R., Chappell, B.W., et al., 1997.Characterization and Origin of Aluminous A-Type Granites from the Lachlan Fold Belt, Southeastern Australia.Journal of Petrology, 38(3):371-391. https://doi.org/10.1093/petroj/38.3.371 [23] Li, R.B., Pei, X.Z., Ding, S.P., et al., 2009.LA-ICP-MS Zircon U-Pb Dating of the Pipasi Basic Volcanic Rocks within the Mian-Lue Tectonic Zone in the Southern Margin of West Qinling and Its Geological Implication.Acta Geologica Sinica, 83(11):1612-1623 (in Chinese with English abstract). [24] Liu, C.S., Chen, X.M., Chen, P.R., et al., 2003.Subdivision, Discrimination Criteria and Genesis for A Type Rock Suites.Geological Journal of China Universities, 9(4):573-591 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb200304011 [25] Liu, Y., Deng, J., Wang, Z.L., et al., 2014.Zircon U-Pb Age Lu-Hf Isotopes and Petrogeochemistry of the Monzogranites from Xincheng Gold Deposit, Northwestern Jiaodong Peninsula, China.Acta Petrologica Sinica, 30(9):2559-2573 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201409009 [26] Loiselle, M., Wones, D., 1979.Characteristics and Origin of Anorogenic Granites.Geological Society of America, 11(7):468. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9108a701005035f04fb9accc13dc243b [27] Ludwig, K.R., 2008.Isoplot 3.0-A Geochronological Tool Kit for Microsoft Excel.Berkeley Geochronology Center, Berkeley. [28] Mao, J.R., Li, Z.L., Ye, H.M., 2014.Mesozoic Tectono-Magmatic Activities in South China:Retrospect and Prospect.Science in China (Series D:Earth Sciences), 44(12):2593-2617 (in Chinese with English abstract). doi: 10.1007/s11430-014-5006-1 [29] Mao, J.R., Xu, N.Z., Hu, Q., et al., 2004.The Mesozoic Rock-Forming and Ore-Forming Processes and Tectonic Environment Evolution in Shanghang-Datian Region, Fujian.Acta Petrologica Sinica, 20(2):285-296 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200402010 [30] Middlemost, E.A.K., 1985.Magmas and Magmatic Rocks: An Introduction to Igneous Petrology.Longman, London. [31] Middlemost, E.A.K., 1994.Naming Materials in the Magma/Igneous Rock System.Earth-Science Reviews, 37(3-4):215-224. https://doi.org/10.1016/0012-8252(94)90029-9 [32] Pearce, J.A., Harris, N.B.W., Tindle, A.G., 1984.Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks.Journal of Petrology, 25(4):956-983. https://doi.org/10.1093/petrology/25.4.956 [33] Peccerillo, A., Taylor, S.R., 1976.Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey.Contributions to Mineralogy and Petrology, 58(1):63-81. https://doi.org/10.1007/bf00384745 [34] Qiu, J.S., Li, Z., Liu, L., et al., 2012.Petrogenesis of the Zhangpu Composite Granite Pluton in Fujian Province:Constraints from Zircon U-Pb Ages, Elemental Geochemistry and Nd-Hf Isotopes.Acta Geologica Sinica, 86(4):561-576 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DZXE201204003.htm [35] Rowley, D.B., Ziegler, A.M., Gyou, N., et al., 1989.Comment and Reply on "Mesozoic Overthrust Tectonics in South China".Geology, 17(4):384. doi: 10.1130/0091-7613(1989)017<0384:CAROMO>2.3.CO;2 [36] Sláma, J., Košler, J., Condon, D.J., et al., 2008.Plešovice Zircon-A New Natural Reference Material for U-Pb and Hf Isotopic Microanalysis.Chemical Geology, 249(1-2):1-35. https://doi.org/10.1016/j.chemgeo.2007.11.005 [37] Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [38] Turner, S.P., Foden, J.D., Morrison, R.S., 1992.Derivation of Some A-Type Magmas by Fractionation of Basaltic Magma:An Example from the Padthaway Ridge, South Australia.Lithos, 28(2):151-179. https://doi.org/10.1016/0024-4937(92)90029-x [39] Vervoort, J.D., Patchett, P.J., Blichert-Toft, J., et al., 1999.Relationships between Lu-Hf and Sm-Nd Isotopic Systems in the Global Sedimentary System.Earth and Planetary Science Letters, 168(1-2):79-99. https://doi.org/10.1016/s0012-821x(99)00047-3 [40] Wang, Q., Zhao, Z.H., Xiong, X.L., 2000.The Ascertainment of Late-Yanshanian A-Type Granite in Tongbai-Dabie Orogenic Belt.Acta Petrologica et Mineralogica, 19(4):297-306 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yskwxzz200004002 [41] Wang, Y.J., Fan, W.M., Guo, F., et al., 2003.Geochemistry of Mesozoic Mafic Rocks Adjacent to the Chenzhou-Linwu Fault, South China:Implications for the Lithospheric Boundary between the Yangtze and Cathaysia Blocks.International Geology Review, 45(3):263-286. https://doi.org/10.2747/0020-6814.45.3.263 [42] Wang, Y.J., Fan, W.M., Peng, T.P., et al., 2004.Elemental and Sr-Nd Isotopic Systematics of the Early Mesozoic Volcanic Sequence in Southern Jiangxi Province, South China:Petrogenesis and Tectonic Implications.International Journal of Earth Sciences, 94(1):53-65. https://doi.org/10.1007/s00531-004-0441-4 [43] Wang, Z.L., Gong, Q.J., Sun, X., et al., 2012.LA-ICP-MS Zircon U-Pb Geochronology of Quartz Porphyry from the Niutougou Gold Deposit in Songxian County, Henan Province.Acta Geologica Sinica (English Edition), 86(2):370-382. https://doi.org/10.1111/j.1755-6724.2012.00666.x [44] Watson, E.B., Harrison, T.M., 1983.Zircon Saturation Revisited:Temperature and Composition Effects in a Variety of Crustal Magma Types.Earth and Planetary Science Letters, 64(2):295-304. https://doi.org/10.1016/0012-821x(83)90211-x [45] Watson, E.B., Wark, D.A., Thomas, J.B., 2006.Crystallization Thermometers for Zircon and Rutile.Contributions to Mineralogy and Petrology, 151(4):413-433. https://doi.org/10.1007/s00410-006-0068-5 [46] Whalen, J.B., Currie, K.L., Chappell, B.W., 1987.A-Type Granites:Geochemical Characteristics, Discrimination and Petrogenesis.Contributions to Mineralogy and Petrology, 95(4):407-419. https://doi.org/10.1007/bf00402202 [47] Wu, F.Y., Li, X.H., Yang, J.H., et al., 2007.Discussions on the Petrogenesis of Granites.Acta Petrologica Sinica, 23(6):1217-1238 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200706001 [48] Wu, S.P., Wang, M.Y., Qi, K.J., 2007.Present Situation of Researches on A-Type Granites:A Review.Acta Petrologica et Mineralogica, 26(1):57-66 (in Chinese with English abstract). [49] Wu, Y.B., Zheng, Y.F., 2004.Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age.Chinese Science Bulletin, 49(15):1554-1569. https://doi.org/10.1007/bf03184122 [50] Xu, B.L., Yan, G.H., Zhang, C., et al., 1998.Petrological Subdivision and Source Material of A-Type Granites.Earth Science Frontiers, 5(3):113-124 (in Chinese with English abstract). [51] Xu, X.B., Li, Y., Xue, D.J., et al., 2014.Deformation Characteristics and Geochronological Constraints of Late Mesozoic Extensional Structures in Quanzhou, Fujian Province.Earth Science, 39(1):45-63 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201401005 [52] Xu, X.B., Zhang, Y.Q., Jia, D., et al., 2009.Early Mesozoic Geotectonic Processes in South China.Geology in China, 36(3):573-593 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/zgdizhi200903007 [53] Xu, X.S., O'Reilly, S.Y., Griffin, W.L., et al., 2003.Enrichment of Upper Mantle Peridotite:Petrological, Trace Element and Isotopic Evidence in Xenoliths from SE China.Chemical Geology, 198(3-4):163-188. https://doi.org/10.1016/s0009-2541(03)00004-4 [54] Yang, J.H., Wu, F.Y., Chung, S.L., et al., 2006a.A Hybrid Origin for the Qianshan A-Type Granite, Northeast China:Geochemical and Sr-Nd-Hf Isotopic Evidence.Lithos, 89(1-2):89-106. https://doi.org/10.1016/j.lithos.2005.10.002 [55] Yang, J.H., Wu, F.Y., Wilde, S.A., et al., 2006b.Tracing Magma Mixing in Granite Genesis:In Situ U-Pb Dating and Hf-Isotope Analysis of Zircons.Contributions to Mineralogy and Petrology, 153(2):177-190. https://doi.org/10.1007/s00410-006-0139-7 [56] Zhang, C.S., Su, H.M., Yu, M., et al., 2012.Zircon U-Pb Age and Nd-Sr-Pb Isotopic Characteristics of Dayang-Juzhou Granite in Longyan, Fujian Province and Its Geological Significance.Acta Petrologica Sinica, 28(1):225-242 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201201017 [57] Zhang, K.X., Pan, G.T., He, W.H., et al., 2015.New Division of Tectonic-Strata Superregion in China.Earth Science, 40(2):206-233 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2015.016 [58] Zhang, Q., 2013.The Criteria and Discrimination for A-Type Granites:A Reply to the Question Put forward by Wang Yang and Some Other Persons for A-Type Granite:What is the Essence?.Acta Petrologica et Mineralogica, 32(2):267-274 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSKW201302014.htm [59] Zhang, Q., Pan, G.Q., Li, C.D., et al., 2007.Are Discrimination Diagrams always Indicative of Correct Tectonic Settings of Granites? Some Crucial Questions on Granite Study (3).Acta Petrologica Sinica, 23(11):2683-2698 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200711003.htm [60] Zhang, Q., Ran, H., Li, C.D., 2012.A-Type Granite:What is the Essence?.Acta Petrologica et Mineralogica, 31(4):621-626 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_8c2890609571b9a5f39733c2b59b003c [61] Zhang, W.L., Hua, R.M., Wang, R.C., et al., 2004.Single Zircon U-Pb Isotopic Age of the Wuliting Granite in Dajishan Area of Jiangxi, and Its Geological Implication.Acta Geologica Sinica, 78(3):352-358 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200403008 [62] Zhang, Y.Q., Xu, X.B., Jia, D., et al., 2009.Deformation Record of the Change from Indosinian Collision-Related Tectonic System to Yanshanian Subduction-Related Tectonic System in South China during the Early Mesozoic.Earth Science Frontiers, 16(1):234-247 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200901033.htm [63] Zhao, J.L., Qiu, J.S., Li, Z., et al., 2012.Petrogenesis of the Taiwushan Granite Pluton in Fujian Province:Constraints from Zircon U-Pb Ages and Hf Isotopes.Acta Petrologica Sinica, 28(12):3938-3950 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201212012 [64] Zhao, X.L., Mao, J.R., Ye, H.M, et al., 2009.The Geochemical Characteristics of Biotite and Its Petrogenesis Implication in the Caixi Pluton and Sifang Pluton from Shanghang Area of Fujian Province.Bulletin of Mineralogy, Petrology and Geochemistry, 28(2):162-168 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwysdqhxtb200902010 [65] 陈培荣, 孔兴功, 王银喜, 等, 1999.赣南燕山早期双峰式火山-侵入杂岩的Rb-Sr同位素定年及意义.高校地质学报, 5(4):378-383. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199900178513 [66] 陈毓川, 王登红, 徐志刚, 等, 2014.华南区域成矿和中生代岩浆成矿规律概要.大地构造与成矿学, 38(2):219-229. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201402002 [67] 邓晋福, 冯艳芳, 狄永军, 等, 2016.华南地区侵入岩时空演化框架.地质论评, 62(1):3-16. http://d.old.wanfangdata.com.cn/Periodical/dzlp201601002 [68] 邓希光, 陈志刚, 李献华, 等, 2004.桂东南地区大容山-十万大山花岗岩带SHRIMP锆石U-Pb定年.地质论评, 50(4):426-432. doi: 10.3321/j.issn:0371-5736.2004.04.014 [69] 郭春丽, 郑佳浩, 楼法生, 等, 2012.华南印支期花岗岩类的岩石特征、成因类型及其构造动力学背景探讨.大地构造与成矿学, 36(3):457-472. doi: 10.3969/j.issn.1001-1552.2012.03.020 [70] 简平, 程裕淇, 刘敦一, 2001.变质锆石成因的岩相学研究——高级变质岩U-Pb年龄解释的基本依据.地学前缘, 8(3):183-191. doi: 10.3321/j.issn:1005-2321.2001.03.022 [71] 康丛轩, 周延, 范飞鹏, 等, 2017.福建龙岩永福岩体锆石U-Pb年龄、地球化学特征及Lu-Hf同位素组成.大地构造与成矿学, 41(5):960-973. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201705012 [72] 李瑞保, 裴先治, 丁仨平, 等, 2009.西秦岭南缘勉略带琵琶寺基性火山岩LA-ICP-MS锆石U-Pb年龄及其构造意义.地质学报, 83(11):1612-1623. doi: 10.3321/j.issn:0001-5717.2009.11.006 [73] 刘昌实, 陈小明, 陈培荣, 等, 2003.A型岩套的分类、判别标志和成因.高校地质学报, 9(4):573-591. doi: 10.3969/j.issn.1006-7493.2003.04.011 [74] 刘跃, 邓军, 王中亮, 等, 2014.胶西北新城金矿床二长花岗岩岩石地球化学、锆石U-Pb年龄及Lu-Hf同位素组成.岩石学报, 30(9):2559-2573. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201409009 [75] 毛建仁, 厉子龙, 叶海敏, 2014.华南中生代构造-岩浆活动研究:现状与前景.中国科学(D辑:地球科学), 44(12):2593-2617. http://www.cnki.com.cn/Article/CJFDTotal-JDXK201412001.htm [76] 毛建仁, 许乃政, 胡青, 等, 2004.福建省上杭-大田地区中生代成岩成矿作用与构造环境演化.岩石学报, 20(2):285-296. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200402010 [77] 邱检生, 李真, 刘亮, 等, 2012.福建漳浦复式花岗岩体的成因:锆石U-Pb年代学、元素地球化学及Nd-Hf同位素制约.地质学报, 86(4):561-576. doi: 10.3969/j.issn.0001-5717.2012.04.003 [78] 王强, 赵振华, 熊小林, 2000.桐柏-大别造山带燕山晚期A型花岗岩的厘定.岩石矿物学杂志, 19(4):297-306. doi: 10.3969/j.issn.1000-6524.2000.04.002 [79] 吴福元, 李献华, 杨进辉, 等, 2007.花岗岩成因研究的若干问题.岩石学报, 23(6):1217-1238. doi: 10.3969/j.issn.1000-0569.2007.06.001 [80] 吴锁平, 王梅英, 戚开静, 2007.A型花岗岩研究现状及其述评.岩石矿物学杂志, 26(1):57-66. doi: 10.3969/j.issn.1000-6524.2007.01.009 [81] 许保良, 阎国翰, 张臣, 等, 1998.A型花岗岩的岩石学亚类及其物质来源.地学前缘, 5(3):113-124. doi: 10.3321/j.issn:1005-2321.1998.03.011 [82] 徐先兵, 李源, 薛德杰, 等, 2014.福建泉州晚中生代伸展构造变形特征与年代学制约.地球科学, 39(1):45-63. http://earth-science.net/WebPage/Article.aspx?id=2828 [83] 徐先兵, 张岳桥, 贾东, 等, 2009.华南早中生代大地构造过程.中国地质, 36(3):573-593. doi: 10.3969/j.issn.1000-3657.2009.03.007 [84] 张承帅, 苏慧敏, 于淼, 等, 2012.福建龙岩大洋-莒舟花岗岩锆石U-Pb年龄和Sr-Nd-Pb同位素特征及其地质意义.岩石学报, 28(1):225-242. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201201017 [85] 张克信, 潘桂棠, 何卫红, 等, 2015.中国构造-地层大区划分新方案.地球科学, 40(2):206-233. http://earth-science.net/WebPage/Article.aspx?id=3179 [86] 张旗, 2013.A型花岗岩的标志和判别——兼答汪洋等对"A型花岗岩的实质是什么"的质疑.岩石矿物学杂志, 32(2):267-274. doi: 10.3969/j.issn.1000-6524.2013.02.014 [87] 张旗, 潘国强, 李承东, 等, 2007.花岗岩构造环境问题:关于花岗岩研究的思考之三.岩石学报, 23(11):2683-2698. doi: 10.3969/j.issn.1000-0569.2007.11.002 [88] 张旗, 冉皞, 李承东, 2012.A型花岗岩的实质是什么?.岩石矿物学杂志, 31(4):621-626. doi: 10.3969/j.issn.1000-6524.2012.04.014 [89] 张文兰, 华仁民, 王汝成, 等, 2004.江西大吉山五里亭花岗岩单颗粒锆石U-Pb同位素年龄及其地质意义探讨.地质学报, 78(3):352-358. doi: 10.3321/j.issn:0001-5717.2004.03.008 [90] 张岳桥, 徐先兵, 贾东, 等, 2009.华南早中生代从印支期碰撞构造体系向燕山期俯冲构造体系转换的形变记录.地学前缘, 16(1):234-247. doi: 10.3321/j.issn:1005-2321.2009.01.026 [91] 赵姣龙, 邱检生, 李真, 等, 2012.福建太武山花岗岩体成因:锆石U-Pb年代学与Hf同位素制约.岩石学报, 28(12):3938-3950. http://d.old.wanfangdata.com.cn/Conference/7863327 [92] 赵希林, 毛建仁, 叶海敏, 等, 2009.福建省上杭地区晚中生代花岗质岩体黑云母的地球化学特征及成因意义.矿物岩石地球化学通报, 28(2):162-168. doi: 10.3969/j.issn.1007-2802.2009.02.010