Characteristics and Formation Mechanism of Composite Flower Structures in Northern Slope of Tazhong Uplift, Tarim Basin
-
摘要: 学者们对塔中北坡走滑断层的活动期次和发育时间以及形成机制展开过一些研究,但尚未达成共识.近期高品质三维地震资料的获得,有助于对该区走滑断层展开更详细的研究.基于三维地震数据的解释,发现塔中北坡发育一系列下断穿寒武系基底、上断至中泥盆统的NNE向走滑断裂.地震剖面上显示多数走滑断裂几何学形态复杂,以上奥陶统为界,断裂呈现下部"正花状"与上部"负花状"相互叠置的"复合花状"构造样式.三维地震相干切片显示,下部断裂呈NNE向线性延伸且只分布于主位移带附近;上部断裂为NW走向,整体上呈现为右阶雁列排布.根据界面沿断层局部"隆升"高度的分析以及断层生长指数的计算可知,下部断层形成时间不早于晚奥陶世,上部雁列正断层的发育时间为中志留-中泥盆世.结合塔里木盆地周缘构造背景分析,认为下部基底断层可能发育于晚奥陶世,与古昆仑洋强烈俯冲碰撞作用相关;上部雁列断层的形成可能受控于下部基底走滑断层的活化,与阿尔金域强烈的褶皱造山作用相关.Abstract: Developmental stages and mechanisms of the strike-slip faults on the northern slope of the Tarim basin remains controversial despite many studies. However, a more detailed study of the strike-slip faults in the area is possible due to the availability of high-quality 3D seismic data now. It is found that a series of strike-slip faults, which cut through the basement strata and straight up to the Middle Devonian strata, developed in the study area based on detailed 3D seismic interpretations. On the 3D seismic profiles, the strike-slip fault shows complex geometric feature that consists of a lower positive flower structure and an upper negative flower structure that is bounded by the Late Ordovician strata. On the seismic coherency slices, the lower strike-slip faults show NE linear extension and the upper strike-slip faults are NW trending and present right-order en-echelon arrangements. According to changes of the rising height of the interface and fault throw changes, the development history of the strike-slip faults may be divided into two stages including the Late Ordovician and the Middle Silurian-Middle Devonian. Combined with tectonic background analyses on the structures surrounding Tarim basin, the lower strike-slip faults and the upper en-echelon normal faults may be genetically linked. In the Late Ordovician, the Tazhong uplift experienced a strong compression from ancient Kunlun ocean subducting in NE direction, which resulted in the formation of NNE-trending strike-slip faults. During the Middle Silurian-Middle Devonian, intense folding orogeny of the Arkin tectonic domain caused the reactivation of the lower strike-slip faults and made the formation of the en-echelon normal faults was controlled by the early-stage basement weak zones.
-
图 2 三维地震剖面AA′和BB′花状构造与垂直断层识别
剖面AA′和BB′位置见图 1
Fig. 2. The flower structures and vertical faults of 3D seismic profiles AA′ and BB′
图 4 塔中北坡走滑断层识别标志
a.顺南1三维工区桑塔木组顶界面(T70)相干切片;b.顺南2三维工区恰尔巴克组底界面(T74)相干切片;c.顺1三维工区东河塘组底界面(T60)相干切片;三维工区的位置见图 1
Fig. 4. Identification characteristics of strike-slip faults in northern slope of Tazhong uplift
图 5 顺1、顺南1和顺南2三维工区地震剖面走滑断裂解释
走滑断裂典型构造样式剖面位置见图 6
Fig. 5. Interpreted 3D seismic sections across the strike-slip faults from the 3D seismic volumes of S1, SN1 and SN2
图 6 顺1(a, a′)、顺南1和顺南2(b, b′)三维工区上奥陶统恰尔巴克组底界面(T74)地震相干属性切片
三维工区的位置见图 1
Fig. 6. Coherence attribute slices of the Ordovician Qiaerbake Formation bottom (T74) from the 3D seismic volumes of S1(a, a′), SN1 and SN2 (b, b′)
图 7 顺1三维工区中泥盆统克孜儿塔格组顶界面(T60)地震相干属性切片(a, a′),顺南1和顺南2三维工区下志留统柯坪塔格组顶界面(T63)地震相干属性切片(b, b′)
三维工区的位置见图 1
Fig. 7. Coherence attribute slice of Devonian Keziertage Formation top (T60) from the S1 3D seismic volumes (a, a′) and Coherence attribute slice of Silurian Kepingtage Formation top (T63) from the 3D seismic volume of SN1 and SN2 (b, b′)
图 10 雁列正断层地震解释剖面(a)和断层生长指数分析(b)
断层F1、F2、F3和剖面pro.1、pro.2、pro.3、pro.4、pro.5的位置见图 5
Fig. 10. Seismic interpretation sections (a) and fault growth index analysis (b) for en-echelon normal faults
-
[1] Asaoka, A., Sawada, Y., Yamada, S., 2016.Riedel Shear Band Formation with Flower Structures That Develop at the Surface Ground on a Strike Slip Fault.Japanese Geotechnical Society Special Publication, 2(20):751-754. https://doi.org/10.3208/jgssp.jpn-121 [2] Christie-Blick, N., Biddle, K.T., 1985.Deformation and Basin Formation along Strike-Slip Faults.In:Biddle, K.T., Christie-Blick, N., eds., Strike-Slip Deformation, Basin Formation, and Sedimentation.Special Publications of SEPM, 37:1-34.https://doi.org/10.2110/pec.85.37.0001 [3] Ding, C.H., Zhou, H.B., Lu, P.C., et al., 2009.The Paleozoic Structural Features and Its Evolution of the Tazhong Low Uplift, Xinjiang.Geotectonica et Metallogenia, 33(1):148-153 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DGYK200901021.htm [4] Ghalayini, R., Daniel, J.M., Homberg, C., et al., 2014.Impact of Cenozoic Strike-Slip Tectonics on the Evolution of the Northern Levant Basin (Offshore Lebanon).Tectonics, 33(11):2121-2142. https://doi.org/10.1002/2014tc003574 [5] Graham, S.A., McCloy, C., Hitzman, M., 1984.Basin Evolution during Change from Convergent to Transform Continental Margin in Central California.AAPG Bulletin, 68(3):223-249. https://doi.org/10.1306/ad460a03-16f7-11d7-8645000102c1865d [6] Han, J.F., Sun, C.H., Wang, Z.Y., et al., 2017.Superimposed Compound Karst Model and Oil and Gas Exploration of Carbonate in Tazhong Uplift.Earth Science, 42(3):410-420(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.031 [7] Harding, T.P., 1974.Petroleum Traps Associated with Wrench Faults.AAPG Bulletin, 58(7):1290-1304. http://adsabs.harvard.edu/abs/1974baapg..58.1290h [8] Harding, T.P., 1985.Seismic Characteristics and Identification of Negative Flower Structures, Positive Flower Structures, and Positive Structural Inversion.AAPG Bulletin, 69(4):582-600. https://doi.org/10.1306/ad462538-16f7-11d7-8645000102c1865d [9] He, B.Z., Jiao, C.L., Cai, Z.H., et al., 2011.A New Interpretation of the High Aeromagnetic Anomaly Zone in Central Tarim Basin.Geology in China, 38(4):961-969(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI201104014.htm [10] Huang, T.Z., 2014.Structural Interpretation and Petroleum Exploration Targets in Northern Slope of Middle Tarim Basin.Petroleum Geology & Experiment, 36(3):257-267(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SYSD201403002.htm [11] Lan, X.D., Lü.X.X., Zhu, Y.M., et al., 2015.The Geometry and Origin of Strike-Slip Faults Cutting the Tazhong Low Rise Megaanticline (Central Uplift, Tarim Basin, China) and Their Control on Hydrocarbon Distribution in Carbonate Reservoirs.Journal of Natural Gas Science and Engineering, 22:633-645. https://doi.org/10.1016/j.jngse.2014.12.030 [12] Li, B.L., Guan, S.W., Li, C.X., et al., 2009.Paleo-Tectonic Evolution and Deformation Features of the Lower Uplift in the Central Tarim Basin.Geological Review, 55(4):521-530 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200904008.htm [13] Li, C.X., Wang, X.F., Li, B.L., et al., 2013.Paleozoic Fault Systems of the Tazhong Uplift, Tarim Basin, China.Marine and Petroleum Geology, 39(1):48-58. https://doi.org/10.1016/j.marpetgeo.2012.09.010 [14] Li, D.S., Liang, D.G., Jia, C.Z., et al., 1996.Hydrocarbon Accumulation in the Tarim Basin, China.AAPG Bulletin, 80(10):1587-1603. doi: 10.1002/gj.2740/abstract [15] Li, P.J., Chen, H.H., Tang, D.Q., et al., 2017.Coupling Relationship between NE Strike-Slip Faults and Hypogenic Karstification in Middle-Lower Ordovician of Shunnan Area, Tarim Basin, Northwest China.Earth Science, 42(1):93-104(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.007 [16] Li, S.T., Ren, J.Y., Xing, F.C., et al., 2012.Dynamic Processes of the Paleozoic Tarim Basin and Its Significance for Hydrocarbon Accumulation-A Review and Discussion.Journal of Earth Science, 23(4):381-394. https://doi.org/10.1007/s12583-012-0262-5 [17] Li, Y.J., Wen, L., Yang, H.J., et al., 2015.New Discovery and Geological Significance of Late Silurian-Carboniferous Extensional Structures in Tarim Basin.Journal of Asian Earth Sciences, 98:304-319. https://doi.org/10.1016/j.jseaes.2014.11.020 [18] Liu, Y.J., Neubauer, F., Genser, J., et al., 2007.Geochronology of the Initiation and Displacement of the Altyn Strike-Slip Fault, Western China.Journal of Asian Earth Sciences, 29(2-3):243-252. https://doi.org/10.1016/j.jseaes.2006.03.002 [19] Ma, Q.Y., Sha, X.G., Li, Y.L., et al., 2012.Characteristics of Strike-Slip Fault and Its Controlling on Oil in Shuntuoguole Region, Middle Tarim Basin.Petroleum Geology & Experiment, 34(2):120-124(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYSD201202005.htm [20] McClay, K., Bonora, M., 2001.Analog Models of Restraining Stepovers in Strike-Slip Fault Systems.AAPG Bulletin, 85(2):233-260. https://doi.org/10.1306/8626c7ad-173b-11d7-8645000102c1865d [21] Moody, J.D., Hill, M.J., 1956.Wrench-Fault Tectonics.Geological Society of America Bulletin, 67(9):1207-1246. https://doi.org/10.1130/0016-7606(1956)67[1207:wt]2.0.co;2 [22] Nakajima, T., Maruyama, S., Uchiumi, S., et al., 1990.Evidence for Late Proterozoic Subduction from 700-Myr-Old Blueschists in China.Nature, 346:263-265. https://doi.org/10.1038/346263a0 [23] Qiao, R.X., Zhang, Y.X., 2002.New Knowledge Obtained from the Application of High-Precision Aeromagnetic Survey to Oil and Gas Exploration in Tarim Basin.Geophysical and Geochemical Exploration, 26(5):334-339(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-WTYH200205001.htm [24] Ren, J.Y., Yang, H.Z., Hu, D.S., et al., 2012.Fault Activity and Its Controlling to Marine Cratonic Breakup in Tarim Basin.Earth Science, 37(4):645-653(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2012.074 [25] Ren, J.Y., Zhang, J.X., Yang, H.Z., et al., 2011.Analysis of Fault Systems in the Central Uplift, Tarim Basin.Acta Petrologica Sinica, 27(1):219-230(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201101015.htm [26] Stefanov, Y.P., Bakeev, R.A., 2015.Formation of Flower Structures in a Geological Layer at a Strike-Slip Displacement in the Basement.Izvestiya, Physics of the Solid Earth, 51(4):535-547. https://doi.org/10.1134/s1069351315040114 [27] Swanson, M.T., 2005.Geometry and Kinematics of Adhesive Wear in Brittle Strike-Slip Fault Zones.Journal of Structural Geology, 27(5):871-887. https://doi.org/10.1016/j.jsg.2004.11.009 [28] Tang, L.J., Jin, Z.J., 2000.Negative Inversion Process and Hydrocarbon Accumulation of Yaha Fault Belt in Northern Uplift, Tarim Basin.Acta Sedimentologica Sinica, 18(2):302-309(in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-cjxb200002022.htm [29] Wang, Z.H., 2004.Tectonic Evolution of the Western Kunlun Orogenic Belt, Western China.Journal of Asian Earth Sciences, 24(2):153-161. https://doi.org/10.1016/j.jseaes.2003.10.007 [30] Wilcox, R.E., Harding, T.P., Seely, D.R., 1973.Basic Wrench Tectonics.AAPG Bulletin, 57(1):74-96. http://www.mendeley.com/catalog/basic-wrench-tectonics/ [31] Woodcock, N.H., Rickards, B., 2003.Transpressive Duplex and Flower Structure:Dent Fault System, NW England.Journal of Structural Geology, 25(12):1981-1992. https://doi.org/10.1016/s0191-8141(03)00057-9 [32] Wu, G.H., Chen, Z.Y., Qu, T.L., et al., 2012.Characteristics of the Strik-Slip Fault Facies in Ordovician Carbonate in the Tarim Basin, and Its Relations to Hydrocarbon.Acta Geologica Sinica, 86(2):219-227(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201202002.htm [33] Wu, G.H., Cheng, L.F., Liu, Y.K., et al., 2011.Strike-Slip Fault System of the Cambrian-Ordovician and Its Oil-Controlling Effect in Tarim Basin.Xinjiang Petroleum Geology, 32(3):239-243(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-XJSD201103008.htm [34] Xu, D.F., Zhao, M.J., Meng, Q.R., et al., 2004.Tectonic Evolution and Paleo-Structure Restoration of Tazhong Low Uplift.Research Institute of Petroleum Exploration & Development, Beijing (in Chinese). [35] Yang, S.B., Liu, J., Li, H.L., et al., 2013.Characteristics of the NE-Trending Strike-Slip Fault System and Its Control on Oil Accumulation in North Peri-Cline Area of the Tazhong Paleouplift.Oil & Gas Geology, 34(6):797-802(in Chinese with English abstract). http://ogg.pepris.com/EN/abstract/abstract11139.shtml [36] Yang, S.F., Chen, H.L., Ji, D.W., et al., 2005.Geological Process of Early to Middle Permian Magmatism in Tarim Basin and Its Geodynamic Significance.Geological Journal of China Universities, 11(4):504-511(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-GXDX200504005.htm [37] Zhang, C.Z., Yu, H.F., Zhang, H.Z., et al., 2008.Characteristic, Genesis and Geologic Meaning of Strike-Slip Fault System in Tazhong Area.Journal of Southwest Petroleum University(Science & Technology Edition), 30(5):22-26(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-XNSY200805008.htm [38] Zhang, Y.P., Yang, H.J., Lv, X.X., et al., 2011.Strike-Slip Faults and Their Controls on Hydrocarbon Reservoir in Middle Part of Northern Slope of Tazhong Area, Tarim Basin.Xinjiang Petroleum Geology, 32(4):342-344 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XJSD201104002.htm [39] Zhang, Z.S., Li, M.J., Liu, S.P., 2002.Generation and Evolution of Tazhong Low Uplift.Petroleum Exploration and Development, 29(1):28-31 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SKYK200201006.htm [40] Zhou, X.Y., Lü, X.X., Yang, H.J., et al., 2013.Effects of Strike-Slip Faults on the Differential Enrichment of Hydrocarbons in the Northern Slope of Tazhong Area.Acta Petrolei Sinica, 34(4):628-637 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB201304002.htm [41] 丁长辉, 周红波, 路鹏程, 等, 2009.塔中低凸起古生界构造特征及演化.大地构造与成矿学, 33(1):148-153. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dgyk200901021&dbname=CJFD&dbcode=CJFQ [42] 韩剑发, 孙崇浩, 王振宇, 等, 2017.塔中隆起碳酸盐岩叠合复合岩溶模式与油气勘探.地球科学, 42(3):410-420. https://doi.org/10.3799/dqkx.2017.031 [43] 何碧竹, 焦存礼, 蔡志慧, 等, 2011.塔里木盆地中部航磁异常带新解译.中国地质, 38(4):961-969. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dizi201104014&dbname=CJFD&dbcode=CJFQ [44] 黄太柱, 2014.塔里木盆地塔中北坡构造解析与油气勘探方向.石油实验地质, 36(3):257-267. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=sysd201403002&dbname=CJFD&dbcode=CJFQ [45] 李本亮, 管树巍, 李传新, 等, 2009.塔里木盆地塔中低凸起古构造演化与变形特征.地质评论, 55(4):521-530. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dzlp200904008&dbname=CJFD&dbcode=CJFQ [46] 李培军, 陈红汉, 唐大卿, 等, 2017.塔里木盆地顺南地区中-下奥陶统NE向走滑断裂及其与深成岩溶作用的耦合关系.地球科学, 42(1):93-104. https://doi.org/10.3799/dqkx.2017.007 [47] 马庆佑, 沙旭光, 李玉兰, 等, 2012.塔中顺托果勒区块走滑断裂特征及控油作用.石油实验地质, 34(2):120-124. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=sysd201202005&dbname=CJFD&dbcode=CJFQ [48] 乔日新, 张用夏, 2002.高精度航空磁测在塔里木盆地油气勘查中的几点新认识.物探与化探, 26(5):334-339. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=wtyh200205001&dbname=CJFD&dbcode=CJFQ [49] 任建业, 阳怀忠, 胡德胜, 等, 2012.塔里木盆地中央隆起带断裂活动及其对海相克拉通解体的作用.地球科学, 37(4):645-653. https://doi.org/10.3799/dqkx.2012.074 [50] 任建业, 张俊霞, 阳怀忠, 等, 2011.塔里木盆地中央隆起带断裂系统分析.岩石学报, 27(1):219-230. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ysxb201101015&dbname=CJFD&dbcode=CJFQ [51] 汤良杰, 金之钧, 2000.塔里木盆地北部隆起牙哈断裂带负反转过程与油气聚集.沉积学报, 18(2):302-309. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=cjxb200002022&dbname=CJFD&dbcode=CJFQ [52] 邬光辉, 陈志勇, 曲泰来, 等, 2012.塔里木盆地走滑带碳酸盐岩断裂相特征及其与油气关系.地质学报, 86(2):219-227. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dzxe201202002&dbname=CJFD&dbcode=CJFQ [53] 邬光辉, 成丽芳, 刘玉魁, 等, 2011.塔里木盆地寒武-奥陶系走滑断裂系统特征及其控油作用.新疆石油地质, 32(3):239-243. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=xjsd201103008&dbname=CJFD&dbcode=CJFQ [54] 许大丰, 赵孟军, 孟庆任, 等, 2004.塔中低凸起构造演化与古构造恢复.北京:中国石油勘探开发研究院. [55] 杨圣彬, 刘军, 李慧莉, 等, 2013.塔中北围斜区北东向走滑断裂特征及其控油作用.石油与天然气地质, 34(6):797-802. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=syyt201306013&dbname=CJFD&dbcode=CJFQ [56] 杨树锋, 陈汉林, 冀登武, 等, 2005.塔里木盆地早-中二叠世岩浆作用过程及地球动力学意义.高校地质学报, 11(4):504-511. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gxdx200504005&dbname=CJFD&dbcode=CJFQ [57] 张承泽, 于红枫, 张海祖, 等, 2008.塔中地区走滑断裂特征、成因及地质意义.西南石油大学学报(自然科学版), 30(5):22-26. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=xnsy200805008&dbname=CJFD&dbcode=CJFQ [58] 张艳萍, 杨海军, 吕修祥, 等, 2011.塔中北斜坡中部走滑断裂对油气成藏的控制.新疆石油地质, 32(4):342-344. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=xjsd201104002&dbname=CJFD&dbcode=CJFQ [59] 张振生, 李明杰, 刘社平, 2002.塔中低凸起的形成和演化.石油勘探与开发, 29(1):28-31. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=skyk200201006&dbname=CJFD&dbcode=CJFQ [60] 周新源, 吕修祥, 杨海军, 等, 2013.塔中北斜坡走滑断裂对碳酸盐岩油气差异富集的影响.石油学报, 34(4):628-637. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=syxb201304002&dbname=CJFD&dbcode=CJFQ